首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Desiccation has significant effects on photosynthetic processes in intertidal macro‐algae. We studied an intertidal macro‐alga, Ulva sp., which can tolerate desiccation, to investigate changes in photosynthetic performance and the components and structure of thylakoid membrane proteins in response to desiccation. Our results demonstrate that photosystem II (PSII) is more sensitive to desiccation than photosystem I (PSI) in Ulva sp. Comparative proteomics of the thylakoid membrane proteins at different levels of desiccation suggested that there were few changes in the content of proteins involved in photosynthesis during desiccation. Interestingly, we found that both the PSII subunit, PsbS (Photosystem II S subunit) (a four‐helix protein in the LHC superfamily), and light‐harvesting complex stress‐related (LHCSR) proteins, which are required for non‐photochemical quenching in land plants and algae, respectively, were present under both normal and desiccation conditions and both increased slightly during desiccation. In addition, the results of immunoblot analysis suggested that the phosphorylation of PSII and LHCII increases during desiccation. To investigate further, we separated out a supercomplex formed during desiccation by blue native‐polyacrylamide gel electrophoresis and identified the components by mass spectrometry analysis. Our results show that phosphorylation of the complex increases slightly with decreased water content. All the results suggest that during the course of desiccation, few changes occur in the content of thylakoid membrane proteins, but a rearrangement of the protein complex occurs in the intertidal macro‐alga Ulva sp.  相似文献   

2.
An extensive body of work suggests that altered marine carbonate chemistry can negatively influence marine invertebrates, but few studies have examined how effects are moderated and persist in the natural environment. A particularly important question is whether impacts initiated in early life might be exacerbated or attenuated over time in the presence or absence of other stressors in the field. We reared Olympia oyster (Ostrea lurida) larvae in laboratory cultures under control and elevated seawater pCO2 concentrations, quantified settlement success and size at metamorphosis, then outplanted juveniles to Tomales Bay, California, in the mid intertidal zone where emersion and temperature stress were higher, and in the low intertidal zone where conditions were more benign. We tracked survival and growth of outplanted juveniles for 4 months, halfway to reproductive age. Survival to metamorphosis in the laboratory was strongly affected by larval exposure to elevated pCO2 conditions. Survival of juvenile outplants was reduced dramatically at mid shore compared to low shore levels regardless of the pCO2 level that oysters experienced as larvae. However, juveniles that were exposed to elevated pCO2 as larvae grew less than control individuals, representing a larval carry‐over effect. Although juveniles grew less at mid shore than low shore levels, there was no evidence of an interaction between the larval carry‐over effect and shore level, suggesting little modulation of acidification impacts by emersion or temperature stress. Importantly, the carry‐over effects of larval exposure to ocean acidification remained unabated 4 months later with no evidence of compensatory growth, even under benign conditions. This latter result points to the potential for extended consequences of brief exposures to altered seawater chemistry with potential consequences for population dynamics.  相似文献   

3.
The intertidal red alga Porphyra haitanensis Chang et Zheng is episodically desiccated and exposed to high levels of solar radiation at low tide during emersion. However, little has been documented on the relationship between the stresses during desiccation and related chemical compounds. We found that P. haitanensis thalli, when desiccated under indoor (artificial radiation) or outdoor (solar radiation) conditions, with or without UV radiation (UVR: 280–400 nm), contained significantly higher concentrations of UV-absorbing compounds (peak at 336 nm) than those maintained submerged (without desiccation). Solar UVR had no effect on the content of UV-absorbing compounds. Even though the concentration of these compounds decreased with time in all treatments, a slower decrease was observed in the desiccated samples. The samples with higher levels of UV-absorbing compounds showed higher photochemical efficiency of photosystem II (PS II) during the exposure or subsequent recovering process than samples with low concentration of UV-absorbing compounds, reflecting their protective role. The concentration of these compounds varied in different parts of the thallus, with the middle and marginal parts containing 60–80% more UV-absorbing compounds than the basal parts in both female and male plants. In addition, the marginal parts of male thalli contained more UV-absorbing compounds than the corresponding parts of female thalli. Our data suggest that desiccation plays a key role in this alga to maintain high concentration of UV-absorbing compounds, and that this might provide a beneficial advantage to compete in the intertidal zone where the organism is normally exposed to high levels of UVR.  相似文献   

4.
There is a great deal of speculation regarding the physiological and biochemical mechanisms that give certain seaweed species the ability to colonize the intertidal zone. Frequent exposure to ambient temperatures and high irradiance levels in addition to dehydration during tidal emersion generates acute physiological stress. The ability of seaweeds like Porphya to overcome these challenges and survive in such a harsh environment has been linked to elevated reactive oxygen metabolism. The current study focused on measuring seasonal changes in antioxidant enzymes plus alterations in pigment contents and photosynthetic efficiency of P. umbilicalis plants found growing in the uppermost intertidal zone.Our results suggest that P. umbilicalis exhibits increased antioxidant metabolism, which could contribute to its success in colonizing such a stressful habitat. Elevated levels of glutathione reductase GTR, catalase and carotenoid contents during emersion suggested heightened protection against reactive oxygen species ROS damage is a necessary attribute for species in the upper intertidal regions. This hypothesis was further strengthened by the finding that the greatest antioxidant increases were observed during summer months when irradiance levels and temperatures were at their peak. Winter emersion did not elicit the same physiological response, as antioxidant levels were similar in submersed and emersed plants.For the most part, photosynthetic pigments were largely affected by sun exposure and less by emersion stress. Shaded blades maintained higher concentrations of photosynthetic pigments compared to sun exposed thalli concurring with established research. Photosynthetic efficiency measurements indicated emersion and not sun exposure was the greater facilitator of photoinhibitory damage and ROS generation at PSII. The findings of this field study strengthen previous assertions that protection via elevated antioxidant metabolism and increased PSII repair are involved in providing relief from the acute environmental stresses in the intertidal zone.  相似文献   

5.
The effects of tidal elevation, emersion, sun exposure, and season on several antioxidant enzymes (ascorbate peroxidase, glutathione reductase, and catalase), pigments (phycoerythrin, phycocyanin, chlorophyll a and total carotene) and photosynthetic efficiency of photosystem II (Fv/Fm) in Porphyra umbilicalis were evaluated. Plants were collected monthly from sun‐exposed and shaded locations in the high, mid, and low intertidal following periods of tidal emersion ranging from 0–6 hours. Glutathione reductase activity was greatly affected by emersion during summer months, while ascorbate peroxidase and catalase activities showed no seasonal patterns. Differences in glutathione reductase and catalase levels occurred between sun‐exposed and shaded plants in the high and mid intertidal during summer. At all elevations, photosynthetic pigments showed a strong seasonal trend, with the effect of sun exposure being most apparent during summer. While total carotene increased with emersion during summer months, the combined effects of emersion and season were inconsistent for phycoerythrin, phycocyanin and chl a. Photosynthetic efficiency (Fv/Fm) decreased following emersion in summer and fall. During most months, sun exposed plants had lower Fv/Fm values compared to plants growing in the shade. This study emphasizes the importance of examining the effects of abiotic stresses simultaneously in order to reveal interactive relationships.  相似文献   

6.
Temperate kelp forests (Laminarians) are threatened by temperature stress due to ocean warming and photoinhibition due to increased light associated with canopy loss. However, the potential for evolutionary adaptation in kelp to rapid climate change is not well known. This study examined family‐level variation in physiological and photosynthetic traits in the early life‐cycle stages of the ecologically important Australasian kelp Ecklonia radiata and the response of E. radiata families to different temperature and light environments using a family × environment design. There was strong family‐level variation in traits relating to morphology (surface area measures, branch length, branch count) and photosynthetic performance (Fv/Fm) in both haploid (gametophyte) and diploid (sporophyte) stages of the life‐cycle. Additionally, the presence of family × environment interactions showed that offspring from different families respond differently to temperature and light in the branch length of male gametophytes and oogonia surface area of female gametophytes. Negative responses to high temperatures were stronger for females vs. males. Our findings suggest E. radiata may be able to respond adaptively to climate change but studies partitioning the narrow vs. broad sense components of heritable variation are needed to establish the evolutionary potential of E. radiata to adapt under climate change.  相似文献   

7.
We tested whether experimentally enhancing nutrients around the kelp Hedophyllum sessile would increase growth, tissue nitrogen, or allocation to phenolic compounds. Packets of time‐released fertilizer were anchored adjacent to fronds in the field, and algae were monitored for several months. Although fertilizer packets increased the concentration of ammonium, nitrate, and phosphorus adjacent to treatment algae by an order of magnitude, there was little evidence that this increased frond growth or size. Hedophyllum individuals showed no tendency to alter allocation patterns in response to nutrient addition. Tissue carbon and nitrogen was unchanged by the nutrient manipulation; most H. sessile had tissue nitrogen concentrations in excess of 2.0% of dry mass. Additionally, the concentration of phloroglucinol equivalents was also unaffected by the presence of increased water column nutrients. Although nutrient concentrations in the water column surrounding the study site show relatively high mean values for ammonium, nitrate, and phosphorus, they are characterized by high spatial and temporal variation. Nonetheless, these data suggest that this intertidal kelp is not limited by nitrogen or phosphorus in wave‐exposed areas in the northeast Pacific Ocean.  相似文献   

8.
Kelps, seaweeds and seagrasses provide important ecosystem services in coastal areas, and loss of these macrophytes is a global concern. Recent surveys have documented severe declines in populations of the dominant kelp species, Saccharina latissima, along the south coast of Norway. S. latissima is a cold‐temperate species, and increasing seawater temperature has been suggested as one of the major causes of the decline. Several studies have shown that S. latissima can acclimate to a wide range of temperatures. However, local adaptations may render the extrapolation of existing results inappropriate. We investigated the potential for thermal acclimation and heat tolerance in S. latissima collected from three locations along the south coast of Norway. Plants were kept in laboratory cultures at three different growth temperatures (10, 15, and 20°C) for 4–6 weeks, after which their photosynthetic performance, fluorescence parameters, and pigment concentrations were measured. S. latissima obtained almost identical photosynthetic characteristics when grown at 10 and 15°C, indicating thermal acclimation at these temperatures. In contrast, plants grown at 20°C suffered substantial tissue deterioration, and showed reduced net photosynthetic capacity caused by a combination of elevated respiration and reduced gross photosynthesis due to lowered pigment concentrations, altered pigment composition, and reduced functionality of Photo‐system II. Our results support the hypothesis that extraordinarily high temperatures, as observed in 1997, 2002, and 2006, may have initiated the declines in S. latissima populations along the south coast of Norway. However, observations of high mortality in years with low summer temperatures suggest that reduced population resilience or other factors may have contributed to the losses.  相似文献   

9.
The green shore crab, Carcinus maenas, undergoes on average 6?h periods of emersion during each low-tide cycle during the summer months. Under those conditions, the crab is cut off from its normal water environment and is exposed to potential stress from a suite of environmental and physiological changes: dehydration, compromised gas exchange and resultant internal hypoxia and hypercapnia, thermal stress, and ammonia toxicity. This study examined the comprehensive responses of the green crab in water and to a 6?h emersion period laboratory simulation of a tidal cycle followed by a 1?h re-immersion period, measuring indicators of dehydration, hemolymph osmolality, oxygen uptake, hemolymph acid–base status, heart and ventilatory rate, and hemolymph ammonia and ammonia excretion. Green crabs showed physiological responses of varying magnitude to 6?h of emersion. Individuals were found in the field exclusively under rocks and large clumps of seaweed where temperatures were approximately half those of exposed surfaces and relative humidity was about twice as high as ambient air. During emersion, crabs lost less than 5% of their wet weight, and hemolymph osmolality did not increase significantly. Oxygen uptake continued in air at about 50% of the control, aquatic values; and the gills continued to be ventilated by the scaphognathite, albeit at lower rates. Hemolymph lactate concentrations increased, indicating a shift to a greater reliance on anaerobic metabolism to support energetic needs. A slight acidosis developed in the hemolymph after 1?h of emersion, but it did not increase thereafter. Ammonia concentrations in the hemolymph were unchanged, as ammonia was volatilized by the gills and excreted into the air as NH3 gas. These results show that the green crab copes with emersion by seeking refuge in microhabitats that mitigate the changes in the physical parameters of intertidal emersion. Physiologically, desiccation is avoided, cardio-respiratory processes are maintained at reduced levels, and hemolymph acid–base balance is minimally affected. Ammonia toxicity appears to be avoided by a shift to excreting NH3 gas directly or indirectly to air.  相似文献   

10.
In species that form dense populations, major disturbance events are expected to increase the chance of establishment for immigrant lineages. Real‐time tests of the impact of disturbance on patterns of genetic structure are, however, scarce. Central to testing these concepts is determining the pool of potential immigrants dispersing into a disturbed area. In 2016, a 7.8 magnitude earthquake occurred on the South Island of New Zealand. Affecting approximately 100 km of coastline, this quake caused extensive uplift (several metres high), extirpating many intertidal populations, including keystone intertidal kelp species. Following the uplift, we set out to determine the geographic origins of detached kelp specimens which rafted into the disturbed zone. Specifically, we used genotyping‐by‐sequencing (GBS) approaches to compare beach‐cast southern bull‐kelp (Durvillaea antarctica and Durvillaea poha) samples to established populations throughout the species' ranges, and thus infer the geographic origins of potential colonists reaching the disturbed coast. Our findings revealed an ongoing supply of diverse lineages dispersing to the newly uplifted coastline, suggesting potential for establishment of “exotic” lineages following disturbance. Furthermore, we found that some drifting individuals of each species came from far‐distant regions, some >1,200 km away. These results show that diverse lineages – in many cases from very distant sources – can compete for new space in the wake of an exceptional disturbance event, illustrating the potential of long‐distance dispersal as a key mechanism for reassembly of coastal ecosystems. Furthermore, our findings demonstrate that high‐resolution genomic baselines can be used to robustly assign the provenance of dispersing individuals.  相似文献   

11.
Dehydration leads to different physiological and biochemical responses in plants. We analysed the lipid composition and the expression of genes involved in lipid biosynthesis in the desiccation‐tolerant plant Craterostigma plantagineum. A comparative approach was carried out with Lindernia brevidens (desiccation tolerant) and two desiccation‐sensitive species, Lindernia subracemosa and Arabidopsis thaliana. In C. plantagineum the total lipid content remained constant while the lipid composition underwent major changes during desiccation. The most prominent change was the removal of monogalactosyldiacylglycerol (MGDG) from the thylakoids. Analysis of molecular species composition revealed that around 50% of 36:x (number of carbons in the acyl chains: number of double bonds) MGDG was hydrolysed and diacylglycerol (DAG) used for phospholipid synthesis, while another MGDG fraction was converted into digalactosyldiacylglycerol via the DGD1/DGD2 pathway and subsequently into oligogalactolipids by SFR2. 36:x‐DAG was also employed for the synthesis of triacylglycerol. Phosphatidic acid (PA) increased in C. plantagineum, L. brevidens, and L. subracemosa, in agreement with a role of PA as an intermediate of lipid turnover and of phospholipase D in signalling during desiccation. 34:x‐DAG, presumably derived from de novo assembly, was converted into phosphatidylinositol (PI) in C. plantagineum and L. brevidens, but not in desiccation‐sensitive plants, suggesting that PI is involved in acquisition of desiccation tolerance. The accumulation of oligogalactolipids and PI in the chloroplast and extraplastidial membranes, respectively, increases the concentration of hydroxyl groups and enhances the ratio of bilayer‐ to non‐bilayer‐forming lipids, thus contributing to protein and membrane stabilization.  相似文献   

12.
Intertidal macroalgae endure light, desiccation, and temperature variation associated with sub‐merged and emerged conditions on a daily basis. Physiological stresses exist over the course of the entire tidal cycle, and physiological differences in response to these stresses likely contribute to spatial separation of species along the shore. For example, marine species that have a high stress tolerance can live higher on the shore and are able to recover when the tide returns, whereas species with a lower stress tolerance may be relegated to living lower on the shore or in tidepools, where low tide stresses are buffered. In this study, we monitored the physiological responses of the tidepool coralline Calliarthron tuberculosum (Postels and Ruprecht) E.Y. Dawson and the nontidepool coralline Corallina vancouveriensis Yendo during simulated tidal conditions to identify differences in physiology that might underlie differences in habitat. During high tide, Corallina was more photosynthetically active than Calliarthron as light levels increased. During low tide, Corallina continued to out‐perform Calliarthron when submerged in warming tidepools, but photosynthesis abruptly halted for both species when emerged in air. Surprisingly, pigment composition did not differ, suggesting that light harvesting does not account for this difference. Additionally, Corallina was more effective at resisting desiccation by retaining water in its branches. When the tide returned, only Corallina recovered from combined temperature and desiccation stresses associated with emergence. This study broadens our understanding of intertidal algal physiology and provides a new perspective on the physiological and morphological underpinnings of habitat partitioning.  相似文献   

13.
Anthropogenic climate change is driving the redistribution of species at a global scale. For marine species, populations at trailing edges often live very close to their upper thermal limits and, as such, poleward range contractions are one of the most pervasive effects of ongoing and predicted warming. However, the mechanics of processes driving such contractions are poorly understood. Here, we examined the response of the habitat forming kelp, Laminaria digitata, to realistic terrestrial heatwave simulations akin to those experienced by intertidal populations persisting at the trailing range edge in the northeast Atlantic (SW England). We conducted experiments in both spring and autumn to determine temporal variability in the effects of heatwaves. In spring, heatwave scenarios caused minimal stress to L. digitata but in autumn all scenarios tested resulted in tissue being nonviable by the end of each assay. The effects of heatwave scenarios were only apparent after consecutive exposures, indicating erosion of resilience over time. Monthly field surveys corroborated experimental evidence as the prevalence of bleaching (an indication of physiological stress and tissue damage) in natural populations was greatest in autumn and early winter. Overall, our data showed that L. digitata populations in SW England persist close to their upper physiological limits for emersion stress in autumn. As the intensity of extreme warming events is likely to increase with anthropogenic climate change, thermal conditions experienced during periods of emersion will soon exceed physiological thresholds and will likely induce widespread mortality and consequent changes at the population level.  相似文献   

14.
The effects on photosynthesis of CO2 and desiccation in Porphyra haitanensis were investigated to establish the effects of increased atmospheric CO2 on this alga during emersion at low tides. With enhanced desiccation, net photosynthesis, dark respiration, photosynthetic efficiency, apparent carboxylating efficiency and light saturation point decreased, while the light compensation point and CO2 compensation point increased. Emersed net photosynthesis was not saturated by the present atmospheric CO2 level (about 350?ml?m?3), and doubling the CO2 concentration (700?ml?m?3) increased photosynthesis by between 31% and 89% at moderate levels of desiccation. The relative enhancement of emersed net photosynthesis at 700?ml?m?3 CO2 was greater at higher temperatures and higher levels of desiccation. The photosynthetic production of Porphyra haitanensis may benefit from increasing atmospheric CO2 concentration during emersion.  相似文献   

15.
Organisms inhabiting the intertidal zone have been used to study natural ecophysiological responses and adaptations to thermal stress because these organisms are routinely exposed to high‐temperature conditions for hours at a time. While intertidal organisms may be inherently better at withstanding temperature stress due to regular exposure and acclimation, they could be more vulnerable to temperature stress, already living near the edge of their thermal limits. Strong gradients in thermal stress across the intertidal zone present an opportunity to test whether thermal tolerance is a plastic or canalized trait in intertidal organisms. Here, we studied the intertidal pool‐dwelling calcified alga, Ellisolandia elongata, under near‐future temperature regimes, and the dependence of its thermal acclimatization response on environmental history. Two timescales of environmental history were tested during this experiment. The intertidal pool of origin was representative of long‐term environmental history over the alga's life (including settlement and development), while the pool it was transplanted into accounted for recent environmental history (acclimation over many months). Unexpectedly, neither long‐term nor short‐term environmental history, nor ambient conditions, affected photosynthetic rates in E. elongata. Individuals were plastic in their photosynthetic response to laboratory temperature treatments (mean 13.2°C, 15.7°C, and 17.7°C). Further, replicate ramets from the same individual were not always consistent in their photosynthetic performance from one experimental time point to another or between treatments and exhibited no clear trend in variability over experimental time. High variability in climate change responses between individuals may indicate the potential for resilience to future conditions and, thus, may play a compensatory role at the population or species level over time.  相似文献   

16.
17.
Intertidal seaweeds are periodically exposed during low tide and thus experience extreme levels of desiccation. The physiological activity of seaweeds changes during this water loss process. This study examined how desiccation affects the photosynthesis and respiration of seaweeds from different intertidal levels, and whether the ability to retain photosynthesis and respiration rates during desiccation varies among these species. Photosynthesis and respiration rates of 12 species of seaweeds were measured under various levels of desiccation, using an infrared CO2 gas analyzer. High levels of drought negatively affected photosynthesis, while most species showed initial rises in photosynthetic rates. The ability to retain photosynthesis and respiration activities under desiccation conditions varied among species. These physiological responses were not related to the intertidal level at which these species occur, but to their ability to prevent water loss. The species with lower rates of water loss had slower declines in the rate of photosynthesis and respiration.  相似文献   

18.
The Aleutian Archipelago coastal ecosystem has undergone a dramatic change in community composition during the past two decades. Following the removal of ~99% of the sea otters, Enhydra lutris, from the ecosystem, changes to the benthic communities resulted in widespread losses to most of the region’s kelp beds and corresponding increases in the prevalence of urchin barrens. Within the urchin barrens, the few kelps that have remained are exposed to elevated light, nutrients and currents, all of which may enhance their physiological condition and thus result in greater fecundity. To explore this further, we examined patterns of sporophyte fecundity in the dominant canopy‐forming kelp, Eualaria fistulosa, in both urchin barrens and in nearby kelp beds at seven Aleutian Islands spanning a range of 800 km. We found that the average weight of E. fistulosa sporophyll bundles was significantly greater on sporophytes occurring in the urchin barrens than in the nearby kelp beds. Furthermore, the average number of zoospores released per cm2 of sporophyll area was also significantly greater in individuals from the urchin barrens than the nearby kelp beds. When these two metrics were combined, our results suggest that individual E. fistulosa sporophytes occurring in the urchin barrens may produce as many as three times more zoospores than individual E. fistulosa sporophytes occurring in the nearby kelp beds, and thus they may contribute disproportionately to the following year’s sporophyte recruitment in both urchin barrens and the adjacent kelp beds.  相似文献   

19.
Coastal and intertidal habitats are at the forefront of anthropogenic influence and environmental change. The species occupying these habitats are adapted to a world of extremes, which may render them robust to the changing climate or more vulnerable if they are at their physiological limits. We characterized the diurnal, seasonal and interannual patterns of flux in biogeochemistry across an intertidal gradient on a temperate sandstone platform in eastern Australia over 6 years (2009–2015) and present a synthesis of our current understanding of this habitat in context with global change. We used rock pools as natural mesocosms to determine biogeochemistry dynamics and patterns of eco‐stress experienced by resident biota. In situ measurements and discrete water samples were collected night and day during neap low tide events to capture diurnal biogeochemistry cycles. Calculation of pHT using total alkalinity (TA) and dissolved inorganic carbon (DIC) revealed that the mid‐intertidal habitat exhibited the greatest flux over the years (pHT 7.52–8.87), and over a single tidal cycle (1.11 pHT units), while the low‐intertidal (pHT 7.82–8.30) and subtidal (pHT 7.87–8.30) were less variable. Temperature flux was also greatest in the mid‐intertidal (8.0–34.5°C) and over a single tidal event (14°C range), as typical of temperate rocky shores. Mean TA and DIC increased at night and decreased during the day, with the most extreme conditions measured in the mid‐intertidal owing to prolonged emersion periods. Temporal sampling revealed that net ecosystem calcification and production were highest during the day and lowest at night, particularly in the mid‐intertidal. Characterization of biogeochemical fluctuations in a world of extremes demonstrates the variable conditions that intertidal biota routinely experience and highlight potential microhabitat‐specific vulnerabilities and climate change refugia.  相似文献   

20.
《Aquatic Botany》2007,87(2):161-166
Photosynthetic processes in Zostera japonica, an upper intertidal species, were found to be more severely affected by desiccation than Z. marina, a lower intertidal and subtidal species, at comparable levels of tissue water content. The data indicate that photosynthetic responses to desiccation at the level of the individual leaf are insufficient to explain observed patterns of intertidal seagrass zonation. Desiccation tolerance in seagrasses is more likely to involve a complex interaction of morphological traits and growth strategies at the level of the whole plant, such as downsizing (e.g. smaller, narrower leaves), reduced structural rigidity and increased rates of leaf abscission and leaf turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号