首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tooth morphogenesis and differentiation of the dental cells are guided by interactions between epithelial and mesenchymal tissues. Because the extracellular matrix is involved in these interactions, the expression of matrix receptors located at the cell surface may change during this developmental sequence. We have examined the distribution of an epithelial cell surface proteoglycan antigen, known to behave as a receptor for interstitial matrix, during tooth morphogenesis. Intense staining was seen around the cells of the embryonic oral epithelium as well as the dental epithelium at the early bud stage. With development, expression was greatly reduced in the enamel organ. Differentiation of these cells into ameloblasts was associated with the loss of expression, while the epithelial cells remaining in the stratum intermedium and stellate reticulum regained intense staining. The PG antigen was weakly expressed in the loose neural crest-derived jaw mesenchyme but it became strongly reactive in the condensed dental papilla mesenchyme when extensive morphogenetic movements took place. With development, the PG antigen disappeared from the advanced dental papilla mesenchyme but persisted in the dental sac mesenchyme, which gives rise to periodontal tissues. The PG antigen was not expressed by odontoblasts. Hence, the expression of the PG antigen changes during the epithelial-mesenchymal interactions of tooth development and is lost during terminal cell differentiation. The expression follows morphogenetic rather than histologic boundaries. The acquisition and loss of expression in epithelial and mesenchymal tissues during tooth development suggest that this proteoglycan has specific functions in the epithelial-mesenchymal interactions that guide morphogenesis.  相似文献   

3.
4.
5.
6.
Epithelium invagination is the key feature of early tooth development. In this study, we built a three-dimensional (3D) model to represent epithelium invagination-like structure by tissue engineering. Human normal oral epithelial cells (OECs) and dental pulp stem cells (DPSCs) were co-cultivated for 2-7 weeks on matrigel or collagen gel to form epithelial and mesenchymal tissues. The histological change and gene expression were analyzed by HE staining, immunostaining, and quantitative real-time RT-PCR (qRT-PCR). After 4 weeks of cultivation, OECs-formed epithelium invaginated into DPSCs-derived mesenchyme on both matrigel and collagen gel. OEC-DPSC co-cultures on matrigel showed typical invagination of epithelial cells and condensation of the underlying mesenchymal cells. Epithelial invagination-related molecules, CD44 and E-cadherin, and mesenchymal condensation involved molecules, N-cadherin and Msx1 expressed at a high level in the tissue model, suggesting the epithelial invagination is functional. However, when OECs and DPSCs were co-cultivated on collagen gel; the invaginated epithelium was transformed to several epithelial colonies inside the mesenchyme after long culture period. When DPSCs were co-cultivated with immortalized human OECs NDUSD-1, all of the above-mentioned features were not presented. Immunohistological staining and qRT-PCR analysis showed that p75, BMP2, Shh, Wnt10b, E-cadherin, N-cadherin, Msx1, and Pax9 are involved in initiating epithelium invagination and epithelial-mesenchymal interaction in the 3D OEC-DPSC co-cultures. Our results suggest that co-cultivated OECs and DPSCs on matrigel under certain conditions can build an epithelium invagination-like model. This model might be explored as a potential research tool for epithelial-mesenchymal interaction and tooth regeneration.  相似文献   

7.
To elucidate the roles of fibroblast growth factors (FGF) in tooth development, we have analyzed the expression patterns of fibroblast growth factor receptors (FGFR) in mouse teeth by in situ hybridization and studied the effects of FGF-2, -4, -8, and -9 on cell proliferation in vitro by local application with beads on isolated dental mesenchymes. mRNAs of FGFR-1, -2, and -3 were localized by probes specific for the alternative splice variants IIIb and IIIc. The expression patterns of FGFR1, -2, and -3 were completely different, and the two splicing variants of FGFR1 and 2 exhibited different expression domains. FGFR4 was not expressed in the developing teeth. The IIIb splice forms of FGFR1 and -2 were expressed in the dental epithelium during morphogenesis. The IIIc splice form of FGFR1 was expressed both in epithelium and mesenchyme whereas FGFR2 IIIc was confined to the mesenchymal cells of the dental follicle. Both splice forms of FGFR3 were expressed in dental papilla mesenchyme. None of the FGF-receptors was detected in the primary enamel knot, the putative signaling center regulating tooth morphogenesis. This may explain the fact that enamel knot cells do not proliferate, although they express intensely mitogenic FGFs. Beads releasing FGF-2, -4, -8, or -9 proteins stimulated cell proliferation in cultured dental mesenchymes. These data, together with our earlier data on FGF expression [Kettunen and Thesleff (1998): Dev Dyn 211:256–268] suggest that FGF-8 and -9 mediate epithelial-mesenchymal interactions during tooth initiation. During advancing morphogenesis FGF-3, -4, and -9 may act both on mesenchyme and epithelium. Finally, the intense expression of FGFR1 in odontoblasts and ameloblasts, and FGFR2 IIIb in ameloblasts suggests that FGFs participate in regulation of their differentiation and/or secretory functions. Dev. Genet. 22:374–385, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
9.
10.
Morphogenesis of embryonic organs is regulated by epithelial-mesenchymal interactions associating with changes in the extracellular matrix (ECM). The response of the cells to the changes in the ECM must involve integral cell surface molecules that recognize their matrix ligand and initiate transmission of signal intracellularly. We have studied the expression of the cell surface proteoglycan, syndecan, which is a matrix receptor for epithelial cells (Saunders, S., M. Jalkanen, S. O'Farrell, and M. Bernfield. J. Cell Biol. In press.), and the matrix glycoprotein, tenascin, which has been proposed to be involved in epithelial-mesenchymal interactions (Chiquet-Ehrismann, R., E. J. Mackie, C. A. Pearson, and T. Sakakura. 1986. Cell. 47:131-139) in experimental tissue recombinations of dental epithelium and mesenchyme. Our earlier studies have shown that in mouse embryos both syndecan and tenascin are intensely expressed in the condensing dental mesenchyme surrounding the epithelial bud (Thesleff, I., M. Jalkanen, S. Vainio, and M. Bernfield. 1988. Dev. Biol. 129:565-572; Thesleff, I., E. Mackie, S. Vainio, and R. Chiquet-Ehrismann. 1987. Development. 101:289-296). Analysis of rat-mouse tissue recombinants by a monoclonal antibody against the murine syndecan showed that the presumptive dental epithelium induces the expression of syndecan in the underlying mesenchyme. The expression of tenascin was induced in the dental mesenchyme in the same area as syndecan. The syndecan and tenascin positive areas increased with time of epithelial-mesenchymal contact. Other ECM molecules, laminin, type III collagen, and fibronectin, did not show a staining pattern similar to that of syndecan and tenascin. Oral epithelium from older embryos had lost its ability to induce syndecan expression but the presumptive dental epithelium induced syndecan expression even in oral mesenchyme of older embryos. Our results indicate that the expression of syndecan and tenascin in the tooth mesenchyme is regulated by epithelial-mesenchymal interactions. Because of their early appearance, syndecan and tenascin may be used to study the molecular regulation of this interaction. The similar distribution patterns of syndecan and tenascin in vivo and in vitro and their early appearance as a result of epithelial-mesenchymal interaction suggest that these molecules may be involved in the condensation and differentiation of dental mesenchymal cells.  相似文献   

11.
Dental trigeminal nerve fiber growth and patterning are strictly integrated with tooth morphogenesis, but it is still unknown, how these two developmental processes are coordinated. Here we show that targeted inactivation of the dental epithelium expressed Fgfr2b results in cessation of the mouse mandibular first molar development at the degenerated cap stage and the failure of the trigeminal molar nerve to establish the lingual branch at E13.5 stage while the buccal branch develops properly. This axon patterning defect correlates to the histological absence of the mesenchymal dental follicle and adjacent Semaphorin3A-free dental follicle target field as well as appearance of ectopic Sema3A expression domain in the lingual side of the epithelial bud. Although the mesenchymal ligands for Fgfr2b, Fgf3 and -10 were present in the Fgfr2b(-/)(-) dental mesenchyme, mutant dental epithelium showed dramatically reduced proliferation and the lack of Fgf3. Tgfbeta1, which controls Sema3A was absent from the Fgfr2b(-/-) tooth germ, and Sema3A was specifically downregulated in the dental mesenchyme at the bud and cap stage. In addition, the epithelial primary enamel knot signaling center although being molecularly present neither was histologically detectable nor expressed Bmp4 and Fgf3 as well as Fgf4, which is essential for tooth morphogenesis and stimulates mesenchymal Fgf3 and Tgfbeta1. Fgf4 beads rescued Tgfbeta1 in the Fgfr2b(-/-) dental mesenchyme explants and Tgfbeta1 induced de novo Sema3A expression in the dental mesenchyme. Collectively these results demonstrate that epithelial Fgfr2b controls tooth morphogenesis and dental axon patterning, and suggests that Fgfr2b, by mediating local epithelial-mesenchymal interactions, integrates these two distinct developmental processes during odontogenesis.  相似文献   

12.
13.
. Target-derived neurotrophins support and sustain peripheral sensory neurons during development. In addition, it has been suggested that these growth factors could have developmental functions in non-neuronal tissues. To further elucidate the possible roles of neurotrophins in tooth morphogenesis and innervation, we have used in-situ hybridization to determine the specific sites of neurotrophin gene activity in pre- and postnatal rat jaws from E16 to P7. All four neurotrophins were expressed during tooth development with specific temporospatial patterns. Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) mRNAs were mainly detected in the dental papilla/pulp in postnatal animals, and the pattern of expression correlated with the onset of dental innervation. In contrast, neurotrophin 3 (NT3) and neurotrophin 4 (NT4) mRNA expression patterns were predominantly epithelial and were strongest during early developmental stages when teeth are not yet innervated. Dental papilla NGF-mRNA expression was first seen in both epithelium and mesenchyme and later shifted to the odontoblast layer and the subodontoblast zone. BDNF-mRNA labeling was present in low levels in the early dental organ, but increased in the pulp and in the odontoblast cell layer of the developing teeth at later developmental stages. Both NT3 and NT4 mRNA were observed in the prenatal oral epithelium and the inner dental epithelium. NT3-mRNA labeling was seen mainly in the cervical loop region, fissure system depressions and cuspal tops, while NT4 mRNA was more evenly distributed in the dental epithelium. At P7, NT3-mRNA labeling was below detection level and NT4 mRNA expression was lower than at prior stages. Complementary to reports on the presence of low-affinity neurotrophin receptor (LANR), trkB and trkC mRNA in the developing teeth, our results suggest that neurotrophins may have multiple functions during tooth morphogenesis. Neurotrophins might participate in epithelial-mesenchymal interactions in early tooth morphogenetic events such as proliferation and differentiation of epithelial and mesenchymal cells. In addition, based on mRNA localization in postnatal animals, we also suggest that NGF and BDNF (beside glial cell line-derived neurotrophic factor) might participate in establishing and maintaining the innervation of the teeth, thus acting as classical neurotrophic factors.  相似文献   

14.
Interactions between epithelium and mesenchyme are important for organ and tissue development. In this study, in order to mimic interactions between epithelium and mesenchyme during native tooth development, we constructed three-dimensional culture systems in vitro using a collagen membrane. Two types of collagen membrane-based in vitro culture systems were constructed in which dental epithelial and dental follicle cell lines were cultured. One co-culture method involved inoculation of one cell line into one side of the collagen membrane, and the other cell line into the opposite side of the membrane (sandwich co-culture). As a control, the second method involved culture of one of the cell lines on a culture dish and the second cell line on a collagen membrane, facing away from the first cell line (separate co-culture). The HAT-7 cells were also grown as a monolayer culture on collagen. Ameloblast differentiation in these cultures was investigated by analysis of the mRNA and/or protein expression of ameloblastin and amelogenin. Our results suggest that interaction of epithelial and mesenchymal cells via the extracellular matrix is important for tooth differentiation in vitro. Our culture system should be a useful method for investigation of epithelial-mesenchymal interactions.  相似文献   

15.
The cell surface proteoglycan, syndecan, and the extracellular matrix glycoprotein, tenascin, are expressed in the mesenchyme during early development of many organs. We have studied the expression patterns of syndecan and tenascin during initiation of tooth development and in association with mesenchymal cell condensation and compared these with cell proliferation. Syndecan, tenascin and bromodeoxyuridine (BrdU) incorporation were localized by triple-labelling immunohistochemistry in serial sections of molar tooth germs of mouse embryos. Prior to formation of the epithelial tooth bud, syndecan accumulated in the mesenchymal cells which underlie the presumptive dental epithelium, but tenascin was not detected at this stage. Tenascin appeared during initiation of the epithelial down-growth at the lingual aspect of the tooth germ. During subsequent formation of the epithelial bud, at the late bud stage, syndecan and tenascin became exactly colocalized in the condensed mesenchyme which was clearly demarcated from other jaw mesenchyme. The expression of syndecan and tenascin was accompanied by rapid cell proliferation as indicated by marked BrdU incorporation. When development advanced to the cap stage, syndecan staining intensity in the dental papilla mesenchyme increased further whereas tenascin became reduced. In conclusion, the results demonstrate that the expression patterns of syndecan and tenascin overlap transiently during the period of mesenchymal cell condensation and that this is accompanied by cell proliferation. Syndecan and tenascin may play a role in growth control and in compartmentalization of the dental mesenchymal cells in the condensate.  相似文献   

16.
The myc family of protooncogenes encode similar but distinct nuclear proteins. Since N-myc, c-myc, and L-myc have been found to be expressed in the newborn kidney, we studied their expression during murine kidney development. By organ culture studies and in situ hybridization of tissue sections, we found that each of the three members of the myc gene family shows a remarkably distinct expression pattern during kidney development. It is known that mesenchymal stem cells of the embryonic kidney convert into epithelium if properly induced. We demonstrate the N-myc expression increases during the first 24 h of in vitro culture as an early response to induction. Moreover, the upregulation was transient and expression levels were already low during the first stages of overt epithelial cell polarization. In contrast, neither c-myc nor L-myc were upregulated by induction of epithelial differentiation. c-myc was expressed in the uninduced mesenchyme but subsequently became restricted to the newly formed epithelium and was not expressed in the surrounding loose mesenchyme. At onset of terminal differentiation c-myc expression was turned off also from the epithelial tubules. We conclude that N-myc is a marker for induction and early epithelial differentiation states. That the undifferentiated mesenchyme, unlike stromal cells of later developmental stages, express c-myc demonstrates that the undifferentiated mesenchymal stem cells are distinct from the stromal cells. The most astonishing finding, however, was the high level of L-myc mRNA in the ureter, ureter-derived renal pelvis, papilla, and collecting ducts. In the ureter, expression increased, rather than decreased, with advancing maturation and was highest in adult tissue. Our results suggest that each of the three members of the myc gene family are involved in quite disparate differentiation processes, even within one tissue.  相似文献   

17.
I Thesleff 《Ontogenez》1989,20(4):341-349
A series of reciprocal interactions between epithelial and mesenchymal tissues control the morphogenesis and cell differentiation in the developing tooth. The molecular mechanisms operating in these interactions are, however, unknown at present. Structural components of the extracellular matrix (ECM) affect cellular behavior in the embryo and appear to be involved also in these regulatory processes. The ECM molecules exert their effects on cells through binding to specific matrix receptors on the cell surface. This review article summarizes our findings on the distribution patterns during tooth development of the ECM glycoproteins, fibronectin and tenascin, and of the cell surface proteoglycan, syndecan, which functions as a receptor for interstitial matrix. Based on the observed changes in these distribution patterns and on experimental evidence, roles for these molecules in epithelial-mesenchymal interactions during tooth development are suggested. Fibronectin and tenascin are enriched in the dental basement membrane at the time of odontoblast differentiation. These matrix glycoproteins may be involved in the cell-matrix interaction which controls differentiation of the dental mesenchymal cells into odontoblasts. Tenascin and syndecan are accumulated in the dental mesenchyme during bud stage of development. We have shown in tissue recombination experiments that the presumptive dental epithelium induces the expression of tenascin and syndecan in mesenchyme. We suggest that these molecules are involved in cell-matrix interactions, which regulate mesenchymal cell condensation during the earliest stages of tooth morphogenesis.  相似文献   

18.
The murine tooth development is governed by sequential and reciprocal epithelial-mesenchymal interactions. Multiple signaling molecules are expressed in the developing tooth germ and interact each other to mediate the inductive tissue interactions. Among them are Sonic hedgehog (SHH), Bone Morphogenetic Protein-2 (BMP2) and Bone Morphogenetic Protein-4 (BMP4). We have investigated the interactions between these signaling molecules during early tooth development. We found that the expression of Shh and Bmp2 is downregulated at E12.5 and E13.5 in the dental epithelium of the Msx1 mutant tooth germ where Bmp4 expression is significantly reduced in the dental mesenchyme. Inhibition of BMP4 activity by noggin resulted in repression of Shh and Bmp2 in wild-type dental epithelium. When implanted into the dental mesenchyme of Msx1 mutants, beads soaked with BMP4 protein were able to restore the expression of both Shh and Bmp2 in the Msx1 mutant epithelium. These results demonstrated that mesenchymal BMP4 represents one component of the signal acting on the epithelium to maintain Shh and Bmp2 expression. In contrast, BMP4-soaked beads repressed Shh and Bmp2 expression in the wild-type dental epithelium. TUNEL assay indicated that this suppression of gene expression by exogenous BMP4 was not the result of an increase in programmed cell death in the tooth germ. Ectopic expression of human Bmp4 to the dental mesenchyme driven by the mouse Msx1 promoter restored Shh expression in the Msx1 mutant dental epithelium but repressed Shh in the wild-type tooth germ in vivo. We further demonstrated that this regulation of Shh expression by BMP4 is conserved in the mouse developing limb bud. In addition, Shh expression was unaffected in the developing limb buds of the transgenic mice in which a constitutively active Bmpr-IB is ectopically expressed in the forelimb posterior mesenchyme and throughout the hindlimb mesenchyme, suggesting that the repression of Shh expression by BMP4 may not be mediated by BMP receptor-IB. These results provide evidence for a new function of BMP4. BMP4 can act upstream to Shh by regulating Shh expression in mouse developing tooth germ and limb bud. Taken together, our data provide insight into a new regulatory mechanism for Shh expression, and suggest that this BMP4-mediated pathway in Shh regulation may have a general implication in vertebrate organogenesis.  相似文献   

19.
Sonic hedgehog (Shh), a member of the mammalian Hedgehog (Hh) family, plays a key role during embryogenesis and organogenesis. Tooth development, odontogenesis, is governed by sequential and reciprocal epithelial-mesenchymal interactions. Genetic removal of Shh activity from the dental epithelium, the sole source of Shh during tooth development, alters tooth growth and cytological organization within both the dental epithelium and mesenchyme of the tooth. In this model it is not clear which aspects of the phenotype are the result of the direct action of Shh on a target tissue and which are indirect effects due to deficiencies in reciprocal signalings between the epithelial and mesenchymal components. To distinguish between these two alternatives and extend our understanding of Shh's actions in odontogenesis, we have used the Cre-loxP system to remove Smoothened (Smo) activity in the dental epithelium. Smo, a seven-pass membrane protein is essential for the transduction of all Hh signals. Hence, removal of Smo activity from the dental epithelium should block Shh signaling within dental epithelial derivatives while preserving normal mesenchymal signaling. Here we show that Shh-dependent interactions occur within the dental epithelium itself. The dental mesenchyme develops normally up until birth. In contrast, dental epithelial derivatives show altered proliferation, growth, differentiation and polarization. Our approach uncovers roles for Shh in controlling epithelial cell size, organelle development and polarization. Furthermore, we provide evidence that Shh signaling between ameloblasts and the overlying stratum intermedium may involve subcellular localization of Patched 2 and Gli1 mRNAs, both of which are targets of Shh signaling in these cells.  相似文献   

20.
We have studied the expression patterns of the newly isolated homeobox gene, Hox-8 by in situ hybridisation to sections of the developing heads of mouse embryos between E9 and E17.5, and compared them to Hox-7 expression patterns in adjacent sections. This paper concentrates on the interesting expression patterns of Hox-8 during initiation and development of the molar and incisor teeth. Hox-8 expression domains are present in the neural crest-derived mesenchyme beneath sites of future tooth formation, in a proximo-distal gradient. Tooth development is initiated in the oral epithelium which subsequently thickens in discrete sites and invaginates to form the dental lamina. Hox-8 expression in mouse oral epithelium is first evident at the sites of the dental placodes, suggesting a role in the specification of tooth position. Subsequently, in molar teeth, this patch of Hox-8 expressing epithelium becomes incorporated within the buccal aspect of the invaginating dental lamina to form part of the external enamel epithelium of the cap stage tooth germ. This locus of Hox-8 expression becomes continuous with new sites of Hox-8 expression in the enamel navel, septum, knot and internal enamel epithelium. The transitory enamel knot, septum and navel were postulated, long ago, to be involved in specifying tooth shape, causing the inflection of the first buccal cusp, but this theory has been largely ignored. Interestingly, in the conical incisor teeth, the enamel navel, septum and knot are absent, and Hox-8 has a symmetrical expression pattern. Our demonstration of the precise expression patterns of Hox-8 in the early dental placodes and their subsequent association with the enamel knot, septum and navel provide the first molecular clues to the basis of patterning in the dentition and the association of tooth position with tooth shape: an association all the more intriguing in view of the evolutionary robustness of the patterning mechanism, and the known role of homeobox genes in Drosophila pattern formation. At the bell stage of tooth development, Hox-8 expression switches tissue layers, being absent from the differentiating epithelial ameloblasts and turned on in the differentiating mesenchymal odontoblasts. Hox-7 is expressed in the mesenchyme of the dental papilla and follicle at all stages. This reciprocity of expression suggests an interactive role between Hox-7, Hox-8 and other genes in regulating epithelial mesenchymal interactions during dental differentiation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号