首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most kelps (order Laminariales) exhibit distinct temporal patterns in zoospore production, gametogenesis and gametophyte reproduction. Natural fluctuations in ambient environmental conditions influence the intrinsic characteristics of gametes, which define their ability to tolerate varied conditions. The aim of this work was to document seasonal patterns in reproduction and gametophyte growth and survival of Ecklonia radiata (C. Agardh) J. Agardh in south-western Australia. These results were related to patterns in local environmental conditions in an attempt to ascertain which factors explain variation throughout the season. E. radiata was fertile (produced zoospores) for three and a half months over summer and autumn. Every two weeks during this time, gametophytes were grown in a range of temperatures (16–22°C) in the laboratory. Zoospore densities were highly variable among sample periods; however, zoospores released early in the season produced gametophytes which had greater rates of growth and survival, and these rates declined towards the end of the reproductive season. Growth rates of gametophytes were positively related to day length, with the fastest growing recruits released when the days were longest. Gametophytes consistently survived best in the lowest temperature (16°C), yet exhibited optimum growth in higher culture temperatures (20–22°C). These results suggest that E. radiata releases gametes when conditions are favourable for growth, and E. radiata gametophytes are tolerant of the range of temperatures observed at this location. E. radiata releases the healthiest gametophytes when day length and temperature conditions are optimal for better germination, growth, and sporophyte production, perhaps as a mechanism to help compete against other species for space and other resources.  相似文献   

2.
We analysed the effects of temperature and photon fluence rate on meiospore germination, growth and fertility of gametophytes, and growth of young sporophytes of Laminaria ochroleuca. Maximum percentages of germination (91–98%) were obtained at 15°C and 18°C, independent of photon fluence rate. Optimal development of female gametophyte and maximum fecundity and reproductive success of gametophytes occurred at 15°C and 18°C and at 20 and 40 μmol m–2 s–1. Maximum relative growth rate of young sporophytes after 2 weeks of culture was achieved under the same conditions. L. ochroleuca gametophytes cannot reproduce and growth of its sporophytes is not competitive at temperatures close to 10°C. Received in revised form: 31 August 2001 Electronic Publication  相似文献   

3.
Details of zoospore germination in Chorda tomentosa Lyngb. are outlined. Uninucleate zoospores, when released are embedded in a mucilaginous mass of carbohydrate which dissolves and the biflagellate zoospores become motile. The long anterior flagellum is composed of a highly coiled terminal region and a rigid lower section bearing mastigonemes. The rigid, short posterior flagellum lacks mastigonemes. After initial contact by the tightly coiled region of the anterior flagellum, the zoospore draws itself to the substrate by flagellar resorbtion. After deposition of 3 wall layers the germling produces a germ tube. During this time the disc-shaped chloroplast enlarges undergoing changes in shape. As the germ tubes reach ca. 15 μm they cease forward growth and swell at their tips. The majority of cytoplasm of the original zoospore moves into the tube. Just before the nucleus enters the tube, centriole replication occurs. Mitosis is presumed to take place somewhere in the germ tube so that at 24 h, 2-celled gametophytes are produced.  相似文献   

4.
Temperate kelp forests (Laminarians) are threatened by temperature stress due to ocean warming and photoinhibition due to increased light associated with canopy loss. However, the potential for evolutionary adaptation in kelp to rapid climate change is not well known. This study examined family‐level variation in physiological and photosynthetic traits in the early life‐cycle stages of the ecologically important Australasian kelp Ecklonia radiata and the response of E. radiata families to different temperature and light environments using a family × environment design. There was strong family‐level variation in traits relating to morphology (surface area measures, branch length, branch count) and photosynthetic performance (Fv/Fm) in both haploid (gametophyte) and diploid (sporophyte) stages of the life‐cycle. Additionally, the presence of family × environment interactions showed that offspring from different families respond differently to temperature and light in the branch length of male gametophytes and oogonia surface area of female gametophytes. Negative responses to high temperatures were stronger for females vs. males. Our findings suggest E. radiata may be able to respond adaptively to climate change but studies partitioning the narrow vs. broad sense components of heritable variation are needed to establish the evolutionary potential of E. radiata to adapt under climate change.  相似文献   

5.
Phlorotannins are considered inter alia to act protective to a variety of stressors, while lipids in spores are known to fuel various metabolic processes during spore release and settlement. Here, phlorotannin production in zoospores/juvenile gametophytes in relation to lipid metabolism was investigated for the first time in order to study-related metabolic costs. The experiment was carried out in Ny-?lesund (Svalbard, Arctic) within the development from spores to juvenile gametophytes of the brown alga Saccharina latissima over 20 days. In the release stage, the total phlorotannin content of single zoospores was 1.5 × 10−7 μg and 1.9 × 10−7 μg in the surrounding medium. Upon release, the total amount of lipids was 1.76 × 10−5 μg lipid zoospore−1 containing the major fatty acids 16:0 and 18:0, 18:1(n-9), 18:2 (n-6), 18:3(n-3), 20:4(n-6), and 20:5(n-3). During development from spores to gametophytes, a decrease in fatty acids was observed via electron microscopy and a decrease in the fatty acid 18:1(n-9) from 45 to 30% was measured by gas chromatography in particular. While phlorotannin content within the spores remained stable, phlorotannins accumulated in the surrounding medium of gametophytes to 4.0 × 10−7 μg phlorotannins spore−1 indicating exudation processes. Results obtained support the key and multifunctional role of lipids in zoospore/gametophyte metabolism and may indicate that gametophytes of S. latissima need approximately 10 days to switch to photo-autotrophic strategies, becoming independent of storage lipids. In addition, fatty acids might represent an essential energy source to fuel adaptive responses.  相似文献   

6.
Zoospore Production Biology of Pythiaceous Plant Pathogens   总被引:1,自引:0,他引:1  
Zoospores are major dispersal and infective propagules of pythiaceous species. Built upon a recently developed ‘wet‐plate’ method, the objectives of this study were to develop a better understanding about zoospore production biology. Four broth media and five incubation temperatures were evaluated with 12 isolates of Phytophthora nicotianae and 17 other pythiaceous species in this study. The ‘wet‐plate’ method worked the best for heterothallic species, especially those isolates that do not produce chlamydospores. These species included Phytophthora citrophthora, P. nicotianae, Phytophthora palmivora and Phytophthora tropicalis. They readily produced 105–106 zoospores/ml. Overall, most species and isolates produced more zoospores with 20% clarified V8 broth than the other three media: rye, lima bean and carrot. The optimal temperature for nutrient‐deprived culture without free‐flowing water to produce sporangia typically is 5°C cooler than that for vegetative growth. Fresh and revived cultures are more prolific than those that had been subcultured multiple times. These findings will assist oomycete researchers, adding quality, productivity and efficiency to their future zoospore‐based studies.  相似文献   

7.

The sclerosponge Ceratoporella nicholsoni is a hyper-calcifying high microbial abundance sponge. This sponge has been observed at high densities throughout the Caribbean in the mesophotic zone (30–150 m), as well as cryptic environments in shallow (< 30 m) depths. Given the densities of this sponge, it could play an important role in the cycling of inorganic and organic sources of carbon and nitrogen at mesophotic depths. Additionally, there is broad interest in this sponge as a tool for paleobiology, paleoclimatology and paleoceanography. As a result, it is increasingly important to understand the ecology of these unique sponges in the underexplored Caribbean mesophotic zone. Here we show that this sponge increases in abundance from shallow depths into the mesophotic zone of Grand Cayman Island. We observed no significant differences in the stable isotope signatures of δ15N and δ13C of sponge tissue between depths. A predictive model of sponge diet with increasing depth shows that these sponges consume dissolved organic matter of algal and coral origin, as well as the consumption of particulate organic matter consistent with the interpretation of the stable isotope data. The taxonomic composition of the sclerosponge microbiome was invariant across the shallow to mesophotic depth range but did contain the Phylum Chloroflexi, known to degrade a variety of dissolved organic carbon sources. These data suggest that the depth distribution of this sponge may not be driven by changes in trophic strategy and is potentially regulated by other biotic or abiotic factors.

  相似文献   

8.
Elevated irradiance has a profound effect on the successful dispersal and establishment of kelp zoospores, affecting their physiology and viability. The research to date, however, has been on zoospores localized near the benthos, with little attention on the importance of vertical transportation and subsequent exposure to increased irradiance. Therefore, we wanted to investigate the effects of exposure to high irradiance on the reproductive planktonic life‐history stages of kelps Macrocystis pyrifera (L.) C. Agardh and Pterygophora californica Rupr. Zoospores of both species were exposed to different irradiances (75, 275, 575, 1,025 μmol photons · m?2 · s?1) over varying durations (1, 2, 4, 8, 12 h) and subsequently monitored for settlement competency, gametophyte development, and reproductive viability. Settlement success for M. pyrifera was uniform throughout all irradiance × time treatments, while settlement for P. californica decreased with increasing exposure time but not irradiance, although settlement was generally reduced at the highest irradiance level. Following zoospore settlement, germ tube development was visible in the gametophytes of both species within 1 week, although a significant decline of germ tube density in P. californica was observed with increasing irradiance. Similarly, a decrease in germ tube development with increasing exposure was observed across all irradiance levels for M. pyrifera, but irradiance itself was not significant. Further development into embryonic sporophytes was remarkably similar to gametophyte development, suggesting that the effect of exposure of kelp zoospores to high irradiance on subsequent sporophyte production is mediated through gametophyte development as well as zoospore survival.  相似文献   

9.
The morphology and phenology of Paralemanea mexicana (Kützing) Vis et Sheath was evaluated seasonally in a fifth order high‐altitude stream in central Mexico. The gametophytes grew during oligotrophic and eutrophic conditions, and during particular microhabitat conditions: high current velocity (40–240 cm s?1), low to medium irradiance (5–973 μmol photons m?2 s?1), and shallow depth (1–30 cm). The abundance of gametophytes was positively correlated with low temperature, high current velocity and concentrations of soluble reactive phosphorus. Interestingly, monoecious gametophytes formed two types of branches, true branches with sympodial pattern originating from meristematic cells in variable number, and abundant false branches produced during the development of the ‘Chantransia’ stage in the surface of the gametophyte or by uniseriate filaments arising within the thallus lumen. These filaments generally produce gametophytes and suggest that they could support the germination of carpospores. The frequently whorled branches are the result of a false branching pattern and are exclusive to P. mexicana. These morphological and reproductive characteristics appear to be biomechanical adaptations to avoid detachment and increase reproductive success. Efficient reproductive strategies of P. mexicana observed in this study can be interpreted as adaptations to successfully colonize streams; however, these features may not have been common in the study region due to restricted microhabitat conditions and geographic isolation.  相似文献   

10.

The kelp Ecklonia radiata has become a target for controlled cultivation. However, to date there are no standardised protocols for the hatchery stage of this species that result in high rates of germination, gametophyte development and transition to sporophytes. Therefore, the objective of this study was to quantify the effect of photoperiod, light intensity, temperature, nutrient media and use of GeO2 on the key hatchery processes of germination, gametophyte development and transition to sporophytes in controlled laboratory experiments. Germination of E. radiata was high (≥?85%) throughout the study, regardless of treatments. Temperature had a major effect on the length of gametophytes, which increased with increasing temperature. The formation of sporophytes was favoured when individuals were maintained under 17 °C continuously, while reduced by approximately 30% when using F/2 compared to PES nutrient media. Overall, the recommended conditions for the hatchery stage of E. radiata are to maintain cultures under a 12 h L:12 h D photoperiod at 17 °C as this resulted in higher germination rates, good gametophyte development and higher transition to sporophytes compared to other treatments. Moreover, the use of GeO2 has to be limited to no more than 2 days as extended use has detrimental effects on the development of sporophytes. Finally, storage of sorus-bearing fronds of sporophytes up to 4 days after the collection from the field generally increased the number of released zoospores and is a simple mechanism to increase the fertility of brood stock.

  相似文献   

11.
Pythium porphyrae is a fungal pathogen responsible for red rot disease of the seaweed Porphyra (Rhodophyta). Infection forecasts of Porphyra by P. porphyrae were estimated from the epidemiological observations of Porphyra thalli and numbers of zoospore of P. porphyrae in laboratory and cultivation areas. Four features of forecasting infections were determined by relating zoospore concentrations to the incidence of thallus infection; infection (in more than 1000 zoospores L−1), microscopic infection [less than 2 mm in diameter of lesion (in from 2000 to 3000 zoospores L−1)], macroscopic infection [more than 2 mm in diameter of lesion (in from 3000 to 4000 zoospores L−1), and thallus disintegration (in more than 4000 zoospores L−1). High zoospore concentrations led to more infection. The tendency that zoospore concentration of P. porphyrae increased with the rate of infection of Porphyra thalli was generally observed in forecasting infections in both the laboratory and in cultivation areas. Based on the Porphyra cultivation areas, the accuracy and consistency of forecasting infections suggest that this method could be employed to manage and control red rot disease.  相似文献   

12.
Benthic microalgae are known to perform important ecosystem functions in shallow lakes. As such it is important to understand the environmental variables responsible for regulating community structure, positioning and biomass. We tested the hypothesis that the positioning (across a depth gradient of 2–22 m overlying water depth) and relative biomass (determined using bulk and lens tissue harvested chlorophyll (Chl) a concentrations) of the epipelon community would vary independently with season (12 monthly samples) and across natural gradients of light and habitat disturbance relative to the total benthic algal community (i.e. all viable microalgae in the surface sediments) in a shallow eutrophic loch. Total sediment microalgal Chl a concentrations (TS-Chl; range: 5–874 μg Chl a g−1 dw) were highest in winter and in the deepest site (20 m overlying water depth), apparently as a result of phytoplanktonic settling and sediment focussing processes. Epipelic Chl a concentrations (Epi-Chl; range: <0.10–6.0 μg Chl a g−1 dw) were highest in winter/spring, a period when water clarity was highest and TS-Chl lowest. Principal components analysis highlighted strong associations between Epi-Chl and sites of intermediate depths (2.5–5.5 m) in all seasons except autumn/winter. Autumn/winter represented the season with the highest average wind speeds preceding sampling, during which the highest Epi-Chl concentrations were associated with the deepest sites. Epi-Chl was associated with intermediate light and habitat disturbance during spring/summer and summer/autumn and varied positively with habitat disturbance, only, in autumn/winter and winter/spring. The epipelon community structure also varied with depth; diatoms dominated shallow water sediments, cyanobacteria dominated deep water sediments, and sediments at sites of intermediate depth returned the highest biovolume estimates and the most diverse communities. This study has strengthened the hypothesis that the structure and biomass of benthic microalgal communities in lakes are regulated by habitat disturbance and water clarity, both of which are expected to respond to climate change and eutrophication. The degree to which these structural responses reflect functional performance requires clarification.  相似文献   

13.
The processes limiting the population recovery of the kelp Saccharina latissima after recent large‐scale loss from the south coast of Norway are poorly understood. Previous investigations do, however, suggest that the impacts of biotic interactions (epibiosis and competition) and increased water turbidity are important. We investigated the depth‐related patterns of growth, epibiosis, and mortality in two sample populations of kelp, from the south and the southwest coast of Norway. The investigations were performed over a period of seven months, in a crossed translocational study, where kelps were mounted on rigs at six depths (1, 3, 6, 9, 15, and 24 m). In a second experiment, the amounts of light blocked by different epibiont layers growing on the kelp frond were investigated. While growth decreased with depth in spring and summer, the kelp grew faster at 15 m than at shallower depths in fall. Survival was low both in shallow water and below 15 m depth. Epibionts covered the kelp growing at depths from 1 to 9 m, and the laboratory study showed that the coverage may have deprived the individuals of as much as 90% of the available light. Although the depth‐related results we present apply—in the strictest sense—only to kelp translocated on rigs, we argue that the relative patterns are relevant for natural populations. Growth and survival of S. latissima is likely to be reduced by heavy loads of epibionts, while depths where epibionts are sparse may be close to the lower limit of the kelps depth distribution along the south coast of Norway. This suggests that a vertical squeeze, or narrowing of the distribution range of kelp forests may be occurring in Norway.  相似文献   

14.

On the Great Barrier Reef (GBR), the large benthic foraminifera Amphistegina lobifera, A. lessonii and A. radiata occur in shallow (<30 m) areas and have a clear distribution gradient. In April 2014, Severe Tropical Cyclone (TC) Ita impacted the northern region of the GBR. We surveyed the leeward slope of Yonge Reef at 6 and 18 m, in August 2013 and 2014. Results showed an overall decline in abundance of Amphistegina and a shift in proportion at both depths between 2013 and 2014. The shallow-dweller A. lobifera was severely affected; however, the deep-dweller A. radiata and the generalist A. lessonii only declined at 6 m and increased in abundance at 18 m. Patterns observed are likely linked to the occurrence of TC Ita. We propose that differing population-level source–sink dynamics should be considered when exploring persistence and recovery patterns over depth in foraminiferal communities.

  相似文献   

15.
Laboratory and field experiments were done hi Still-water Cove, Carmel Bay, California, and Monterey Harbor, California, to determine the effect of photosynthetically active radiation (PAR) on the shallow (upper) limit of giant kelp, Macrocystis pyrifera (L.) C. Agardh. At shallow depths, M. pyrifera did not recruit or grow to macroscopic size from gametophytes or embryonic sporophytes transplanted to vertical buoy lines; sharp decreases in PAR with depth coincided with observed recruitment and sporophyte distributions. Shade manipulations indicated that settlement of M. pyrifera zoospores was decreased, but not prohibited, by high PAR. Postsettlement stages (gametophytes and embryonic sporophytes), however, survived only under shade. These results suggest that high PAR can inhibit the recruitment of M. pyrifera to shallow water by killing its postsettlement stages; whether or not ultraviolet (UV) radiation also inhibits recruitment was not tested. In either case, however, it appears that high irradiance (PAR and/or UV) regulates the shallow limit of M. pyrifera prior to temperature and desiccation stresses inherent to intertidal regions. In an additional experiment, recruitment or growth of transplanted gametophytes or embryonic sporophytes of Macrocystis integrifolia Bory also did not occur at shallow depths, suggesting that this shallow water species accesses high irradiance regions via a method other than sexual reproduction.  相似文献   

16.
Benthic algal communities can play an important role in matter and energy flux of shallow lakes. Their contribution to total primary production of lakes has been largely unexplored. The aim of this study was to estimate the primary production of the epipsammic algal communities at different water depths in Lake Balaton (Hungary) with photosynthetic measurements performed in laboratory. The photosynthesis of the benthic algae of different origin was studied at nine different irradiance levels, in three replicates. The maximum photosynthetic rate (P max) was always higher in samples from the shallow parts than those from the deeper regions of the lake. Along the west–east longitudinal axis of the lake P max decreased in the southern part and increased in the middle of the lake as a consequence of differences in the chlorophyll-a concentrations. Knowing P max, I k, global radiation and extinction coefficient, the primary production (mg C m−2 day−1) of the epipsammic algal community was calculated at different water depths. In the shallow regions at 0.5 and 1 m water depth 75–95% and 60–85% of the production was attributable to the epipsammon. The percentage contribution of epipsammon was at 2 m water depth 20–65%. In the deeper pelagic region (>3 m) more than 85% of the primary production originated from the phytoplankton.  相似文献   

17.
18.
Cusack  Daniela F.  Turner  Benjamin L. 《Ecosystems》2021,24(5):1075-1092

Humid tropical forests contain some of the largest soil organic carbon (SOC) stocks on Earth. Much of this SOC is in subsoil, yet variation in the distribution of SOC through the soil profile remains poorly characterized across tropical forests. We used a correlative approach to quantify relationships among depth distributions of SOC, fine root biomass, nutrients and texture to 1 m depths across 43 lowland tropical forests in Panama. The sites span rainfall and soil fertility gradients, and these are largely uncorrelated for these sites. We used fitted β parameters to characterize depth distributions, where β is a numerical index based on an asymptotic relationship, such that larger β values indicate greater concentrations of root biomass or SOC at depth in the profile. Root β values ranged from 0.82 to 0.95 and were best predicted by soil pH and extractable potassium (K) stocks. For example, the three most acidic (pH?<?4) and K-poor (<?20 g K m?2) soils contained 76?±?5% of fine root biomass from 0 to 10 cm depth, while the three least acidic (pH?>?6.0) and most K-rich (>?50 g K m?2) soils contained only 41?±?9% of fine root biomass at this depth. Root β and SOC β values were inversely related, such that a large fine root biomass in surface soils corresponded to large SOC stocks in subsoils (50–100 cm). SOC β values were best predicted by soil pH and base cation stocks, with the three most base-poor soils containing 34?±?8% of SOC from 50 to 100 cm depth, and the three most base-rich soils containing just 9?±?2% of SOC at this depth. Nutrient depth distributions were not related to Root β or SOC β values. These data show that large surface root biomass stocks are associated with large subsoil C stocks in strongly weathered tropical soils. Further studies are required to evaluate why this occurs, and whether changes in surface root biomass, as may occur with global change, could in turn influence SOC storage in tropical forest subsoils.

  相似文献   

19.
Predators exert strong effects on ecological communities, particularly when they re‐occupy areas after decades of extirpation. Within species, such effects can vary over time and by sex and cascade across trophic levels. We used a space‐for‐time substitution to make foraging observations of sea otters (Enhydra lutris) across a gradient of reoccupation time (1–30 years), and nonmetric multidimensional scaling (nMDS) analysis to ask whether (a) sea otter niche space varies as a function of occupation time and (b) whether niche space varies by sex. We found that niche space varied among areas of different occupation times. Dietary niches at short occupation times were dominated by urchins (Mesocentrotus and Strongylocentrotus spp; >60% of diets) in open habitats at 10–40 m depths. At longer occupation times, niches were dominated by small clams (Veneroida; >30% diet), mussels (Mytilus spp; >20% diet), and crab (Decapoda; >10% diet) in shallow (<10 m) kelp habitats. Diet diversity was lowest (H′ = 1.46) but energy rich (~37 kcal/min) at the earliest occupied area and highest, but energy poor (H′ = 2.63, ~9 kcal/min) at the longest occupied area. A similar transition occurred through time at a recently occupied area. We found that niche space also differed between sexes, with bachelor males consuming large clams (>60%), and urchins (~25%) from deep waters (>40 m), and females and territorial males consuming smaller, varied prey from shallow waters (<10 m). Bachelor male diets were less diverse (H′ = 2.21) but more energy rich (~27 kcal/min) than territorial males (H′ = 2.54, ~13 kcal/min) and females (H′ = 2.74, ~11 kcal/min). Given recovering predators require adequate food and space, and the ecological interactions they elicit, we emphasize the importance of investigating niche space over the duration of recovery and considering sex‐based differences in these interactions.  相似文献   

20.
Understanding spatio‐temporal variability in recruitment is vital to studies of kelp population dynamics. Research on settlement and post‐settlement processes has suggested that arrival of kelp zoospores to suitable substrate is important in limiting kelp recruitment, yet the role of planktonic processes in kelp population dynamics has not been studied due to difficulties in sampling and identifying zoospores. I developed a method to estimate kelp zoospore abundance from in situ plankton samples and used it to study various processes regulating the availability of giant kelp (Macrocystis pyrifera) zoospores for settlement. My studies focused on (1) identifying temporal scales over which zoospore abundance is most variable, (2) describing physical and biological processes that regulate this variability, and (3) determining the relationship between zoospore abundance and settlement. I found that short‐term variability in zoospore abundance (<24 hrs) was not due to changes in supply but rather dispersion, caused by oscillating hydrodynamic forces (e.g. waves). Long‐term variability in zoospore abundance, however, was best explained by the size and density of reproductive adult plants, with zoospore abundance being most variable at the scale of days to months. Changes in adult reproductive condition caused rapid changes in zoospore abundance suggesting that the supply of kelp zoospores is sensitive to environmental regulation of adult physiology. Thus, unlike with marine animals, these results indicate that variability in kelp propagule supply, over scales most likely to affect subsequent settlement and recruitment, is more tightly coupled to demographic and reproductive mechanisms than to physical transport processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号