首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
1. Ground‐nesting colonies of bumble bees incubate their brood at > 30 °C if floral forage provides sufficient energy and the thermogenic power of the colony can counteract cool soil conditions. To explore the basis of incubation, the thermogenic power and sugar consumption of orphaned nests of bumble bee workers (microcolonies) were investigated under laboratory conditions. 2. This study tested experimentally the effect of variation in worker number (ranging from four to 12 adults) on a microcolony's capacity to regulate brood temperature and recover from acute cold exposure. Microcolonies were provided with ad libitum sugar syrup and minimal insulation and maintained at an ambient temperature of c. 25 °C. Energy conversion efficiency was estimated by comparing sugar consumption with the power required for artificial incubation. The joint energetics of foraging and incubation were modelled in wild colonies to explore the effect of colony size and landscape quality on thermoregulation. 3. The results showed that all sizes of microcolonies regulated brood temperature at c. 31 °C under laboratory conditions, which required 96 mW of thermogenic power. It was estimated that individual workers of B. terrestris generated an incubatory power of 35 mW. The smallest microcolonies had the highest conversion efficiency (57%), apparently because few workers were required for incubation. 4. Modelling indicated that small microcolonies of three to seven adult workers have the capacity for normal brood incubation in the wild, but that the minimum viable colony size increases as floral forage becomes poorer or more distant. 5. These preliminary findings suggest the feasibility of identifying the minimum conditions (forage quality, soil temperature, and colony size) necessary for brood incubation by queenright colonies in the wild.  相似文献   

2.
Thiamethoxam is a widely used neonicotinoid pesticide that, as agonist of the nicotinic acetylcholine receptors, has been shown to elicit a variety of sublethal effects in honey bees. However, information concerning neonicotinoid effects on honey bee thermoregulation is lacking. Thermoregulation is an essential ability for the honey bee that guarantees the success of foraging and many in-hive tasks, especially brood rearing. We tested the effects of acute exposure to thiamethoxam (0.2, 1, 2 ng/bee) on the thorax temperatures of foragers exposed to low (22 °C) and high (33 °C) temperature environments. Thiamethoxam significantly altered honey bee thorax temperature at all doses tested; the effects elicited varied depending on the environmental temperature and pesticide dose to which individuals were exposed. When bees were exposed to the high temperature environment, the high dose of thiamethoxam increased their thorax temperature 1–2 h after exposure. When bees were exposed to the low temperature, the higher doses of the neonicotinoid reduced bee thorax temperatures 60–90 min after treatment. In both experiments, the neonicotinoid decreased the temperature of bees the day following the exposure. After a cold shock (5 min at 4 °C), the two higher doses elicited a decrease of the thorax temperature, while the lower dose caused an increase, compared to the control. These alterations in thermoregulation caused by thiamethoxam may affect bee foraging activity and a variety of in-hive tasks, likely leading to negative consequences at the colony level. Our results shed light on sublethal effect of pesticides which our bees have to deal with.  相似文献   

3.
4.

Coral reef ecosystems are under threat from the frequent and severe impacts of anthropogenic climate change, particularly rising sea surface temperatures. The effects of thermal stress may be ameliorated by adaptation and/or acclimation of the host, symbiont, or holobiont (host + symbiont) to increased temperatures. We examined the role of the symbiont in promoting thermal tolerance of the holobiont, using Antillogorgia bipinnata (octocoral host) and Breviolum antillogorgium (symbiont) as a model system. We identified five distinct genotypes of B. antillogorgium from symbiont populations isolated from Antillogorgia colonies in the Florida Keys. Three symbiont genotypes were cultured and maintained at 26 °C (ambient historical temperature), and two were cultured and maintained at 30 °C (elevated historical temperature) for 2 yrs. We analyzed the growth rate and carrying capacity of each symbiont genotype at both ambient and elevated temperatures in culture (in vitro). All genotypes grew well at both temperatures, indicating that thermal tolerance exists among these B. antillogorgium cultures. However, a history of long-term growth at 30 °C did not yield better performance for B. antillogorgium at 30 °C (as compared to 26 °C), suggesting that prior culturing at the elevated temperature did not result in increased thermal tolerance. We then inoculated juvenile A. bipinnata polyps with each of the five symbiont genotypes and reared these polyps at both ambient and elevated temperatures (in hospite experiment). All genotypes established symbioses with polyps in both temperature treatments. Survivorship of polyps at 30 °C was significantly lower than survivorship at 26 °C, but all treatments had surviving polyps at 56 d post-infection. Our results suggest broad thermal tolerance in B. antillogorgium, which may play a part in the increased resilience of Caribbean octocorals during heat stress events.

  相似文献   

5.
1. Increasing temperature and invading species may interact in their effects on communities. In this study, we investigated how rising temperatures alter larval interactions between a naturally range‐expanding dragonfly, Crocothemis erythraea, and a native northern European species, Leucorrhinia dubia. Initial studies revealed that C. erythraea grow up to 3.5 times faster than L. dubia at temperatures above 16 °C. As a result, we hypothesised that divergent temperature responses would lead to rapid size differences between coexisting larvae and, consequently, to asymmetric intraguild predation at higher ambient temperatures. 2. Mortality and growth rates were measured in interaction treatments (with both species present) and non‐interaction controls (one species present) at four different temperature regimes: at an ambient temperature representative of central Germany, where both species overlap in distribution, and at temperatures increased by 2, 4 and 6 °C. 3. The mortality of C. erythraea did not differ between treatment and control. In contrast, mortality of L. dubia remained similar over all temperatures in the controls, but increased with temperature in the presence of the other species and was significantly higher there than in the controls. We concluded that L. dubia suffered asymmetric intraguild predation, particularly at increased temperature. Reduced growth rate of L. dubia in the interaction treatment at higher temperatures also suggested asymmetric competition for prey in the first phase of the experiment. 4. The results imply that the range expansion of C. erythraea may cause reduction in population size of syntopic L. dubia when temperature rises by more than 2 °C. The consequences for future range patterns, as well as other factors that may influence the interaction in nature, are discussed.  相似文献   

6.
The greatest diversity of stingless bee species is found in warm tropical regions, where brood thermoregulation is unnecessary for survival. Although Austroplebeia australis (Friese) naturally occurs in northern regions of Australia, some populations experience extreme temperature ranges, including sub-zero temperatures. In this study, the temperature was monitored in A. australis colonies’ brood chamber (n = 6) and the hive cavity (n = 3), over a 12-month period. The A. australis colonies demonstrated some degree of thermoconformity, i.e. brood temperature although higher correlated with cavity temperature, and were able to warm the brood chamber throughout the year. Brood production continued throughout the cold season and developing offspring survived and emerged, even after exposure to very low (?0.4 °C) and high (37.6 °C) temperatures. Austroplebeia australis, thus, demonstrated a remarkable ability to survive temperature extremes, which has not been seen in other stingless bee species.  相似文献   

7.
Given anticipated climate changes, it is crucial to understand controls on leaf temperatures including variation between species in diverse ecosystems. In the first study of leaf energy balance in tropical montane forests, we observed current leaf temperature patterns on 3 tree species in the Atlantic forest, Brazil, over a 10‐day period and assessed whether and why patterns may vary among species. We found large leaf‐to‐air temperature differences (maximum 18.3 °C) and high leaf temperatures (over 35 °C) despite much lower air temperatures (maximum 22 °C). Leaf‐to‐air temperature differences were influenced strongly by radiation, whereas leaf temperatures were also influenced by air temperature. Leaf energy balance modelling informed by our measurements showed that observed differences in leaf temperature between 2 species were due to variation in leaf width and stomatal conductance. The results suggest a trade‐off between water use and leaf thermoregulation; Miconia cabussu has more conservative water use compared with Alchornea triplinervia due to lower transpiration under high vapour pressure deficit, with the consequence of higher leaf temperatures under thermal stress conditions. We highlight the importance of leaf functional traits for leaf thermoregulation and also note that the high radiation levels that occur in montane forests may exacerbate the threat from increasing air temperatures.  相似文献   

8.
Thermoregulation in Malayan sun bears is not fully understood. Therefore, in this study the effect of meteorological variables on both behavioural and autonomic thermoregulatory mechanisms in sun bears was examined in order to identify temperature thresholds for the activation of various thermoregulatory mechanisms. Infrared thermography was used to non‒invasively determine body surface temperature (TS) distribution in relation to ambient temperature (TA) and to determine the thermoneutral zone (TNZ) of sun bears. Thermographic measurements were performed on 10 adult sun bears at TA between 5 °C and 30 °C in three European zoos. To assess behaviours that contribute to thermoregulation, nine adult sun bears were observed at TA ranging from 5 °C to 34 °C by instantaneous scan sampling in 60 s intervals for a total of 787 h. Thermographic measurements revealed that the TNZ of sun bears lies between 24 °C and 28 °C and that heat is equally dissipated over the body surface. Behavioural data showed that behaviours related to thermoregulation occurred in advance of energetically costly autonomic mechanisms, and were highly correlated with TA and solar radiation. While the temperature threshold for the onset of thermoregulatory behaviours below the TNZ lies around 15 °C, which is well below the lower critical temperature (TLC) assessed by thermography, the onset for behaviours to prevent overheating occurred at 28 °C, which was closer to the estimated upper critical temperature (TUC) of sun bears. These findings provide useful data on the thermal requirements of sun bears with respect to the species potential to cope with the effects of climate change and deforestation which are occurring in their natural range. Furthermore, these results may have important implications for the care and welfare of bears in captivity and should be taken into consideration, when designing and managing facilities.  相似文献   

9.
Rising environmental temperatures have become a global threat for ectotherms, with the increasing risk of overheating promoting population declines. Flexible thermoregulatory behavior might be a plausible mechanism to mitigate the effects of extreme temperatures. We experimentally evaluated thermoregulatory behavior in the bunchgrass lizard, Sceloporus aeneus, at three different environmental temperatures (25, 35 and 45 °C) both with and without a thermal refuge. We recorded themoregulatory behaviors (body posture and movement between hot and cold patches) and compared individual lizards across all experimental temperature and shelter combinations. Behavioral thermoregulation in S. aeneus was characterized by the expression of five body postures, whose frequencies varied based on environmental temperature and microthermal conditions. Behavioral responses allowed lizards to maintain a mean body temperature <40 °C, the critical thermal maximum for temperate species, even at extreme environmental temperatures (45 °C). Although S. aeneus express an array of behavioral postures that provide an effective mechanism to cope with elevating temperatures, the presence of a thermal refuge was important to better achieve this. Together, our study offers a novel method to evaluate microhabitat preference that encompasses both behavioral observations and time-space analysis based on the ambient thermal distribution, a consideration that can aid in the formulation of more accurate predictions on ectotherm vulnerability related to increasing global environmental temperatures.  相似文献   

10.
Cattle sucking lice, Linognathus vituli (L.) (Phthiraptera: Linognathidae), were obtained from naturally infected cattle and maintained within ‘arenas’ affixed to the backs of cattle confined in controlled environment chambers maintained at a constant temperature of 15 °C. Temperatures measured within the arenas at an ambient temperature of 15 °C were constant at about 34 °C and only slightly above the temperature on nearby skin. The effect of temperature on egg development was determined using a gradient of temperatures between 25 °C and 41 °C. Eggs did not develop at temperatures of < 26 °C or > 39 °C. Survival of eggs was highest at temperatures of 30 °C and 35 °C. The earliest hatch was observed at 5 days post‐oviposition (at 33–35 °C). Development was extended to as long as 13 days at the lower temperatures. Kaplan–Meier survival probabilities were compared for lice kept at two densities in the arenas and showed there to be no effect of density on louse survival. Similarly, the mean number of eggs/louse/day over an 8‐day period was not influenced by louse density.  相似文献   

11.
Thermoregulation in patients suffering from multiple sclerosis (MS) is impaired and may result in either increases or decreases in body temperature. We have found that rat experimental autoimmune encephalitis (EAE), being a model of MS, is associated with body temperature disturbances as well.The purpose of the current study was to examine whether the altered body temperature in EAE-induced rats is due to either a deficit in thermoregulation or a controlled change in its set point.Subcutaneous injection of encephalitogenic emulsion into both pads of hind feet of the Lewis rats provoked EAE symptoms. Body temperature (Tb) of 6 rats was measured using biotelemetry system, and ambient temperature (Ta) preferred by 6 rats of another group was analyzed using thermal gradient system.Symptoms of EAE started 11 days postinjection and progressed quickly, culminating in a complete paralysis in rats placed in the gradient, which was associated with behavioural fever (accordingly, selected Ta raised to as much as 32.8 ± 0.5 °C vs 27.2 ± 0.6 °C in control rats). On the other hand, EAE rats, placed at a constant Ta of 24 °C, were able to generate fever (Tb of 37.8 ± 0.1 °C) at the start of the illness and then paralysis compromised fever (most likely due to an impairment of thermogenesis), which, surprisingly, resulted in recovery.We conclude that EAE onset in rats is associated with fever and its behavioural supporting leads to aggravation of the autoimmune neurotoxicity.  相似文献   

12.
Regulation of wing muscle temperature is important for sustaining flight in many insects, and has been well studied in honeybees. It has been much less well studied in wasps and has never been demonstrated in Polistes paper wasps. We measured thorax, head, and abdomen temperatures of inactive Polistes dominulus workers as they warmed after transfer from 8 to ~25°C ambient temperature, after removal from hibernacula, and after periods of flight in a variable temperature room. Thorax temperature (T th) of non-flying live wasps increased more rapidly than that of dead wasps, and T th of some live wasps reached more than 2°C above ambient temperature (T a), indicating endothermy. Wasps removed from hibernacula had body region temperatures significantly above ambient. The T th of flying wasps was 2.5°C above ambient at T a = 21°C, and at or even below ambient at T a = 40°C. At 40°C head and abdomen temperatures were both more than 2°C below T a, indicating evaporative cooling. We conclude that P. dominulus individuals demonstrate clear, albeit limited, thermoregulatory capacity.  相似文献   

13.
Thermoregulation, energetics and patterns of torpor in the pygmy mouse lemur, Microcebus myoxinus, were investigated under natural conditions of photoperiod and temperature in the Kirindy/CFPF Forest in western Madagascar. M. myoxinus entered torpor spontaneously during the cool dry season. Torpor only occurred on a daily basis and torpor bout duration was on average 9.6 h, and ranged from 4.6 h to 19.2 h. Metabolic rates during torpor were reduced to about 86% of the normothermic value. Minimum body temperature during daily torpor was 6.8 °C at an ambient temperature of 6.3 °C. Entry into torpor occurred randomly between 2000 and 0620 hours, whereas arousals from torpor were clustered around 1300 hours within a narrow time window of less than 4 h. Arousal from torpor was a two-step process with a first passive climb of body temperature to a mean of 27 °C, carried by the daily increase of ambient temperature when oxygen consumption remained more or less constant, followed by a second active increase of oxygen consumption to further raise the body temperature to normothermic values. In conclusion, daily body temperature rhythms in M. myoxinus further reduce the energetic costs of daily torpor seen in other species: they extend to unusually low body temperatures and consequently low metabolic rates in torpor, and they employ passive warming to reduce the energetic costs of arousal. Thus, these energy-conserving adaptations may represent an important energetic aid to the pygmy mouse lemur and help to promote their individual fitness. Accepted: 2 November 1999  相似文献   

14.
Grape anthracnose, which is caused by Elsinoë ampelina, is a disease that negatively affects grape production. This study aimed to investigate the effects of aeration, temperature, light, and preculture period on the formation of E. ampelina conidia and conidial germination and virulence. The colony morphology on potato dextrose agar (PDA) plates was more diverse than that in PDA bottles. The assessment of different culture methods, temperatures, light conditions, and preculture periods revealed that optimal conidial production occurred on 25‐day‐old colonies grown in PDA bottles at 21°C for 24 hr in the dark. The cultures in PDA bottles consistently produced approximately 5.0 × 106 conidia under these conditions. No conidial formation occurred when the cultures were kept at 25°C in the dark. The highest germination rate of E. ampelina was 80% at 25°C after 24 hr, whereas no germination was observed at 17°C after 12 hr. Pathogenicity tests revealed that symptoms of the disease were observed 4 days postinoculation (dpi) on leaves of Vitis vinifera cv. Red Globe. New conidia were observed on the lesions at 8 dpi. This study provides an effective method for the conidial production of E. ampelina that may also be applicable for other Elsinoë fungal species.  相似文献   

15.
In spite of the abundance and broad distribution of social wasps, little information exists concerning thermoregulation by individuals. We measured body temperatures of the yellowjackets Vespula germanica and V. maculifrons and examined their thermoregulatory mechanisms. V. germanica demonstrated thermoregulation via a decreasing gradient between thorax temperature and ambient temperature as ambient temperature increased. V. maculifrons exhibited a constant gradient at lower ambient temperatures but thorax temperature was constant at high ambient temperatures. Head temperature exhibited similar patterns in both species. In spite of low thermal conductances, a simple heat budget model predicts substantial heat loads in warm conditions in the absence of thermoregulation. Both species regurgitated when heated on the head. A smaller volume of regurgitant was produced at lower head temperatures and a larger volume at higher head temperatures. Small regurgitations resulted in stabilization of head temperature, while large ones resulted in 4°C decreases in head temperature. Regurgitation was rare when wasps were heated upon the thorax. Abdomen temperature was 3–4°C above ambient temperature, and approached ambient temperature under the hottest conditions. No evidence was found for shunting of hot hemolymph from thorax to abdomen as a cooling mechanism. The frequency of regurgitation in workers returning to the nest increased with ambient temperature. Regurgitation may be an important thermoregulatory strategy during heat stress, but is probably not the only mechanism used in yellowjackets.Abbreviations M b body mass - M th thorax mass - T a ambient temperature - T ab abdomen temperature - T b body temperature - T h head temperature - T th thorax temperature - C t thermal conductance  相似文献   

16.
Ectotherms can attain preferred body temperatures by selecting specific temperature microhabitats within a varied thermal environment. The side‐blotched lizard, Uta stansburiana may employ microhabitat selection to thermoregulate behaviorally. It is unknown to what degree habitat structural complexity provides thermal microhabitats for thermoregulation. Thermal microhabitat structure, lizard temperature, and substrate preference were simultaneously evaluated using thermal imaging. A broad range of microhabitat temperatures was available (mean range of 11°C within 1–2 m2) while mean lizard temperature was between 36°C and 38°C. Lizards selected sites that differed significantly from the mean environmental temperature, indicating behavioral thermoregulation, and maintained a temperature significantly above that of their perch (mean difference of 2.6°C). Uta's thermoregulatory potential within a complex thermal microhabitat structure suggests that a warming trend may prove advantageous, rather than detrimental for this population.  相似文献   

17.
The thermoregulation behavior of Lucilia sericata larvae (Diptera: Calliphoridae), a necrophagous species that feeds on vertebrate cadavers, was investigated. These larvae require high heat incomes to develop, and can elevate temperatures by forming large aggregates. We hypothesized that L. sericata larvae should continue to feed at temperatures up to 38 °C, which can be reached inside larval masses. Thermal regulation behavior such as movement between a hot food spot and colder areas was also postulated. The hypotheses were tested by tracking for 1 h the activity of single, starved third instar larvae in a Petri dish containing 1 food spot (FS) that was heated to a constant temperature of 25 °C, 34 °C or 38 °C with an ambient temperature of 25 °C. The influence of previous conspecific activity in the food on larval behavior was also tested. The crops of larvae were dissected to monitor food content in the digestive systems. Based on relative crop measurements, larvae fed at all food temperatures, but temperature strongly affected larval behavior and kinematics. The total time spent by larvae in FS and the duration of each stay decreased at high FS temperature. Previous activity of conspecifics in the food slightly increased the time spent by larvae in FS and also decreased the average distance to FS. Therefore, necrophagous L. sericata larvae likely thermoregulate during normal feeding activities by adjusting to local fluctuations in temperature, particularly inside maggot masses. By maintaining a steady internal body temperature, larvae likely reduce their development time.  相似文献   

18.
Maintaining a constant body temperature is critical to the proper functioning of metabolic reactions. Behavioural thermoregulation strategies may minimize the cost of energetic balance when an animal is outside its thermoneutral zone. We investigated whether ambient temperature and relative air humidity influence the use of behavioural strategies by a group of Prince Bernhard's titi monkeys (Callicebus bernhardi) living in a forest fragment. We monitored a social group composed of four individuals (an adult couple and two juveniles) for 1010 h from March to September 2015. We used the instantaneous scan sampling method to record the body posture, the microhabitat, and the occurrence of huddling with group mate(s) when animals were resting. We recorded ambient temperature and relative humidity in the shade every 10 min with a data logger hanging at a height of approximately 5 m. Daytime temperature ranged from 18.5 °C to 38.5 °C and relative humidity ranged from 21% to 97%. Titi monkeys avoided sunny places at higher temperatures, especially above 31 °C. Minimum night temperature did not influence the choice of resting microhabitats during the first hour after sunrise. Sitting was the major resting posture during the day (62%). Titi monkeys increased the use of heat-dissipating postures at ambient temperatures >27 °C. In addition, an increase in relative humidity increased the use of these postures at 26 °C, 27 °C, 29 °C and 33 °C, but caused a decrease at 24 °C. On the other hand, the ambient temperature did not influence the occurrence of huddling. We conclude that microhabitat choice and postural behaviour are important for titi monkeys to prevent overheating and suggest that these behavioural adjustments might also be critical for other tropical arboreal mammals.  相似文献   

19.
Oomyzus sokolowskii, an important parasitoid of Plutella xylostella, has great potential for use in biological control. Storage at suboptimal temperature is valuable for increasing the shelf‐life of insect parasitoids. In this study, O. sokolowskii larvae were reared at 30/25, 25/25 and 25/20°C light/dark (65 ± 5% RH, 16 : 8 h L : D) until pupation. The pupae were then cold‐stored at 4 ± 1°C (60 ± 5% RH, full darkness). The pupae were removed out from the storage at 10, 20, 30 and 40 days after storage (DAS) and maintained at 25 ± 2°C until adults emerged or pupae died. Quality of the emerging adults and their F1 offspring were assessed. Incidence of parasitism by O. sokolowskii was higher at 30/25°C than at 25/20°C. Cold storage of O. sokolowskii pupae greatly affected the fitness of the parasitoid: adult emergence rates were lower in the 40 DAS treatment than in other treatments; when O. sokolowskii larvae developed at 25/25°C, female proportions of the emerged adults were lower in the 40 DAS treatment than in the 0 and 10 DAS treatments. Larval rearing temperature mildly affected the adult emergence rate, post‐storage developmental time and female proportion with a few exceptions. Number of parasitoids emerged per host pupa, and incidence of parasitism by the females were neither affected by larval rearing temperature nor cold storage duration. Trans‐generational effects on F1 offspring were evident in adult emergence rate, egg‐adult developmental time and female proportion which were negatively affected by long duration of storage (40 days), but not by larval rearing temperature with a few exceptions. In conclusion, O. sokolowskii pupae could be stored at 4°C for up to 30 days without significant fitness loss.  相似文献   

20.
To understand the influence of temperature on host–parasitoid interactions as a consequence of climatic change, we studied development, survival, and fecundity of field and laboratory strains of the Helicoverpa armigera larval endoparasitoid, Campoletis chlorideae at five different temperatures under laboratory conditions. Post-embryonic development period and degree-days required for completing the life cycle by both the strains decreased by 2.5 and 1.5 folds at 27°C compared to 18°C. Post embryonic development period showed a negative (r = −0.99, P < 0.001) and the development rate a positive (r = 0.99, P < 0.001) association with an increase in temperature. However, no parasitoid larvae survived in H. armigera larvae reared at 12 and 35°C after parasitization, suggesting that temperatures ≥35°C as a result of global warming will be lethal for development and survival of immature stages of C. chlorideae. Adult longevity was negatively associated (r = −0.91 to −0.96, P < 0.001) with temperatures between 12 and 35°C. The parasitoid adults stored at 12°C survived for longer period and exhibited higher fecundity than those kept at 27°C, but the efficiency of parasitism and adult emergence were quite low. Sex ratio of the progeny at 12°C was highly male-biased than the insects kept at 27°C. Laboratory strain of the parasitoid exhibited better survival, and the adults lived longer than the field strain at 18°C than at 27°C. Therefore, C. chlorideae adults stored at 18°C could be used for parasitism, while the immature stages should be reared at 27°C for mass production of the parasitoid for biological control of H. armigera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号