首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intimin and EspA proteins are virulence factors expressed by attaching and effacing Escherichia coli (AEEC) such as enteropathogenic and enterohaemorrhagic E. coli. The EspA protein makes up a filament structure forming part of the type III secretion system (TTSS) that delivers effector proteins to the host epithelial cell. Bacterial surface displayed intimin interacts with translocated intimin receptor in the host cell membrane leading to intimate attachment of the bacterium and subsequent attaching and effacing lesions. Here, we have assessed the use of recombinant monoclonal antibodies against E. coli O157:H7 EspA and intimin for the disruption of AEEC interaction with the host cell. Anti-gamma intimin antibodies did not reduce either adhesion of E. coli O157:H7 to host cell mono-layers or subsequent host cell actin rearrangement. Anti-EspA antibodies similarly had no effect on bacterial adhesion however they had a marked effect upon E. coli O157:H7-induced host cell actin rearrangement, where both monoclonal and polyclonal antibodies completely blocked cytoskeletal changes within the host cell. Furthermore, these anti-EspA antibodies were shown to reduce actin rearrangement induced by some but not all other AEEC serotypes tested. Both polyclonal and monoclonal antibodies could be used to label E. coli O157 EspA filaments and these immunoreagents did not inhibit the formation of such filaments. This is the first report of monoclonal antibodies to EspA capable of disrupting the TTSS function of E. coli O157:H7.  相似文献   

2.
The pathogenesis of enteropathogenic Escherichia coli (EPEC) is characterized by the type III secretion system-dependent exploitation of target cells that results in attaching and effacing (A/E) lesions, actin rearrangements and pedestal formation. This pathology is mediated by effector proteins which are translocated by the type III secretion system into the host cell such as the translocated intimin receptor (Tir) and several E. coli secreted proteins (Esp). Secretion of virulence proteins of EPEC is tightly regulated. In response to Ca(2+), Esp secretion is drastically reduced, whereas secretion of Tir is increased. Membrane insertion of Tir, secreted under low Ca(2+) conditions, is therefore independent of Esp. Furthermore, espB and espD mutant strains of EPEC, unable to form the translocation pore, still translocate Tir into host cells membranes. This autointegrated Tir is functional, as it is able to complement a tir mutant strain in recruiting actin to bacterial contact sites. The uptake of Tir into the host cell appears to depend on the C-terminal part of the protein, as deletion of this part of Tir prevents autointegration. Together, our results demonstrate that under conditions of limited Ca(2+) an alternative mechanism for Tir integration can trigger the induction of A/E lesions.  相似文献   

3.
Enterohaemorrhagic Escherichia coli (EHEC) has emerged as an important agent of diarrhoeal disease. Attachment to host cells, an essential step during intestinal colonization by EHEC, is associated with the formation of a highly organized cytoskeletal structure containing filamentous actin, termed an attaching and effacing (A/E) lesion, directly beneath bound bacteria. The outer membrane protein intimin is required for the formation of this structure, as is Tir, a bacterial protein that is translocated into the host cell and is thought to function as a receptor for intimin. To understand intimin function better, we fused EHEC intimin to a homologous protein, Yersinia pseudotuberculosis invasin, or to maltose-binding protein. The N-terminal 539 amino acids of intimin were sufficient to promote outer membrane localization of the C-terminus of invasin and, conversely, the N-terminal 489 amino acids of invasin were sufficient to promote the localization of the C-terminus of intimin. The C-terminal 181 residues of intimin were sufficient to bind mammalian cells that had been preinfected with an enteropathogenic E. coli strain that expresses Tir but not intimin. Binding of intimin derivatives to preinfected cells correlated with binding to recombinant Tir protein. Finally, the 181-residue minimal Tir-binding region of intimin, when purified and immobilized on latex beads, was sufficient to trigger A/E lesions on preinfected mammalian cells.  相似文献   

4.
Adhesion of enteropathogenic Escherichia coli to host cells   总被引:9,自引:1,他引:8  
Enteropathogenic Escherichia coli (EPEC) adhere to the intestinal mucosa and to tissue culture cells in a distinctive fashion, destroying microvilli, altering the cytoskeleton and attaching intimately to the host cell membrane in a manner termed the attaching and effacing effect. Typical EPEC strains also form three-dimensional microcolonies in a pattern termed localized adherence. Attaching and effacing, and in particular intimate attachment requires an outer membrane adhesin called intimin, which binds to the translocated intimin receptor, Tir. Tir is produced by the bacteria and delivered to the host cell via a type III secretion system. In addition to this well-established adhesin-receptor pair, numerous other adhesin interactions between EPEC and host cells have been described including those between intimin and cellular receptors and those involving a bundle-forming pilus and flagella and unknown receptors. Much additional work is needed before a full understanding of EPEC adhesion to host cells comes to light.  相似文献   

5.
Attaching and effacing Escherichia coli (AEEC) has been described as a cause of diarrhea in calves. The molecular pathogenesis of AEEC was mainly studied in human enteropathogenic E. coli strain E2348/69 in which the virulence correlated with the presence of a 35.4 kb pathogenesis island called LEE. We showed that several strains isolated from calves with diarrhea were able to produce attaching and effacing lesions in a rabbit ileal loop model and that they possess a pathogenesis island related to the LEE. Moreover, we showed that the LEE from bovine strains was inserted mainly at a different position in the chromosome compared to the human enteropathogenic E. coli strain E2348/69.  相似文献   

6.
Attachment to host cells by enterohaemorrhagic Escherichia coli (EHEC) is associated with the formation of a highly organized cytoskeletal structure containing filamentous actin, termed an attaching and effacing (AE) lesion. Intimin, an outer membrane protein of EHEC, is required for the formation of AE lesions, as is Tir, a bacterial protein that is translocated into the host cell to function as a receptor for intimin. We established a yeast two-hybrid assay for intimin-Tir interaction and, after random mutagenesis, isolated 24 point mutants in intimin, which disrupted Tir recognition in this system. Analysis of 11 point mutants revealed a correlation between recognition of recombinant Tir and the ability to trigger AE lesions. Many of the mutations fell within a 50-residue region near the C-terminus of intimin. Alanine-scanning mutagenesis of this region revealed four residues (Ser890, Thr909, Asn916 and Asn927) that are critical for Tir recognition. Mapping the sequences of EHEC intimin and Tir onto the crystal structure of the intimin-Tir complex of enteropathogenic E. coli predicts that each of these four intimin residues lies at the intimin-Tir interface and contributes to a pocket that interacts with Ile298 of EHEC Tir. Thus, this genetic approach to intimin function both identified residues critical for Tir binding and demonstrated a correlation between the ability to bind Tir and the ability to trigger actin focusing.  相似文献   

7.
8.
Intimin is essential for attaching and effacing lesions by pathogens such as enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC), and the antigenic polymorphism of intimin determines distinct subtypes. Our aim was to investigate the presence of immunoglobulin G (IgG) and IgA antibodies reactive to α, β and γ intimins in serum and colostrum from healthy Brazilian adults. We found seric IgG and secretory IgA antibodies reactive to conserved and variable regions of α, β and γ intimins and a positive correlation between the concentrations of these antibodies in both serum and colostrum that suggested cross reactivity among anti-intimin antibodies, as was confirmed by immunoblotting and absorption. The concentrations of anti-conserved region antibodies were higher than those of variable region antibodies. The presence of antibodies reactive to EHEC antigens could result from contact with EPEC or with other bacteria of the environment even though this bacterium is not frequent in Brazil, and suggests possible protection against EHEC.  相似文献   

9.
Abstract We have previously reported that the production of attaching and effacing lesions by Escherichia coli O45 isolates from pigs is associated with the eaeA ( E. coli attaching and effacing) gene. In the present study, expression of the EaeA protein, the eaeA gene product, among swine O45 E. coli isolates was examined. The majority (20/22) of attaching and effacing positive, eaeA+ E. coli O45 isolates, but none of ten attaching and effacing negative, eaeA or eaeA+ isolates, expressed a 97-kDa outer membrane protein as revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis. Amino-terminal amino acid sequencing demonstrated a high homology between this 97-kDa protein of swine E. coli O45 and the EaeA protein (intimin) of human enteropathogenic E. coli and enterohemorrhagic E. coli . In addition, a serological relationship between the EaeA proteins of swine O45, rabbit (RDEC-1) and human (E2348/69) attaching and effacing E. coli strains was observed. Our results indicate an association between expression of the EaeA protein and attaching and efficacing activity among O45 E. coli isolates. The data also suggest an antigenic relatedness of the EaeA proteins of swine, rabbit, and human attaching and effacing E. coli .  相似文献   

10.
AIM: To evaluate the potential for polyclonal antibodies targeting enterohaemorrhagic Escherichia coli (EHEC) virulence determinants to prevent colonization of host cells by E. coli O157:H7. METHODS AND RESULTS: Rats and laying hens were immunized with recombinant proteins from E. coli O157:H7, EspA, C-terminal intimin or EscF. Rat antisera (IgG) or chicken egg powders (IgY) were assessed for their ability to inhibit growth and colonization-associated processes of E. coli O157:H7. Mammalian antisera with antibodies to intimin, EspA or EscF effectively reduced adherence of the pathogen to HeLa cells (P<0.05) and prevented type III secretion of Tir. Similarly, HeLa cells treated with chicken egg powder containing antibodies against intimin or EspA were protected from EHEC adherence (P<0.05). Neither egg nor rat antibody preparations had any antibacterial effect on the growth of EHEC (P>0.05). CONCLUSIONS: Antibody preparations targeting EHEC adherence-associated factors were effective at preventing adhesion and intimate colonization-associated events. SIGNIFICANCE AND IMPACT OF THE STUDY: This work indicates that immunotherapy with anti-adherence antibodies can reduce E. coli O157:H7 colonization of host cells. Passive immunization with specific antibodies may have the potential to reduce E. coli O157:H7 colonization in hosts such as cattle or humans.  相似文献   

11.
Map is an enteropathogenic Escherichia coli (EPEC) protein that is translocated into eukaryotic cells by a type III secretion system. Although not required for the induction of attaching and effacing (A/E) lesion formation characteristic of EPEC infection, translocated Map is suggested to disrupt mitochondrial membrane potential, which may impact upon subsequent functions of the organelle such as control of cell death. Before secretion, many effector proteins are maintained in the bacterial cytosol by association with a specific chaperone. In EPEC, chaperones have been identified for the effector proteins translocated intimin receptor (Tir) and EspF, and for the translocator proteins EspB and EspD. In this study, we present evidence that the Tir-specific chaperone, CesT, also performs a chaperone function for Map. Using a combination of biochemical approaches, we demonstrate specific interaction between CesT and Map. Similar to other chaperone-effector pairings, binding is apparent at the amino-terminus of Map and is indicated to proceed by a similar mechanism to CesT:Tir interaction. Map secretion from a cesT mutant strain (SE884) is shown to be reduced and, importantly, its translocation from this strain after infection of HEp-2 cells is almost totally abrogated. Although other chaperones are reported to have a bivalent binding specificity, CesT is the first member of its family that chaperones more than one protein for translocation.  相似文献   

12.
Enteropathogenic Escherichia coli (EPEC) induce characteristic attaching and effacing (A/E) lesions on epithelial cells. This event is mediated, in part, by binding of the bacterial outer membrane protein, intimin, to a second EPEC protein, Tir (translocated intimin receptor), which is exported by the bacteria and integrated into the host cell plasma membrane. In this study, we have localized the intimin-binding domain of Tir to a central 107-amino-acid region, designated Tir-M. We provide evidence that both the amino- and carboxy-termini of Tir are located within the host cell. In addition, using immunogold labelling electron microscopy, we have confirmed that intimin can bind independently to host cells even in the absence of Tir. This Tir-independent interaction and the ability of EPEC to induce A/E lesions requires an intact lectin-like module residing at the carboxy-terminus of the intimin polypeptide. Using the yeast two-hybrid system and gel overlays, we show that intimin can bind both Tir and Tir-M even when the lectin-like domain is disrupted. These data provide strong evidence that intimin interacts not only with Tir but also in a lectin-like manner with a host cell intimin receptor.  相似文献   

13.
Tir, the translocated intimin receptor of enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC) and Citrobacter rodentium, is translocated into the host cell by a filamentous type III secretion system. Epithelial cell culture has demonstrated that Tir tyrosine phosphorylation is necessary for attaching effacing (A/E) lesion formation by EPEC and C. rodentium, but is not required by EHEC O157:H7. Recent in vivo work on C. rodentium has reported that Tir translocation, but not its phosphorylation, is necessary for colonization of the mouse colon. In this study we investigated the involvement of Tir and its tyrosine phosphorylation in EPEC and EHEC human intestinal colonization, N-WASP accumulation and F-actin recruitment using in vitro organ culture (IVOC). We showed that both EPEC and EHEC Tir are translocated into human intestinal epithelium during IVOC and that Tir is necessary for ex vivo intestinal colonization by both EPEC and EHEC. EPEC, but not EHEC, Tir is tyrosine phosphorylated but Tir phosphorylation-deficient mutants still colonize intestinal explants. While EPEC Tir recruits the host adaptor protein Nck to initiate N-WASP-Arp2/3-mediated actin polymerization, Tir derivatives deficient in tyrosine phosphorylation recruit N-WASP independently of Nck indicating the presence of a tyrosine phosphorylation-independent mechanism of A/E lesion formation and actin recruitment ex vivo by EPEC in man.  相似文献   

14.
The outer membrane adhesins of enteropathogenic Escherichia coli, Citrobacter rodentium, and enterohemorrhagic E. coli (EHEC) O157:H7 that mediate attach and efface intestinal lesions are classified as intimin alpha, beta, and gamma, respectively. Each of these intimin types binds to its cognate, bacterially encoded receptor (called Tir for translocated intimin receptor) to promote tight adherence of the organism to the host-cell plasma membrane. We previously reported that gamma intimin of EHEC O157:H7 also bound to a eucaryotic receptor that we determined was nucleolin. The objective of this study was to investigate in vitro and in vivo the interactions of intimins alpha, beta, and gamma with nucleolin in the presence of Tir from EHEC O157:H7. Protein binding experiments demonstrated that intimin of types alpha, beta, and gamma bound nucleolin with similar affinity. Moreover, all three intimin types co-localized with regions of nucleolin expressed on the surface of HEp-2 cells. When intimin alpha, beta, or gamma bound to Tir in vitro, the intimin interaction with nucleolin was blocked. Both Tir and nucleolin accumulated beneath intimin-presenting bacteria that had attached to the surface of HEp-2 cells. Taken together, these findings suggest that nucleolin is involved in bacterial adherence promoted by all intimin types and that Tir and nucleolin compete for intimin during adherence.  相似文献   

15.
Enteropathogenic Escherichia coli (EPEC) are frequently isolated as a cause of infantile diarrhea in developing countries. Its pathogenicity is distinguished by histopathological alterations at the site of infection, known as attaching and effacing (A/E) lesions, in which bacterial virulence factors and host proteins participate. Intimin, a bacterial adhesin expressed by all EPEC described to date, is responsible for the intimate adherence of the bacteria to host cells and is essential for the formation of A/E lesions. Mucosal vaccination may represent an efficacious intervention to prevent EPEC infection and lower morbidity and mortality rates. Strategies for mucosal vaccinations that use lactic acid bacteria for the delivery of heterologous antigens rely on their safety profile and ability to stimulate the immune system. In the present work, we have constructed Lactobacillus casei strains expressing different fragments of intimin beta, a subtype that is frequently expressed by EPEC strains. Mucosal immunization of mice with L. casei expressing intimin fragments induced specific systemic and mucosal antibodies. These antibodies were able to recognize native intimin on the surface of EPEC and to inhibit in vitro EPEC binding to epithelial cells.  相似文献   

16.
AIMS: Bovine meat is the principal source of human contamination of attaching and effacing Escherichia coli, including enterohaemorrhagic E. coli O157. The aim was to study the prevalence of these strains on bovine carcasses in Algeria. METHODS AND RESULTS: Two-hundred and thirty carcasses were swabbed and analysed by classical microbiological methods for total E. coli counts and for the presence of pathogenic E. coli. The E. coli counts were high, with a 75th percentile of 444.75 CFUs cm(-2). For pathogenic E. coli, more than 7% of the tested carcasses were positive for E. coli O157. Eighteen E. coli O157 strains were isolated and typed by multiplex PCR. The main isolated pathotype (78%) was eae+ stx2+ ehxA+. In addition to E. coli O157, other attaching and effacing E. coli (AEEC) were also detected from carcasses by colony hybridization after pre-enrichment and plating on sorbitol MacConkey agar using eae, stx1 and stx2 probes. Thirty carcasses (13%) on the 230 analysed harboured at least one colony positive for one of the tested probes. These positive carcasses were different from those positive for E. coli O157. Sixty-six colonies (2.9%) positive by colony hybridization were isolated. The majority (60.6%) of the positive strains harboured an enteropathogenic E. coli-like pathotype (eae+ stx-). Only three enterohaemorrhagic E. coli (EHEC)-like (eae+ stx1+) colonies were isolated from the same carcass. These strains did not belong to classical EHEC serotypes. CONCLUSIONS: In this study, the global hygiene of the slaughterhouse was low, as indicated by the high level of E. coli count. The prevalence of both E. coli O157 and other AEEC was also high, representing a real hazard for consumers. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study of this type in Algeria, which indicates that the general hygiene of the slaughterhouse must be improved.  相似文献   

17.
Citrobacter rodentium infection of mice serves as a relevant small animal model to study enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) infections in man. Enteropathogenic E. coli and EHEC translocate Tir into the host cytoplasmic membrane, where it serves as the receptor for the bacterial adhesin intimin and plays a central role in actin condensation beneath the adherent bacterium. In this report, we examined the function of C. rodentium Tir both in vitro and in vivo. Similar to EPEC, C. rodentium Tir is tyrosine phosphorylated and is essential for actin condensation. Citrobacter Tir and EPEC Tir are functionally interchangeable and both require tyrosine phosphorylation to mediate actin rearrangements. In contrast, Citrobacter Tir supports actin nucleation in EHEC independent of tyrosine phosphorylation, while EHEC Tir cannot replace Citrobacter Tir for this function. This indicates that C. rodentium and EPEC use an actin nucleating mechanism different from EHEC. We also found that Tir is expressed and translocated into mouse enterocytes in vivo by C. rodentium during infections. This represents the first direct demonstration of a type III effector translocated in vivo into a natural host by any pathogen. In addition, we showed that Tir, but not its tyrosine phosphorylation, is essential for C. rodentium to colonize the large bowel and induce attaching/effacing (A/E) lesions and colonic hyperplasia in mice, and that both EPEC Tir and EHEC Tir can substitute for Citrobacter Tir for these activities in vivo. These results thus demonstrate that Tir is an essential virulence factor in this infection model. The data also show that the function of Tir tyrosine phosphorylation and its subsequent actin nucleating activity are not essential for C. rodentium colonization of the mouse gut nor for inducing A/E lesions and colonic hyperplasia, thereby uncoupling colonization and disease from actin condensation for this A/E pathogen.  相似文献   

18.
Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that causes watery diarrhea and hemorrhagic colitis. In this study, we identified StcE, a secreted zinc metalloprotease that contributes to intimate adherence of EHEC to host cells, in culture supernatants of atypical Shigella boydii 13 (Shigella B13) strains. Further examination of the Shigella B13 strains revealed that this cluster of pathogens does not invade but forms pedestals on HEp-2 cells similar to EHEC and enteropathogenic E.?coli. This study also demonstrates that atypical Shigella B13 strains are more closely related to attaching and effacing E.?coli and that their evolution recapitulates the progression from ancestral E.?coli to EHEC.  相似文献   

19.
Infections with verotoxin-producing Escherichia coli (VTEC) has resulted in increasing numbers of human illnesses annually. These illnesses usually result from the ability of VTEC to cause the attaching and effacing lesions (AE lesion). The AE phenotype is encoded by the locus of enterocyte effacement (LEE) pathogenicity island. A key adhesion factor involved is the outer membrane protein intimin, encoded by the eae gene within the LEE. Intimin types alpha, beta, gamma, delta, and epsilon have been described previously. Each intimin represents distinct phylogenetic lineages of LEE-positive strains. A new intimin type zeta was identified in a VTEC strain of the serotype O84:NM (nonmotile) that was isolated from a calf with diarrhea. zeta intimin showed the highest similarity (88%) of its amino acid sequence to the alpha intimin. For diagnostic purposes, we established a polymerase chain reaction (PCR) method for diagnosis of the key virulence traits of VTEC (i.e., verotoxins and intimins). This method also distinguishes between the toxins (VT1 and VT2) and the six intimin types. By applying the PCR method, intimin zeta in strains of other VTEC serotypes O84:H2, O92:NM, O119:H25, and O150:NM was identified. Because the intimin types represent distinctive phylogenetic E. coli lineages, application of the intimin subtyping PCR offers significant benefits. These include improving diagnosis of VTEC infection and increasing the understanding of evolution of attaching and effacing VTEC and other LEE-positive bacteria.  相似文献   

20.
Attaching and effacing rabbit enteropathogenic Escherichia coli (REPEC) of the O103 serogroup adhere diffusely on HeLa cells and trigger a slow progressive cytopathic effect (CPE) characterized by the recruitment of vinculin and the assembly of actin stress fibres. In contrast to REPEC O103, the reference human EPEC strain E2348/69 is unable to trigger the CPE. In this study, we have shown first that the fimbrial adhesin AF/R2, which mediates the diffuse adhesion of REPEC O103, was not sufficient to induce the CPE capability upon E2348/69. Non-polar mutants of REPEC O103 for espA , espB , espD and eae were then constructed. The four mutants were unable to induce attaching and effacing lesions in the rabbit ileal loop model. The esp mutants were no longer able to induce the CPE, whereas the eae mutant still induced the CPE. Each espA , - B , - D mutant could be fully complemented in trans by the corresponding cloned esp genes from both the parental strain and the CPE-negative E2348/69 strain, indicating that no single esp encodes the information needed to confer the CPE phenotype. In conclusion, the CPE is the first example of an Esp-dependent but Eae (intimin)-independent alteration of the host cell cytoskeleton by certain EPEC strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号