首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peoples  M.B.  Bowman  A.M.  Gault  R.R.  Herridge  D.F.  McCallum  M.H.  McCormick  K.M.  Norton  R.M.  Rochester  I.J.  Scammell  G.J.  Schwenke  G.D. 《Plant and Soil》2001,228(1):29-41
On-farm and experimental measures of the proportion (%Ndfa) and amounts of N2 fixed were undertaken for 158 pastures either based on annual legume species (annual medics, clovers or vetch), or lucerne (alfalfa), and 170 winter pulse crops (chickpea, faba bean, field pea, lentil, lupin) over a 1200 km north-south transect of eastern Australia. The average annual amounts of N2 fixed ranged from 30 to 160 kg shoot N fixed ha–1 yr–1 for annual pasture species, 37–128 kg N ha–1 yr–1 for lucerne, and 14 to 160 kg N ha–1 yr–1 by pulses. These data have provided new insights into differences in factors controlling N2 fixation in the main agricultural systems. Mean levels of %Ndfa were uniformly high (65–94%) for legumes growing at different locations under dryland (rainfed) conditions in the winter-dominant rainfall areas of the cereal-livestock belt of Victoria and southern New South Wales, and under irrigation in the main cotton-growing areas of northern New South Wales. Consequently N2 fixation was primarily regulated by biomass production in these areas and both pasture and crop legumes fixed between 20 and 25 kg shoot N for every tonne of shoot dry matter (DM) produced. Nitrogen fixation by legumes in the dryland systems of the summer-dominant rainfall regions of central and northern New South Wales on the other hand was greatly influenced by large variations in %Ndfa (0–81%) caused by yearly fluctuations in growing season (April–October) rainfall and common farmer practice which resulted in a build up of soil mineral-N prior to sowing. The net result was a lower average reliance of legumes upon N2 fixation for growth (19–74%) and more variable relationships between N2 fixation and DM accumulation (9–16 kg shoot N fixed/t legume DM). Although pulses often fixed more N than pastures, legume-dominant pastures provided greater net inputs of fixed N, since a much larger fraction of the total plant N was removed when pulses were harvested for grain than was estimated to be removed or lost from grazed pastures. Conclusions about the relative size of the contributions of fixed N to the N-economies of the different farming systems depended upon the inclusion or omission of an estimate of fixed N associated with the nodulated roots. The net amounts of fixed N remaining after each year of either legume-based pasture or pulse crop were calculated to be sufficient to balance the N removed by at least one subsequent non-legume crop only when below-ground N components were included. This has important implications for the interpretation of the results of previous N2 fixation studies undertaken in Australia and elsewhere in the world, which have either ignored or underestimated the N present in the nodulated root when evaluating the contributions of fixed N to rotations.  相似文献   

2.
The effects of dairy cow urine and defoliation severity on biological nitrogen fixation and pasture production of a mixed ryegrass-white clover sward were investigated over 12 months using mowing for defoliation. A single application of urine (equivalent to 746 kg N ha–1), was applied in late spring to plots immediately after light and moderately-severe defoliation (35 mm and 85 mm cutting heights, respectively) treatments were imposed. Estimates of percentage clover N derived from N2 fixation (%Ndfa) were compared by labelling the soil with 15N either by applying a low rate of 15N-labelled ammonium sulphate, immobilising 15N in soil organic matter, adding 15N to applied urine, or by utilising the small differences in natural abundance of 15N in soil. Urine application increased annual grass production by 85%, but had little effect on annual clover production. However, urine caused a marked decline in %Ndfa (using an average of all 15N methods) from 84% to a low of 22% by 108 days, with recovery to control levels taking almost a year. As a result, total N fixed (in above ground clover herbage) was reduced from 232 to 145 kg N ha–1 yr–1. Moderately–severe defoliation had no immediate effect on N2 fixation, but after 108 days the %Ndfa was consistently higher than light defoliation during summer and autumn, and increased by up to 18%, coinciding with an increase in growth of weeds and summer-grass species. Annual N2 fixation was 218 kg N ha–1 yr–1 under moderately-severe defoliation compared to 160 kg N ha–1 yr–1 under light defoliation. Estimates of %Ndfa were generally similar when 15N-labelled or immobilised 15N were used to label soil regardless of urine and defoliation severity. The natural abundance technique gave highly variable estimates of %Ndfa (–56 to 24%) during the first 23 days after urine application but, thereafter, estimates of %Ndfa were similar to those using 15N-labelling methods. In contrast, in urine treated plots the use of 15N-labelled urine gave estimates of %Ndfa that were 20–30% below values calculated using conventional 15N-labelling during the first 161 days. These differences were probably due to differences in the rooting depth between ryegrass and white clover in conjunction with treatment differences in 15N distribution with depth. This study shows that urine has a prolonged effect on reducing N2 fixation in pasture. In addition, defoliation severity is a potential pasture management tool for strategically enhancing N2 fixation.  相似文献   

3.
Symbiotic dinitrogen (N2) fixation of crop and pasture legumes is a critical component of agricultural systems, but its measurement is expensive and labour intensive. Simple models which can provide approximations based on crop or pasture dry matter production would be useful for agrononomists and those interested in regional nitrogen (N) cycle fluxes. We investigate meta analysis of published data on legume shoot dry matter production, shoot %N and legume %N fixed (%Ndfa) and look for relationships among these, as a possible way of providing useful approximations of N2 fixation. We restricted our analysis to Australian studies where we have ready access to the primary data and where cultivars, management and climate are more constrained compared to a universal dataset. Regression analysis between shoot dry matter and amounts of shoot N2 fixed were strong for all crop and pasture legumes with significant differences in slope and intercept values being obtained between pastures and crops, and between chickpea (Cicer arietinium) and all other crop and pasture legumes. Annual pasture legumes showed the strongest linear relationship between N2 fixation and shoot dry matter and had the greatest slope (20.2–24.3 kg N2 fixed/t), compared to 18.7 kg N2 fixed/t for the perennial pasture legume lucerne (alfalfa, Medicago sativa), and between 10.7 to 23.0 kg N2/t for crop legumes, depending upon species. It was recognised that the use of such shoot-based relationships would underestimate the total amounts of N2 fixed since the contributions of fixed N present in, or derived from, roots and nodules are not included. Furthermore there needs to be careful consideration of the validity of an intercept term, which might reflect suppression of N2 fixation at low dry matter and high soil mineral N availability, or possibly the use of non-linear regression. For chickpea crops grown in north-eastern Australia, multiple regression indicated that N2 fixation was much more closely correlated with %Ndfa than dry matter production. Evidence presented also indicated that %Ndfa of other crops and lucerne in this region may similarly be influenced by soil mineral N. The regression approach presented provides a statistical basis to approximate N2 fixation in the first instance. This work highlights some of the dangers of fitting single regressions to aggregated datasets and using these to approximate symbiotic N2 fixation. The analysis indicates that where pasture legumes are grown in mixtures with non-legumes, and driven to high dependence on N2 fixation, simple linear regressions may be quite useful, provided that possible differences between species are investigated as the slopes of the regressions between these can be quite different. For crop legumes, where low dependence on N2 fixation can occur at higher mineral N availability, there is a need to carefully consider the intercept term, obtain estimates of mineral N availability, and/or resort to non-linear models. The gross generalisations presented in scatter plots cannot be reliably applied any more specifically, even within the datasets from which they were generated, and in some cases even within legume species between regions. They cannot substitute for direct measurement where any certainty is required under a particular set of defined conditions.  相似文献   

4.
Ledgard  S.F.  Sprosen  M.S.  Penno  J.W.  Rajendram  G.S. 《Plant and Soil》2001,229(2):177-187
Effects of rate of nitrogen (N) fertilizer and stocking rate on production and N2 fixation by white clover (Trifolium repens L.) grown with perennial ryegrass (Lolium perenne L.) were determined over 5 years in farmlets near Hamilton, New Zealand. Three farmlets carried 3.3 dairy cows ha–1 and received urea at 0, 200 or 400 kg N ha–1 yr–1 in 8–10 split applications. A fourth farmlet received 400 kg N ha–1 yr–1 and had 4.4 cows ha–1.There was large variation in annual clover production and total N2 fixation, which in the 0 N treatment ranged from 9 to 20% clover content in pasture and from 79 to 212 kg N fixed ha–1 yr–1. Despite this variation, total pasture production in the 0 N treatment remained at 75–85% of that in the 400 N treatments in all years, due in part to the moderating effect of carry-over of fixed N between years.Fertilizer N application decreased the average proportion of clover N derived from N2 fixation (PN; estimated by 15N dilution) from 77% in the 0 N treatment to 43–48% in the 400 N treatments. The corresponding average total N2 fixation decreased from 154 kg N ha–1 yr–1 to 39–53 kg N ha–1 yr–1. This includes N2 fixation in clover tissue below grazing height estimated at 70% of N2 fixation in above grazing height tissue, based on associated measurements, and confirmed by field N balance calculations. Effects of N fertilizer on clover growth and N2 fixation were greatest in spring and summer. In autumn, the 200 N treatment grew more clover than the 0 N treatment and N2 fixation was the same. This was attributed to more severe grazing during summer in the 0 N treatment, resulting in higher surface soil temperatures and a deleterious effect on clover stolons.In the 400 N treatments, a 33% increase in cow stocking rate tended to decrease PN from 48 to 43% due to more N cycling in excreta, but resulted in up to 2-fold more clover dry matter and N2 fixation because lower pasture mass reduced grass competition, particularly during spring.  相似文献   

5.
The short-term effects of a simulated cattle dung pat on N2 fixation and total uptake of N in a perennial ryegrass/white clover mixture was studied in a container experiment using sheep faeces mixed with water to a DM content of 13%. We used a new 15N cross-labelling technique to determine the influence of dung-pat N on N2 fixation in a grass/clover mixture and the uptake of dung N in grass and clover. The proportion of N in clover derived from N2 fixation (%Ndfa) varied between 88–99% during the 16 weeks following application of the dung. There was no effect of dung on the %Ndfa in clover grown in mixture, whereas the %Ndfa in clover grown in pure stand decreased (nominal 2–3%) after dung application. Dung did not influence the amount of N2 fixed, and the uptake of dung N in grass and clover proceeded at an almost constant rate. After 16 weeks, 10% of the applied dung N was taken up by grass and clover, 57% had been incorporated in the soil by faunal activity and 27% remained in residual dung on the soil surface. The dung N unaccounted for (7%) was probably lost by ammonia volatilisation and denitrification. The uptake of dung N in grass/clover mixtures in the field was similarly followed by using simulated 15N-labelled dung pats. The total dry matter production and N yields increased in the 0–30 cm distance from the edge of the dung patch, but the proportion of clover decreased. Thirteen months after application of the dung 4% of the applied dung N was recovered in the harvested herbage, 78% was recovered from the soil and the residual dung, and 18% was not accounted for. It is concluded that N2 fixation in the dung patch border area in grass/clover mixtures is not influenced directly by the release of N from dung pats in the short term. However the amount of N2 fixed may be reduced, if the growth of clover is reduced in the patch border area.  相似文献   

6.
A field experiment was carried out over 12 months to determine the effect of animal treading on N2 fixation in a mixed white clover-ryegrass pasture. The experimental site was defoliated by mowing for the duration of the study. A single treading event of moderate or severe pugging intensity was initiated in plots during wet spring conditions by using dairy cows at varying stocking rates (4.5 cows 100 m−2 for 1.5 or 2.5 h, respectively). Inputs of dung and urine onto the plots was avoided by overnight housing of the cows and interception of excreta during the pugging event. Soil air-filled porosity decreased from 21% in the non-pugged control to 15–16% in pugged treatments by day 3. Bulk density of soil was not significantly affected by pugging. Soil inorganic N concentration increased in pugged treatments, and was 4-fold greater on day 28 in severely pugged plots compared to non-pugged plots. White clover plant density and plant size was markedly lower in pugged treatments (up to 85% and 72% reduction, respectively under severe pugging). White clover growth was most affected during the first 156 days after pugging (up to 90% decrease under severe pugging), leading to an annual clover dry matter production loss of 9% and 52%, respectively. The proportion of clover N derived from atmospheric N2 (%Ndfa; estimated by 15N dilution) was initially reduced (to a lower limit of 43%) by severe pugging (days 28–71) before recovery to control levels (90%) by day 91. Annual N2 fixation in clover herbage decreased significantly from 76 kg N ha−1 yr−1 in the non-pugged control, to 66 and 36 kg N ha−1 yr−1 under moderate and severe pugging, respectively. Most of this difference was evident within the first 156 days after pugging. Our data indicates that the major loss in fixed N2 input under pugging was due to reduced clover growth and production resulting from pugging damage and loss of residual white clover biomass by hoof action.  相似文献   

7.
Initial results of a long-term field experiment are presented for the above and below-ground biomass accumulation after two years, as well as root nodulation, nodule efficiency (g N fixed/g nodules) and biological N2 fixation (using the 15N isotope dilution method) of four N2-fixing tree species (NFTs) grown in the subhumid mediterranean-climate zone of central Chile. Two non-legume tree species, Fraxinus excelsior and Schinus polygamus, were used as reference plants for the isotope dilution calculations.Over two years, Tagasaste (Chamaecytisus proliferus subsp. palmensis, a Papilionoideae from the Canary Islands), produced 10 to 20 times more biomass than the other three NFTS (Acacia caven, Prosopis alba and P. chilensis); all Mimosoideae native to Chile, and nodulation and nitrogen fixed were an order of magnitude higher as well. At the end of the second year, the percentage of N derived from N2 fixation (%Ndfa) in Tagasate averaged 85.6, equivalent to ca. 49.1 g N fixed per tree. For all four NFTs, however, %Ndfa, nodule efficiency, and total N accumulation varied from one year to the next; caution is thus required in interpreting or predicting NFT performance over the long term, even if Tagasaste can already be considered a highly promising NFT for central Chile.  相似文献   

8.
Leys, used for grazing or production of forage to be conserved as silage or hay, are very important crops in northern areas. In order to measure the N2 fixation in leys of varying ages and during different parts of the season, detailed measurements were taken of yield, N2 fixation and the amounts of N remaining in the field after harvesting red clover (Trifolium pratense L.)-grass leys at a site in northern Sweden, where they are generally harvested twice per growing season. Entire plants, including stubble and roots, were sampled at the time of first and second harvest and, in addition, at the end of the growing season in three neighbouring fields, carrying a first, a second and a third year ley, respectively. N2 fixation was measured by both 15N isotope dilution (ID) and 15N natural abundance (NA) methods. The proportion of clover dry matter (DM) in the stands increased from the first to the second harvest, but the grasses dominated throughout the entire season, especially below ground. The N concentrations, in both herbage and whole plants, were about twice as high in the clover as in the grasses. Seasonal variations in N concentrations were minor, and total N contents followed the same trends as DM. The clover acquired nearly all of its N from N2 fixation: the proportion of N in clover herbage derived from N2 fixation was often >0.8 throughout the season. The variations in the amounts of N2 fixed during the course of the season corresponded well to the seasonal changes in clover biomass. Amounts of fixed N2 allocated to clover herbage during the whole season were in the range 4 to 6 g N m−2 in this unusually rainy year. Calculations of daily N allocation rates to herbage showed that N uptake rates were similar, and high, in grasses during May–June and July–August, while N2 fixation rates in clover were about 10-fold as high in July–August as in May–June, reflecting the need for N in clover growth. The proportion of N remaining in clover stubble and roots after the first and second harvests was about 60 and 25%, respectively, while about 60% of the N in grasses remained in stubble and roots after both harvests. The considerable amounts of biomass and N that were left in field after harvesting red clover-grass leys are important for re-growth of the plants and provide substantial N fertilization for the next crop in the crop rotation.  相似文献   

9.
Dinitrogen fixation in white clover (Trifolium repens L.) grown in pure stand and mixture with perennial ryegrass (Lolium perenne L.) was determined in the field using 15N isotope dilution and harvest of the shoots. The apparent transfer of clover N to perennial ryegrass was simultaneously assessed. The soil was labelled either by immobilizing 15N in organic matter prior to establishment of the sward or by using the conventional labelling procedure in which 15N fertilizer is added after sward establishment. Immobilization of 15N in the soil organic matter has not previously been used in studies of N2 fixation in grass/clover pastures. However, this approach was a successful means of labelling, since the 15N enrichment only declined at a very slow rate during the experiment. After the second production year only 10–16% of the applied 15N was recovered in the harvested herbage. The two labelling methods gave, nonetheless, a similar estimate of the percentage of clover N derived from N2 fixation. In pure stand clover, 75–94% of the N was derived from N2 fixation and in the mixture 85–97%. The dry matter yield of the clover in mixture as percentage of total dry matter yield was relatively high and increased from 59% in the first to 65% in the second production year. The average daily N2 fixation rate in the mixture-grown clover varied from less than 0.5 kg N ha−1 day−1 in autumn to more than 2.6 kg N ha−1 day−1 in June. For clover in pure stand the average N2 fixation rate was greater and varied between 0.5 and 3.3 kg N ha−1 day−1, but with the same seasonal pattern as for clover in mixture. The amount of N fixed in the mixture was 23, 187 and 177 kg N ha−1 in the seeding, first and second production year, respectively, whereas pure stand clover fixed 28, 262 and 211 kg N ha−1 in the three years. The apparent transfer of clover N to grass was negligible in the seeding year, but clover N deposited in the rhizosphere or released by turnover of stolons, roots and nodules, contributed 19 and 28 kg N ha−1 to the grass in the first and second production year, respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Nitrogen (N) is often the most limiting nutrient in organic cropping systems. N2 fixing crops present an important option to improve N supply and to maintain soil fertility. In a field experiment, we investigated whether the lower N fertilization level and higher soil microbial activity in organic than conventional systems affected symbiotic N2 fixation by soybean (Glycine max, var. Maple Arrow) growing in 2004 in plots that were since 1978 under the following systems: bio-dynamic (DYN); bio-organic (ORG); conventional with organic and mineral fertilizers (CON); CON with exclusively mineral fertilizers (MIN); non-fertilized control (NON). We estimated the percentage of legume N derived from the atmosphere (%Ndfa) by the natural abundance (NA) method. For ORG and MIN we additionally applied the enriched 15N isotope dilution method (ID) based on residual mineral and organic 15N labeled fertilizers that were applied in 2003 in microplots installed in ORG and MIN plots. These different enrichment treatments resulted in equal %Ndfa values. The %Ndfa obtained by NA for ORG and MIN was confirmed by the ID method, with similar variation. However, as plant growth was restricted by the microplot frames the NA technique provided more accurate estimates of the quantities of symbiotically fixed N2 (Nfix). At maturity of soybean the %Ndfa ranged from 24 to 54%. It decreased in the order ORG > CON > DYN > NON > MIN, with significantly lowest value for MIN. Corresponding Nfix in above ground plant material ranged from 15 to 26 g N m-2, with a decreasing trend in the order DYN = ORG > CON > MIN > NON. For all treatments, the N withdrawal by harvested grains was greater than Nfix. This shows that at the low to medium %Ndfa, soybeans did not improve the N supply to any system but removed significant amounts of soil N. High-soil N mineralization and/or low-soil P availability may have limited symbiotic N2 fixation.  相似文献   

11.
A pot experiment was conducted in a greenhouse using the 15N isotope dilution method and two reference plants, Parkia biglobosa and Tamarindus indica to estimate nitrogen fixed in four Acacia species: A raddiana, A. senegal, A. seyal and Faidherbia albida (synonym Acacia albida). For the reference plants, the 15N enrichments in leaves, stems and roots were similar. With the fixing plants, leaves and stems had similar 15N enrichments; they were higher than the 15N enrichment of roots. The amounts of nitrogen fixed at 5 months after planting were similar using either reference plant. Estimates of the percentage of N derived from fixation (%Ndfa) for the above ground parts, in contrast to %Ndfa in roots, were similar to those for the whole plant. However, none of the individual plant parts estimated accurately total N fixed in the whole plant, and excluding the roots resulted in at least 30% underestimation of the amounts of N fixed. Between species, differences in N2 fixation were observed, both for %Ndfa and total N fixed. For %Ndfa, the best were A. seyal (average, 63%) and A. raddiana (average, 62%), being at least twice the %Ndfa in A. senegal and F. albida. Because of its very high N content, A. seyal was clearly the best in total N fixed, fixing 1.62 g N plant–1 compared to an average of 0.48 g N plant–1 for the other Acacia species. Our results show the wide variability existing between Acacia species in terms of both %Ndfa and total N fixed: A. seyal was classified as having a high N2 fixing potential (NFP) while the other Acacia species had a low NFP.  相似文献   

12.
Høgh-Jensen  H.  Schjoerring  J.K. 《Plant and Soil》1997,197(2):187-199
Seasonal variation in N2 fixation, N transfer from clover to ryegrass, and soil N absorption in white clover–ryegrass swards were investigated under field conditions over three consecutive years. The plots were established with different seeding ratios of clover and ryegrass and contrasting fertilizer N ranging from 3 to 72 kg ha-1 year-1.An initially poor clover population needed at least one growing season to reach the same yield output as an initially well established clover population. The clover content of the sward decreased by the annual application of 72 kg N ha-1 but not by smaller N dressings.The total amount of atmospherically derived N in clover growing in mixture with ryegrass was, on average over the three years equal to 83, 71, 68 and 60 kg N ha-1 for the treatments of 3, 24, 48 and 72 kg N ha-1, respectively. The proportion of atmospherically derived N declined with increasing N application, but never became smaller than 80% of total clover N. The proportion of atmospherically derived N in a pure stand white clover amounted to 60–80% of the total N content, equivalent to 109, 110, 103 and 90 kg N ha-1 for the treatments of 3, 24, 48 and 72 kg N ha-1, respectively.Only small amounts of atmospherically derived N was transferred to the associated ryegrass during the first production year, while in each of the following years up to 21 kg ha-1 was transferred. The average amount of N transferred from clover to ryegrass was equivalent to 3, 16 and 31% of the N accumulated in ryegrass in the first, second and third production year, respectively. Expressed relative to the total amount of fixed N2 in the clover–ryegrass mixture, the transfer amounted to 3, 17 and 22% in the first, second and third production year, respectively. Thus transfer of atmospherically derived N from clover contributed significantly to the N economy of the associated ryegrass.The clover–ryegrass mixture absorbed constantly higher amount of soil derived N than the pure stands of the two species. Only 11% of the total accumulated fertilizer N and soil derived N in the mixture was contained within the clover component. Lower water use efficiencies for the plants grown in mixture compared to pure stands were mainly related to the increased N uptake in the mixture, with the subsequent increase in growth compared to the pure stands.It is concluded that positive interactions between clover and ryegrass growing in mixture ensure a more efficient fixation of atmospheric N2 and absorption of fertilizer N and soil derived N than pure stands of the same species.  相似文献   

13.
The 15N isotope dilution and A-value methods were used to measure biological nitrogen (N2) fixation in field grown fababean (Vicia faba L.), over a 2-year period. Four N rates, 20, 100, 200 and 400 kg N ha–1 were examined. The two isotope methods gave similar values of % N derived from the atmosphere (%Ndfa). With 20 kg N ha–1, %Ndfa in fababean was about 85% in both years. Increasing the N rate to 100 kg N ha–1 decreased N2 fixation slightly to 75%. Further reductions in N2 fixed to 60 and 43% occurred where 200 and 400 kg N ha–1 were applied, respectively. Thus even higher rates of N than normally applied in farming practice could not completely suppress N2 fixation in fababean.We also devised one equation for both the isotope dilution and A-value approaches, thereby (i) avoiding the need for different calculations for the 15N isotope methods, and (ii) showing once again that the isotope dilution and A-value methods are mathematically and conceptually identical.  相似文献   

14.
Global inputs of biological nitrogen fixation in agricultural systems   总被引:13,自引:0,他引:13  
Biological dinitrogen (N2) fixation is a natural process of significant importance in world agriculture. The demand for accurate determinations of global inputs of biologically-fixed nitrogen (N) is strong and will continue to be fuelled by the need to understand and effectively manage the global N cycle. In this paper we review and update long-standing and more recent estimates of biological N2 fixation for the different agricultural systems, including the extensive, uncultivated tropical savannas used for grazing. Our methodology was to combine data on the areas and yields of legumes and cereals from the Food and Agriculture Organization (FAO) database on world agricultural production (FAOSTAT) with published and unpublished data on N2 fixation. As the FAO lists grain legumes only, and not forage, fodder and green manure legumes, other literature was accessed to obtain approximate estimates in these cases. Below-ground plant N was factored into the estimations. The most important N2-fixing agents in agricultural systems are the symbiotic associations between crop and forage/fodder legumes and rhizobia. Annual inputs of fixed N are calculated to be 2.95 Tg for the pulses and 18.5 Tg for the oilseed legumes. Soybean (Glycine max) is the dominant crop legume, representing 50% of the global crop legume area and 68% of global production. We calculate soybean to fix 16.4 Tg N annually, representing 77% of the N fixed by the crop legumes. Annual N2 fixation by soybean in the U.S., Brazil and Argentina is calculated at 5.7, 4.6 and 3.4 Tg, respectively. Accurately estimating global N2 fixation for the symbioses of the forage and fodder legumes is challenging because statistics on the areas and productivity of these legumes are almost impossible to obtain. The uncertainty increases as we move to the other agricultural-production systems—rice (Oryza sativa), sugar cane (Saccharum spp.), cereal and oilseed (non-legume) crop lands and extensive, grazed savannas. Nonetheless, the estimates of annual N2 fixation inputs are 12–25 Tg (pasture and fodder legumes), 5 Tg (rice), 0.5 Tg (sugar cane), <4 Tg (non-legume crop lands) and <14 Tg (extensive savannas). Aggregating these individual estimates provides an overall estimate of 50–70 Tg N fixed biologically in agricultural systems. The uncertainty of this range would be reduced with the publication of more accurate statistics on areas and productivity of forage and fodder legumes and the publication of many more estimates of N2 fixation, particularly in the cereal, oilseed and non-legume crop lands and extensive tropical savannas used for grazing.  相似文献   

15.
The yield of N in maize (Zea mays L.) and ricebean (Vigna umbellata [Thumb.] Ohwi and Ohashi) were compared on a Tropoqualf soil in North Thailand in 1984 and 1985. Both species were grown in field plots in monoculture or as intercrops at a constant planting density equivalent to 8 maize or 16 ricebean plants per m2. The contribution of symbiotic N2 fixation to ricebean growth was estimated from measurements of the natural abundance of15N (δ15N) in shoot nitrogen and from analysis of ureides in xylem sap vacuumextracted from detached stems. The natural abundance of15N in the intercropped ricebean was found to be considerably less than that in monoculture in both growing seasons. Using maize and a weed (Ageratum conyzoides L.) as non-fixing15N reference plants the proportions (P 15N) of ricebean shoot N derived from N2 fixation ranged from 0.27 to 0.36 in monoculture ricebean up to 0.86 when grown in a 75% maize: 25% ricebean intercrop. When glasshouse-derived calibration curves were used to calculate plant proportional N2 fixation (Pur) from the relative ureide contents of field collected xylem exudates, the contribution of N2 fixation to ricebean N yields throughout the 1985 growing season were greater in intercrop than in monocrop even at the lowest maize:legume ratio (25∶75). Seasonal patterns of sap ureide abundance indicated that N2 fixation was greatest at the time of ricebean podset. The averagePur andP 15N in ricebean during the first 90 days of growth showed identical rankings of monocrop and intercrop treatments in terms of N2 fixation, although the two sets ofP values were different. Nonetheless, seasonal estimates of N2 fixation during the entire 147 days of legume growth determined from ureide analyses indicated that equivalent amounts of N could be fixed by ricebean in a 75∶25 intercrop and in monoculture despite the former being planted at one-quarter the density.  相似文献   

16.

Background and aims

Transfer of fixed N from legumes to non-legume reference plants may alter the 15N signature of the reference plant as compared to the soil N available to the legume. This study investigates how N transfer influences the result of 15N-based N2 fixation measurements.

Methods

We labelled either legumes or non-legumes with 15N and performed detailed analyses of 15N enrichment in mixed plant communities in the field. The results were used in a conceptual model comparing how different N transfer scenarios influenced the 15N signatures of legumes and reference plants, and how the resulting N2 fixation estimate was influenced by using reference plants in pure stand or in mixture with the legume.

Results

Based on isotopic signatures, N transfer was detected in all directions: from legume to legume, from legume to non-legume, from non-legume to legume, from non-legume to non-legume. In the scenario of multidirectional N transfer, N2 fixation was overestimated by using a reference plant in pure stand.

Conclusions

Fixed N transferred to neighbouring reference plants modifies the 15N signature of the soil N available both to the reference plant and the N2-fixing legume. This provides strong support for using reference plants growing in mixture with the legumes for reliable quantifications of N2 fixation.  相似文献   

17.
Sustainable management for existing Amazonian forests requires an extensive knowledge about the limits of ecosystem nutrient cycles. Therefore, symbiotic nitrogen (N2) fixation of legumes was investigated in a periodically flooded forest of the central Amazon floodplain (Várzea) over two hydrological cycles (20 months) using the 15N natural abundance method. No seasonal variation in 15N abundance (δ 15N values) in trees which would suggest differences in N2 fixation rates between the terrestrial and the aquatic phase was found. Estimations of the percentage of N derived from atmosphere (%Ndfa) for the nodulated legumes with Neptunia oleracea on the one side and Teramnus volubilis on the other resulted in mean %Ndfa values between 9 and 66%, respectively. More than half of the nodulated legume species had %Ndfa values above 45%. These relatively high N gains are important for the nodulated legumes during the whole hydrological cycle. With a %Ndfa of 4–5% for the entire Várzea forest, N2 fixation is important for the ecosystem and therefore, has to be taken into consideration for new sustainable land-use strategies in this area.  相似文献   

18.
Cutting strategy effect on N2 fixation and distribution of fixed N above and below ground in red clover (Trifolium pratense L.) and mixed red clover/perennial ryegrass (Lolium perenne L.) green manure leys was quantified in field experiments including in situ mezotrons and microplots. Symbiotically fixed N in clover, transfer of fixed N to grass in the mixed stands and the fate of 15N contained in mulch were estimated by isotope dilution. Below ground clover-derived N was estimated by leaf labelling. Total N2 fixation was estimated by correcting fixed N in plant shoots with plant-derived N below ground and recycled N from mulch. The total N2 fixation was larger in harvested and mulched stands (average 45 g?m?2) than in the intact stands (32 g?m?2). Of the fixed N, 53% (intact), 46% (harvested) and 60% (mulched) was found below ground. The average recycling of N in mulch was 21% and contributed 13.7% (pure clover) and 2.2% (mixed) of the clover N in the regrowth. Recycling of N did not decrease N2 fixation in the mulched compared with harvested stands. The results indicate that cutting regime should be considered when estimating total amounts of N fixed by green manure leys.  相似文献   

19.
The contribution of N2 fixation to overall soybean N uptake has most commonly been quantified by N isotope‐based methods, which rely on isotopic differences in plant N between legumes and non‐fixing reference plants. The choice of non‐fixing reference plants is critical for the accuracy of isotope‐based methods, and mismatched reference plants remain a potential source of error. Accurate estimates of soybean N2 fixation also require information on N isotopic fractionation within soybean. On the basis of a previous observation of a close correlation between an expression of N fractionation within soybean and the proportion of plant N derived from atmosphere (%Ndfa) determined by 15N natural abundance, this field study aimed at assessing the relationship between various expressions describing intraplant 15N or N partitioning and %Ndfa during soybean development. Starting from a late vegetative stage until beginning senescence, the N content and N isotopic composition of shoots, roots and nodules of nodulated and non‐nodulated soybeans was determined at eight different developmental stages. Regression analysis showed that %Ndfa most closely correlated with the difference in the N isotopic composition of shoot N minus that of root including nodule N, and that this relationship was similar to that obtained in a previous multi‐site field study. We therefore consider this expression to hold promise as a means of quantifying %Ndfa independent of a reference plant, which would avoid some of the external sources of error introduced by the use of reference plants in determining %Ndfa.  相似文献   

20.
Inputs of biologically fixed N into agricultural systems may be derived from symbiotic relationships involving legumes and Rhizobium spp., partnerships between plants and Frankia spp. or cyanobacteria, or from non-symbiotic associations between free-living diazotrophs and plant roots. It is assumed that these N2-fixing systems will satisfy a large portion of their own N requirements from atmospheric N2, and that additional fixed N will be contributed to soil reserves for the benefit of other crops or forage species. This paper reviews the actual levels of N2 fixation attained by legume and non-legume associations and assesses their role as a source of N in tropical and sub-tropical agriculture. We discuss factors influencing N2 fixation and identify possible strategies for improving the amount of N2 fixed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号