首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PGE2 involvement in experimental Trypanosoma cruzi infection depends on the lethal capacity of the parasite subpopulation used. Mice acutely infected with non-lethal K98 displayed an enhancement in PGE2 serum levels during the acute period, while those infected with lethal T. cruzi subpopulations (RA or K98-2) showed levels not different from normal mice. The enhancement detected in K98 group could be related both to an increased number of CD8+ T cell number and to enhanced PGE2 release per cell by CD8+; values of PGE2 release by adherent cells were not altered in this group. Treatment with cyclooxygenase inhibitors enhanced mortality rates of mice infected with K98, and administration of 16,16-dimethyl PGE2 (dPGE) reversed this effect. However, mice infected with RA did not reduce their mortality rates by administration of diverse doses of dPGE. These findings suggest that PGE2 could play a role in resistance in mice infected with K98.  相似文献   

2.
3.
The optimal conditions for labeling Trypanosoma cruzi culture forms with 51CrO42− were determined. Labeled trypanosomes or labeled human red blood cells (RBCs) were injected intravenously into normal C3H(He) female mice and the rate of clearance and organ distribution of the isotope were observed over a 30 h period. It was found that trypanosomes and xenogeneic RBCs were cleared rapidly from the peripheral blood and accumulated primarily in the liver, spleen, lungs and kidneys. A difference was noted in accumulation of trypanosomes and RBCs in these mice.  相似文献   

4.
Three different monoclonal antibodies were produced against Trypanosona cruzi proteasomes. These antibodies were shown to react with a single 27-kDa band on immunoblots of purified proteasomes. Using a 7E5 monoclonal antibody (IgG1) that recognized the α5 subunit of protozoan protease we have studied the intracellular distribution of the T. cruzi 20S proteasome. Contrary to all cell types described to date, T. cruzi 20S proteasome was found not only in the cytoplasm and nucleus but also in the kinetoplast. As revealed by confocal microscopy, the reactivity of monoclonal antibody 7E5 was highly specific for protozoan proteasome because the antibody recognized only the proteasomes from parasites and not those from the mammalian host in T. cruzi infected cells. These findings were confirmed by immunoblots or immunoprecipitations, followed by chymotrypsin-like activity detection in kinetoplasts isolated by differential centrifugation and sucrose density gradients. Proteasome 20S was present in all T. cruzi stages and only slight differences in terms of relative abundance were found. The potential role of the proteasome in kinetoplast remodeling remains to be determined.  相似文献   

5.
In this study we compared the effects of naphthoquinones (α-lapachone, β-lapachone, nor-β-lapachone and Epoxy-α-lap) on growth of Trypanosoma cruzi epimastigotes forms, and on viability of VERO cells. In addition we also experimentally analyzed the most active compounds inhibitory profile against T. cruzi serine- and cysteine-proteinases activity and theoretically evaluated them against cruzain, the major T. cruzi cysteine proteinase by using a molecular docking approach. Our results confirmed β-lapachone and Epoxy-α-lap with a high trypanocidal activity in contrast to α-lapachone and nor-β-lapachone whereas Epoxy-α-lap presented the safest toxicity profile against VERO cells. Interestingly the evaluation of the active compounds effects against T. cruzi cysteine- and serine-proteinases activities revealed different targets for these molecules. β-Lapachone is able to inhibit the cysteine-proteinase activity of T. cruzi proteic whole extract and of cruzain, similar to E-64, a classical cysteine-proteinase inhibitor. Differently, Epoxy-α-lap inhibited the T. cruzi serine-proteinase activity, similar to PMSF, a classical serine-proteinase inhibitor. In agreement to these biological profiles in the enzymatic assays, our theoretical analysis showed that E-64 and β-lapachone interact with the cruzain specific S2 pocket and active site whereas Epoxy-α-lap showed no important interactions. Overall, our results infer that β-lapachone and Epoxy-α-lap compounds may inhibit T. cruzi epimastigotes growth by affecting T. cruzi different proteinases. Thus the present data shows the potential of these compounds as prototype of protease inhibitors on drug design studies for developing new antichagasic compounds.  相似文献   

6.
7.
The flagellar pocket and the cytostome are surface domains of Trypanosoma cruzi epimastigote involved in acquisition of nutrients. The cytostome is physically connected to the flagellar complex. To investigate if this association plays a role in endocytosis in T. cruzi, the endocytic activity in wild type and gp72 null mutant (flagellum-cell body attachment region is absent) epimastigotes was compared. Both wild type and mutant cells were incubated with transferrin conjugated with Alexa 543 or gold particles over different time periods and thereafter qualitatively and quantitatively analyzed by flow cytometry and transmission electron microscopy. Flow cytometry analysis showed a reduction in transferrin uptake by null mutant after 30 min of incubation. In addition, at this time period, signals detected by fluorescence microscopy were slightly lower in null mutant cells. At lower incubation times, no differences between wild type and mutant epimastigotes could be observed. Quantitative data obtained by morphometric and flow cytometry analysis suggested that the speed of the endocytic process in the null mutant was similar to wild type cells, although null mutants were not able to bind cargo and therefore internalize as much as wild type epimastigotes. Our observations suggest that the physical association between cytostome and the flagellar complex plays a role in endocytosis efficiency by epimastigotes of T. cruzi.  相似文献   

8.
9.
The nuclear lamina is a structure that lines the inner nuclear membrane. In metazoans, lamins are the primary structural components of the nuclear lamina and are involved in several processes. Eukaryotes that lack lamins have distinct proteins with homologous functions. Some years ago, a coiled-coil protein in Trypanosoma brucei, NUP-1, was identified as the major filamentous component of its nuclear lamina. However, its precise role has not been determined. We characterized a homologous protein in Trypanosoma cruzi, TcNUP-1, and identified its in vivo DNA binding sites using a chromatin immunoprecipitation assay. We demonstrate for the first time that TcNUP-1 associates with chromosomal regions containing large non-tandem arrays of genes encoding surface proteins. We therefore suggest that TcNUP-1 is a structural protein that plays an essential role in nuclear organization by anchoring T. cruzi chromosomes to the nuclear envelope.  相似文献   

10.
The energetics of heart mitochondria was studied in the acute phase of Trypanosoma cruzi infection in rats. Wistar rats were infected with 2 × 105 trypomastigote forms of the Y strain of T. cruzi, and heart mitochondria and submitochondrial particles isolated after 7 and 25 days of infection. Ultrastructure of mitochondria seemed to be preserved, but cytochrome c levels were significantly depressed. Respiratory control ratios (RCR) were decreased for glutamate and succinate oxidations, as a consequence of inhibition of respiration in state 3 and/or of stimulation of respiration in state 4. Stimulation of hydrolytic activity of FoF1-ATPase by energization of mitochondria was approx. 2-fold higher in relation to controls. Mitochondrial ATP concentration remained constant. In conclusion, during the acute phase of T. cruzi infection in rats there is an energy impairment at the level of heart mitochondria, but their ultrastructure and ATP concentration seem to be preserved; the maintenance of ATP may be due to an adaptative mechanism of the cell which includes inhibition of the hydrolytic activity of FoF1-ATPase.  相似文献   

11.
Cruzipain, the major cysteine proteinase from Trypanosoma cruzi, is a member of the papain family that contains a C-terminal domain in the mature enzyme, in addition to a catalytic moiety homologous to papain and some mammalian cathepsins. The native enzyme is expressed as a complex mixture of isoforms and has not been crystallized. Previous attempts to express recombinant mature cruzipain containing the C-terminal domain have failed. For this reason, the three-dimensional structure of the complete mature enzyme is not known, although the structure of a recombinant truncated molecule lacking the C-terminal domain (cruzainΔc) has been determined. We report here the expression of active, N-glycosylated, complete mature cruzipain in an insect cell/baculovirus system. The purified recombinant enzyme, obtained with a yield of about 0.2 mg/100 ml of culture supernatant, has an apparent molecular mass similar, and an identical N-terminal sequence, compared with the native enzyme. The expressed protein is able to process itself by self-proteolysis, leaving the isolated C-terminal domain, and has kinetic properties similar to those of native cruzipain, although some differences in substrate specificity were found. These results open up the possibility of obtaining recombinant intact mature cruzipain of a quality and in quantity suitable for X-ray crystallography.  相似文献   

12.
In this study, we investigated the role of Trypanosoma cruzi invasion and inflammatory processes in reactive oxygen species (ROS) production in a mouse atrial cardiomyocyte line (HL-1) and primary adult rat ventricular cardiomyocytes. Cardiomyocytes were incubated with T. cruzi (Tc) trypomastigotes, Tc lysate (TcTL), or Tc secreted proteins (TcSP) for 0–72 h, and ROS were measured by amplex red assay. Cardiomyocytes infected by T. cruzi (but not those incubated with TcTL or TcSP) exhibited a linear increase in ROS production for 2–48 h postinfection (max 18-fold increase), which was further enhanced by recombinant cytokines (IL-1β, TNF-α, and IFN-γ). We observed no increase in NADPH oxidase, xanthine oxidase, or myeloperoxidase activity, and specific inhibitors of these enzymes did not block the increased rate of ROS production in infected cardiomyocytes. Instead, the mitochondrial membrane potential was perturbed and resulted in inefficient electron transport chain (ETC) activity and enhanced electron leakage and ROS formation in infected cardiomyocytes. HL-1 rho (ρ) cardiomyocytes lacked a functional ETC and exhibited no increase in ROS formation in response to T. cruzi. Together, these results demonstrate that invasion by T. cruzi and an inflammatory milieu affect mitochondrial integrity and contribute to electron transport chain inefficiency and ROS production in cardiomyocytes.  相似文献   

13.
Chagas disease is an enzootic disease, in which the flagellate Trypanosoma cruzi infects a large variety of animals. Humans are accidentally infected due to the migration into wild environments. To identify T. cruzi discrete typing units (DTUs), 19 Brazilian isolates from different biomes and hosts were analyzed by PCR amplification of 24Sα rRNA, 18S rRNA and mini-exon gene sequences. The majority of the isolates was classified as TcIIb (TcII) but subtypes TcIIc (TcIII) and TcIId (TcV) were also identified. In addition, in monkeys TcI was detected.  相似文献   

14.
Trypanosoma cruzi is a genetically and biologically diverse species. In the current study we determined T. cruzi infection dynamics in two common North American reservoirs, Virginia opossums (Didelphis virginiana) and raccoons (Procyon lotor). Based on previous molecular and culture data from naturally-exposed animals, we hypothesised that raccoons would have a longer patent period than opossums, and raccoons would be competent reservoirs for both genotypes T. cruzi I (TcI) and TcIIa, while opossums would only serve as hosts for TcI. Individuals (= 2 or 3) of each species were inoculated with 1 × 106 culture-derived T. cruzi trypomastigotes of TcIIa (North American (NA) – raccoon), TcI (NA – opossum), TcIIb (South American – human), or both TcI and TcIIa. Parasitemias in opossums gradually increased and declined rapidly, whereas parasitemias peaked sooner in raccoons and they maintained relatively high parasitemia for 5 weeks. Raccoons became infected with all three T. cruzi strains, while opossums only became infected with TcI and TcIIb. Although opossums were susceptible to TcIIb, infection dynamics were dramatically different compared with TcI. Opossums inoculated with TcIIb seroconverted, but parasitemia duration was short and only detectable by PCR. In addition, raccoons seroconverted sooner (3–7 days post inoculation) than opossums (10 days post inoculation). These data suggest that infection dynamics of various T. cruzi strains can differ considerably in different wildlife hosts.  相似文献   

15.
Trypanosoma cruzi exhibits remarkable genetic heterogeneity. This is evident at the nucleotide level but also structurally, in the form of karyotypic variation and DNA content differences between strains. Although natural populations of T. cruzi are predominantly clonal, hybrid lineages (TcIId and TcIIe) have been identified and hybridisation has been demonstrated in vitro, raising the possibility that genetic exchange may continue to shape the evolution of this pathogen. The mechanism of genetic exchange identified in the laboratory is unusual, apparently involving fusion of diploid parents followed by genome erosion. We investigated DNA content diversity in natural populations of T. cruzi in the context of its genetic subdivisions by using flow cytometric analysis and multilocus microsatellite genotyping to determine the relative DNA content and estimate the ploidy of 54 cloned isolates. The maximum difference observed was 47.5% between strain Tu18 cl2 (TcIIb) and strain C8 cl1 (TcI), which we estimated to be equivalent to 73 Mb of DNA. Large DNA content differences were identified within and between discrete typing units (DTUs). In particular, the mean DNA content of TcI strains was significantly less than that for TcII strains (P < 0.001). Comparisons of hybrid DTUs TcIId/IIe with corresponding parental DTUs TcIIb/IIc indicated that natural hybrids are predominantly diploid. We also measured the relative DNA content of six in vitro-generated TcI hybrid clones and their parents. In contrast to TcIId/IIe hybrid strains these experimental hybrids comprised populations of sub-tetraploid organisms with mean DNA contents 1.65–1.72 times higher than the parental organisms. The DNA contents of both parents and hybrids were shown to be relatively stable after passage through a mammalian host, heat shock or nutritional stress. The results are discussed in the context of hybridisation mechanisms in both natural and in vitro settings.  相似文献   

16.
Chagas disease affects 8–11 million people, mostly in Latin America. Sequelae include cardiac, peripheral nervous and/or gastrointestinal disorders, thus placing a large economic and social burden on endemic countries. The pathogenesis and the evolutive pattern of the disease are not fully clarified. Moreover, available drugs are partially effective and toxic, and there is no vaccine. Therefore, there is an urgent need to speed up basic and translational research in the field. Here, we applied automated high-content imaging to generate multiparametric data on a cell-by-cell basis to precisely and quickly determine several parameters associated with in vitro infection of host cell by Trypanosoma cruzi, the causative agent of Chagas disease. Automated and manual quantifications were used to determine the percentage of T. cruzi-infected cells in a 96-well microplate format and the data generated was statistically evaluated. Most importantly, this automated approach can be widely applied for discovery of potential drugs as well as molecular pathway elucidation not only in T. cruzi but also in other human intracellular pathogens.  相似文献   

17.
Nineteen Trypanosoma cruzi stocks, most of them of wild origin, and four Trypanosoma rangeli stocks from Colombia were analysed by molecular karyotype analysis with cloned DNA cruzipain as the probe. Another 27 cloned stocks of T. cruzi from different geographic areas of South America were used as reference for T. cruzi lineages. Phenetic analysis of chromosome size polymorphism demonstrated a great variability of Colombian T. cruzi stocks, suggesting that most belong to lineage I, although two of them belong to lineage II. The 2 lineage II T. cruzi, 17 T. cruzi lineage I, and 3 T. rangeli stocks from Colombia were studied further by Southern blot analysis with a panel of kinetoplast DNA minicircle probes. Hybridisation results indicate that the two T. cruzi II stocks are genetically distant from each other and from T. cruzi lineages IIb, IId, and IIe from Chile. Finally, T. cruzi minicircle probes do not cross-hybridise in any stringency condition tested with T. rangeli minicircles, a clear indication that these parasites can be easily distinguished by this method.  相似文献   

18.
The physiopathology of Chagas' disease has been largely defined in murine infections with virulent strains which partially represent parasite diversity. This report reviews our studies with Sylvio X10/4 parasites, a Trypanosoma cruzi clone that induces no acute phase but in C3H/He mice leads to chronic myocarditis resembling the human disease.  相似文献   

19.
Mice infected with Trypanosoma cruzi develop immunosuppressed responses to heterologous antigens. Experiments were performed using infected mice in the acute stage of infection to assess immunoregulatory activities during induction of direct plaque-forming cells (DPFC) to sheep erythrocytes (SRBC). After normal or infected mice were primed with SRBC, their spleen cells were restimulated 4 days later with SRBC in Mishell-Dutton cultures and found to mount hyperaugmented IgM anti-SRBC responses. It was also demonstrated that T-cells derived from normal mice primed in vivo 4 days previously with SRBC, and subsequently added to cultures of spleen cells from T. cruzi-infected mice, enhanced anti-SRBC DPFC responses in a dose-dependent fashion. These results show that functional help provided by T-cells activated during an in vivo priming and exposed to an in vitro challenge dose of antigen (SRBC) in a time-dependent mode can overcome the effect of immunosuppression in the spleen cell cultures from T. cruzi-infected mice.  相似文献   

20.
Proton nuclear magnetic resonance (1H NMR) was used to study the in vivo metabolism of Trypanosoma cruzi, the pathogen causing American trypanosomiasis (Chagas' disease). Three clones were isolated from a strain of T. cruzi (Bolivia strain), The clones I, II and III and the original strain were characterized according to the spectra of their metabolic pathways to test the hypothesis that clonal evolution of T. cruzi has a major impact on biologically relevant properties of this parasite. T. cruzi (Bolivia strain) excreted acetate, alanine, glycerol, and succinate as major end products, in the proportion 6:4:2:2. Comparing the spectra of T. cruzi clones with the original Bolivia strain revealed both quantitative, as well as qualitative differences in the metabolites excreted: the clones I and II, as opposed to the Bolivia strain and clone III, excreted significant quantities of ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号