首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fidelity of Schizosaccharomyces pombe DNA polymerase delta was measured in the presence or absence of its processivity subunits, proliferating cell nuclear antigen (PCNA) sliding clamp and replication factor C (RFC) clamp-loading complex, using a synthetic 30-mer primer/100-mer template. Synthesis by pol delta alone was distributive. Processive synthesis occurred in the presence of PCNA, RFC, and Escherichia coli single strand DNA-binding protein (SSB) and required the presence of ATP. "Passive" self-loading of PCNA onto DNA takes place in the absence of RFC, in an ATP-independent reaction, which was strongly inhibited by SSB. The nucleotide substitution error rate for pol delta holoenzyme (HE) (pol delta + PCNA + RFC) was 4.6 x 10(-4) for T.G mispairs, 5.3 x 10(-5) for G.G mispairs, and 4.5 x 10(-6) for A.G mispairs. The T.G misincorporation frequency for pol delta without the accessory proteins was unchanged. The fidelity of pol delta HE was between 1 and 2 orders of magnitude lower than that measured for the E. coli pol III HE at the same template position. This relatively low fidelity was caused by inefficient proofreading by the S. pombe polymerase-associated proofreading exonuclease. The S. pombe 3'-exonuclease activity was also extremely inefficient in excising primer-3'-terminal mismatches in the absence of dNTP substrates and in hydrolyzing single-stranded DNA. A comparison of pol delta HE with E. coli pol IIIalpha HE (lacking the proofreading exonuclease subunit) showed that both holoenzymes exhibit similar error rates for each mispair.  相似文献   

2.
Schizosaccharomyces pombe DNA polymerase (pol) delta contains four subunits, pol 3, Cdc1, Cdc27, and Cdm1. In this report, we examined the role of Cdc27 on the structure and activity of pol delta. We show that the four-subunit complex is monomeric in structure, in contrast to the previous report that it was a dimer (Zuo, S., Bermudez, V., Zhang, G., Kelman, Z., and Hurwitz, J. (2000) J. Biol. Chem. 275, 5153-5162). This discrepancy between the earlier and recent observations was traced to the marked asymmetric shape of Cdc27. Cdc27 contains two critical domains that govern its role in activating pol delta. The N-terminal region (amino acids (aa) 1-160) binds to Cdc1 and its extreme C-terminal end (aa 362-369) interacts with proliferating cell nuclear antigen (PCNA). Mutants of S. pombe pol delta, containing truncated Cdc27 derivatives deficient in binding to PCNA, supported DNA replication less processively than the wild-type complex. Fusion of a minimal PCNA-binding motif (aa 352-372) to C-terminally truncated Cdc27 derivatives restored processive DNA synthesis in vitro. In vivo, the introduction of these fused Cdc27 derivatives into cdc27Delta cells conferred viability. These data support the model in which Cdc27 plays an essential role in DNA replication by recruiting PCNA to the pol delta holoenzyme.  相似文献   

3.
4.
M Y Lee 《Biochemistry》1988,27(14):5188-5193
The subunit structures of a number of human placenta DNA polymerase delta preparations were investigated by Western blotting with polyclonal antisera and by activity staining following polyacrylamide gel electrophoresis. When immunoblots and activity stains were performed on different enzyme preparations, putative catalytic subunits of (a) 170, (b) 120, or (c) 50-70 kilodaltons (kDa) were observed. It was also observed that the lower molecular weight forms could be generated upon storage of the preparations. Western blotting of human placental tissue extracts showed that the major immunoreactive polypeptide was 160-170 kDa. Treatment of the extracts with trypsin or Staphylococcus aureus V8 protease led to the generation of immunoreactive polypeptides of lower molecular weights. These studies suggest that the 120-kDa and lower forms of the enzyme are generated via uncontrolled proteolysis and provide a rationale for the observation of different apparent subunit structures previously reported for DNA polymerase delta. In addition, these findings suggest that DNA polymerase delta has a catalytic domain which resides in a protease-resistant domain.  相似文献   

5.
As predicted by the amino acid sequence, the purified protein coded by Schizosaccharomyces pombe SPAC2F7.06c is a DNA polymerase (SpPol4) whose biochemical properties resemble those of other X family (PolX) members. Thus, this new PolX is template-dependent, polymerizes in a distributive manner, lacks a detectable 3′→5′ proofreading activity and its preferred substrates are small gaps with a 5′-phosphate group. Similarly to Polμ, SpPol4 can incorporate a ribonucleotide (rNTP) into a primer DNA. However, it is not responsible for the 1–2 rNTPs proposed to be present at the mating-type locus and those necessary for mating-type switching. Unlike Polμ, SpPol4 lacks terminal deoxynucleotidyltransferase activity and realigns the primer terminus to alternative template bases only under certain sequence contexts and, therefore, it is less error-prone than Polμ. Nonetheless, the biochemical properties of this gap-filling DNA polymerase are suitable for a possible role of SpPol4 in non-homologous end-joining. Unexpectedly based on sequence analysis, SpPol4 has deoxyribose phosphate lyase activity like Polβ and Polλ, and unlike Polμ, suggesting also a role of this enzyme in base excision repair. Therefore, SpPol4 is a unique enzyme whose enzymatic properties are hybrid of those described for mammalian Polβ, Polλ and Polμ.  相似文献   

6.
7.
DNA polymerase delta (Pol delta) from Saccharomyces cerevisiae consists of three subunits, Pol3 (125 kDa), Pol31 (55 kDa), and Pol32 (40 kDa), present at a 1:1:1 stoichiometry in purified preparations. Previously, based on gel filtration studies of Pol delta, we suggested that the enzyme may be a dimer of catalytic cores, with dimerization mediated by the Pol32 subunit (Burgers, P. M., and Gerik, K. J. (1998) J. Biol. Chem. 273, 19756-19762). We now report on extensive gel filtration, glycerol gradient sedimentation, and analytical equilibrium centrifugation studies of Pol delta and of several subassemblies of Pol delta. The hydrodynamic parameters of these assemblies indicate that (i) Pol32 is a rod-shaped protein with a frictional ratio f/f(0) = 2.22; (ii) any complex containing Pol32 also has an extremely asymmetric shape; (iii) the results of these studies are independent of concentration (varied between 0.1-20 microm); (iv) all complexes are monomeric under the conditions studied (up to 20 microm). Moreover, a two-hybrid analysis of the Pol32 subunit did not detect a Pol32-Pol32 interaction in vivo. Therefore, we conclude that the assembly structure of Pol delta is that of a monomer.  相似文献   

8.
9.
Two genetic end-points are used for testing mutagens in Schizosaccharomyces pombe: forward mutations of the loci which encode steps early in the adenine synthetic pathway and reversion of certain selected mutants. 54 chemicals have been tested for at least one of the genetic end-points. The relevant literature has been reviewed through 1979.  相似文献   

10.
H Park  R Davis    T S Wang 《Nucleic acids research》1995,23(21):4337-4344
The status of Schizosaccharomyces pombe (fission yeast) DNA polymerase alpha was investigated at different stages of the cell cycle. S.pombe DNA polymerase alpha is a phosphoprotein, with serine being the exclusive phosphoamino acid. By in vivo pulse labeling experiments DNA polymerase alpha was found to be phosphorylated to a 3-fold higher level in late S phase cells compared with cells in the G2 and M phases, but the steady-state level of phosphorylation did not vary significantly during the cell cycle. Tryptic phosphopeptide mapping demonstrated that the phosphorylation sites of DNA polymerase alpha from late S phase cells were not the same as that from G2/M phase cells. DNA polymerase alpha partially purified from G1/S cells had a different mobility in native gels from that from G2/M phase cells. The partially purified polymerase alpha from G1/S phase cells had a higher affinity for single-stranded DNA than that from G2/M phase cells. Despite the apparent differences in cell cycle-dependent phosphorylation, mobility in native gels and affinity for DNA, the in vitro enzymatic activity of the partially purified DNA polymerase alpha did not appear to vary during the cell cycle. The possible biological significance of these cell cycle-dependent characteristics of DNA polymerase alpha is discussed.  相似文献   

11.
12.
DNA structure checkpoint pathways in Schizosaccharomyces pombe   总被引:4,自引:0,他引:4  
Caspari T  Carr AM 《Biochimie》1999,81(1-2):173-181
The response to DNA damage includes a delay to progression through the cell cycle to aid DNA repair. Incorrectly replicated chromosomes (replication checkpoint) or DNA damage (DNA damage checkpoint) delay the onset of mitosis. These checkpoint pathways detect DNA perturbations and generate a signal. The signal is amplified and transmitted to the cell cycle machinery. Since the checkpoint pathways are essential for genome stability, the related proteins which are found in all eukaryotes (from yeast to mammals) are expected to have similar functions to the yeast progenitors. This review article focuses on the function of checkpoint proteins in the model system Schizosaccharomyces pombe. Checkpoint controls in Saccharomyces cerevisiae and mammalian cells are mentioned briefly to underscore common or diverse features.  相似文献   

13.
14.
We have purified the RNA polymerase II holoenzyme from Schizosaccharomyces pombe to near homogeneity. The Mediator complex is considerably smaller than its counterpart in Saccharomyces cerevisiae, containing only nine polypeptides larger than 19 kDa. Five of these Mediator subunits have been identified as the S. pombe homologs to Rgr1, Srb4, Med7, and Nut2 found in S. cerevisiae and the gene product of a previously uncharacterized open reading frame, PMC2, with no clear homologies to any described protein. The presence of Mediator in a S. pombe RNA polymerase II holoenzyme stimulated phosphorylation of the C-terminal domain by TFIIH purified from S. pombe. This stimulation was species-specific, because S. pombe Mediator could not stimulate TFIIH purified from S. cerevisiae. We suggest that the overall structure and mechanism of the Mediator is evolutionary conserved. The subunit composition, however, has evolved to respond properly to physiological signals.  相似文献   

15.
16.
17.
A procedure is described for the purification from cultured mouse cells of two DNA polymerase "delta-like" enzymes, as defined by intrinsic 3'-exonuclease activity, inhibition by aphidicolin, and relative insensitivity to N2-(p-n-butylphenyl)-dGTP. One of the two enzymes has been purified to near homogeneity and, similar to the DNA polymerase delta from calf thymus described by Lee et al. (Lee, M. Y. W. T., Tan, C. K., Downey, K. M., and So, A. G. (1984) Biochemistry 23, 1906-1913), it has a total molecular mass of 178 kDa (from sedimentation velocity of 8.0 S and Stokes radius of 54 A) and is composed of one each of 125- and 50-kDa polypeptides. It also resembles the DNA polymerase delta of Lee et al. in being stimulated by proliferating cell nuclear antigen (PCNA). It is the first clear structural and functional counterpart of the calf thymus enzyme. The major difference between the mouse DNA polymerase delta and the calf thymus enzyme of Lee et al. is that, under specific conditions, the mouse enzyme is active with poly(dA).oligo(dT) in the absence of PCNA, whereas the activity of the calf thymus enzyme with this template is reported to be completely dependent on PCNA. The reason for this difference is not known at this time. The second mouse cell enzyme has a molecular mass of 112 kDa (from sedimentation velocity of 6.3 S and Stokes radius of 43.0 A) and consists of a single polypeptide of 123-125 kDa in denaturing gels (p125). On the basis of its apparent formation by dissociation of DNA polymerase delta, and multiple similarities with DNA polymerase delta in enzymatic properties, the p125 is provisionally identified as the 125-kDa polypeptide of DNA polymerase delta. The p125 does not respond to PCNA, suggesting that the 50-kDa polypeptide is required for the stimulation of DNA polymerase delta by PCNA. The presence of the p125 in cell extracts would explain reports that DNA polymerase delta consists of a single polypeptide of approximately 125 kDa and/or thast it has a smaller molecular mass than DNA polymerase delta of Lee et al. and is not affected by PCNA (this does not apply to PCNA-independent DNA polymerase delta-like enzymes with higher molecular mass than the polymerase delta of Lee et al., which have recently been named DNA polymerases epsilon).  相似文献   

18.
19.
P Szankasi  G R Smith 《Biochemistry》1992,31(29):6769-6773
We have purified to near homogeneity a DNA exonuclease from meiotic cells of Schizosaccharomyces pombe. The enzyme, designated exonuclease II (ExoII), had an apparent molecular weight of 134,000 and was abundant in the cell. It specifically degraded single-stranded DNA in the 5'----3' direction with an apparent Km for 5' DNA ends of 3.6 x 10(-11) M and produced 5' deoxynucleoside monophosphates. Its mode of degradation is similar to that of the RecJ protein from Escherichia coli; ExoII may, therefore, be involved in genetic recombination and DNA damage repair.  相似文献   

20.
DNA synthesis in the fission yeast Schizosaccharomyces pombe   总被引:15,自引:0,他引:15  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号