首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Effects of RNA interference (RNAi) targeted against circadian clock genes on two distinct types of photoperiodic responses – ovarian development and lipid accumulation – were investigated in a bean bug Riptortus pedestris, to explore which physiological process in the photoperiodic response involved the circadian clock. Ovarian development and lipid accumulation are known to be regulated by distinct output pathways. Control insects showed clear photoperiodic responses; i.e. induction of ovarian development and suppression of lipid accumulation under long-day conditions, whereas opposite characteristics under short-day conditions. We found that RNAi directed against period, a negative element of the circadian clock, produced a long-day effect for both the ovarian development and lipid accumulation, while RNAi directed against Clock, a positive element of the circadian clock, produced a short-day effect for both, irrespective of photoperiod. These results indicate that the circadian clock comprised of these genes regulates a process governing both distinct photoperiodic responses.  相似文献   

3.
The physiological mechanisms underlying photoperiodism in insects have been studied extensively, although the associated molecular machinery remains largely unknown. In the present study, we investigate the roles of the circadian clock gene cycle (cyc) and the endocrine regulator gene myoinhibitory peptide (Mip) in the photoperiodic response of the brown‐winged green bug Plautia stali Scott (Hemiptera, Pentatomidae). Typically, adult females of this species develop their ovaries under long‐day conditions, whereas they suppress its development under short‐day conditions. We find that RNA interference (RNAi) directed against cyc causes malfunction of the circadian clock governing the locomotor activity rhythm and yields abnormal activity profiles not only under constant darkness, but also under light/dark conditions. RNAi directed against cyc and Mip disrupts the photoperiodic response in ovarian development. cyc RNAi suppresses the ovarian development even under long‐day conditions, whereas Mip RNAi induces it even under short‐day conditions. We propose that the core circadian clock gene cyc regulates the photoperiodic response and that Mip is the causal regulator of juvenile hormone biosynthesis in the corpus allatum. Neither photoperiod, nor cyc RNAi affect Mip mRNA levels, and therefore it remains unknown how the photoperiodic information is processed and mediated by Mip.  相似文献   

4.
Many insects survive seasonal adversities during diapause, a form of programmed developmental and metabolic arrest. Photoperiodically regulated entry into diapause allows multivoltine insect species to optimize the number of generations. The molecular mechanism of the photoperiodic timer is unknown in insects. In the present study, we take advantage of the robust reproductive diapause response in the linden bug Pyrrhocoris apterus and explore the fifth‐instar nymphal stage, which is the most photoperiod‐sensitive stage. The nymphs display daily changes in locomotor activity during short days; this differs from the activity observed during long days. We find evidence of cyclical expression of the circadian clock genes, per and cyc, in nymphal heads; in addition, per expression is also photoperiod‐dependent. The RNA interference‐mediated knockdown of the two circadian clock genes, Clk and cyc, during the nymphal stage results in reproductive arrest in adult females. Furthermore, Clk and cyc knockdown induces the expression of the storage protein hexamerin in the fat body, whereas the expression of vitellogenin diminishes. Taken together, these data support the involvement of circadian clock genes in photoperiodic timer and/or diapause induction.  相似文献   

5.
6.
7.
Juvenile hormone(JH),a growth regulator,inhibits ecdysteroid-induced meta-morphosis and controls insect development and diapause.Methoprene-tolerant(Met)and Krippel homolog I(Kr-h1)are two proteins involved in JH action.To gain some insight into their function in development of Sitodiplosis mosellana,an insect pest undergoing obligatory larval diapause at the mature 3rd instar stage,we cloned full-length complemen-tary DNAs of Met and Kr-h1 from this specics.SmMet encoded a putative protein,which contained three domains typical of the bHLH-PAS family and eight conserved amino acid residues important for JH binding.SmKr-h1 encoded a protein showing high sequence homology to its counterparts in other specics,and contained all eight highly conserved Zn-finger motifs for DNA-binding.Expression patterns of SmMet and SmKr hl were de-velopmentally regulated and JH III responsive as well.Their mRNA abundance increased as larvae entered carly 3rd instar,pre-diapause and maintenance stages,and peaked during post-diapause quiescence,a pattern correlated with JH titers in this species.Different from reduced expression of SmMer,SmKr-h1 mRNA increased at mid-to-late period of post-diapause development.Topical application of JH II on diapausing larvac also induced the two genes in a dose-dependent manner.Expression of SmuMer and SmKr-h1 clearly declined in the pre-pupal phase,and was significantly higher in female adults than male adults.These results suggest that JH-responsive SmMet and SmKr-h1 might play key roles in diapause induction and maintenance as well as in post-diapause quiescence and adult reproduction,whereas metamorphosis from larvae to pupac might be correlated with their reduced expression.  相似文献   

8.
Juvenile hormone (JH) signaling plays crucial roles in insect metamorphosis and reproduction. Function of JH signaling in germline stem cells (GSCs) remains largely unknown. Here, we found that the number of GSCs significantly declined in the ovaries of Met, Gce and JHAMT mutants. Then we inhibited JH signaling in selected cell types of ovaries by expressing Met and Gce or Kr‐h1 double‐stranded RNAs (dsRNAs) using different Gal4 drivers. Blocking of JH signaling in muscle cells has no effect on GSC numbers. Blocking of JH signaling in cap cells reduced GSCs cells. Inductive expression of Met and Gce dsRNA but not Kr‐h1 by Nos‐Gal4 increased GSC cells. These results indicate that JH signaling plays an important role in GSC maintenance.  相似文献   

9.
In homeothermic vertebrates inhabiting temperate latitudes, it is clear that the seasonal changes in daylength are decoded by the master circadian clock, which through secondary messengers (like pineal melatonin secretion) entrains rhythmic physiology to local conditions. In contrast, the entrainment and neuroendocrine regulation of rhythmic physiology in temperate teleosts is not as clear, primarily due to the lack of understanding of the clock gene system in these species. In this study, we analyzed the diel expression of the clock‐genes in brains of Atlantic salmon, a species that is both highly photoperiodic and displays robust clock‐controlled behavior. Atlantic salmon parr were acclimated to either long‐day (LD) or short‐day (SD) photoperiods for one month and thereafter sampled at 4 h intervals over a 24 h cycle. Clock, Bmal1, Per2, and Cry2 were all actively expressed in salmon brain homogenates and, with the exception of Per2, all displayed rhythmic expression under SD photoperiods that parallels that reported in zebrafish. Interestingly, daylength significantly altered the mRNA expression of all clock genes studied, with Clock, Bmal1, and Per2 all becoming arrhythmic under the LD compared to SD photoperiod, while Cry2 expression was phase delayed under LD. It is thus proposed that the clock‐gene system is actively expressed in Atlantic salmon, and, furthermore, as has been reported in homeothermic vertebrates, it appears that clock expression is daylength‐dependent.  相似文献   

10.
The photoperiodic response is crucial for many insects to adapt to seasonal changes in temperate regions. It was recently shown that the circadian clock genes period (per) and cycle (cyc) are involved in the photoperiodic regulation of reproductive diapause in the bean bug Riptortus pedestris females. Here, we investigated the involvement of per and cyc both in the circadian rhythm of cuticle deposition and in the photoperiodic diapause of R. pedestris males using RNA interference (RNAi). RNAi of per and cyc disrupted the cuticle deposition rhythm and resulted in distinct cuticle layers. RNAi of per induced development of the male reproductive organs even under diapause-inducing short-day conditions, whereas RNAi of cyc suppressed development of the reproductive organs even under diapause-averting long-day conditions. Thus, the present study suggests that the circadian clock operated by per and cyc governs photoperiodism of males as that of females.  相似文献   

11.
The role of gibberellins (GAs) in photoperiodic control of leaf elongation in Poa pratensis was studied by both application of exogenous GAs and analysis of endogenous GAs. Leaf elongation was strongly increased under long day (LD, 24 h) conditions at both 9 and 21°C, leaf length at 9°C LD being similar to that in plants grown in short days (SD, 8 h) at 21°C. However, even at 21°C leaf elongation was enhanced by LD. Exogenous GA1 could completely compensate for LD at both 9 and 21°C. Gibberellins A20, A19 and A44 could also partly replace LD, but they were significantly less active than GA1, GA53 was inactive when applied to plants grown at 9°C in SD and exhibited only marginal activity at 9°C LD and 21°C SD. The total level of GAs of the early 13-hydroxylation pathway (A53, A44, A19, A20 and A1) increased rapidly when plants were transferred from SD to LD at 9°C. After transfer from 9 to 21°C, there was an increase in GA levels at both LD and SD, followed by a decrease under LD conditions. In all cases, GA19 was the predominant GA, accounting for 60 to 80% of the analysed GAs. Levels of the bioactive GA1 were low and increased transiently by LD four days after transfer from SD to LD. At both temperatures, the ratio GA19 to GA20 and GA20 to GA1 at 9°C was enhanced by LD compared with SD. Taken together, these results support the hypothesis that photoperiodic regulation of leaf elongation in Poa pratensis is GA-mediated, and they indicate a photoperiodic control of oxidation of GA53 to GA44 and GA19 to GA20, and perhaps also of 3β-hydroxylation of GA20 to GA1.  相似文献   

12.
13.
In a Japanese population of Locusta migratoria, adult females become reproductively inactive under crowding and long days (LD) and reproductively active under crowding and short days (SD). The identity and titre of ecdysteroids in the haemolymph and ovaries from adult females reared under SD and LD were investigated by RIA/HPLC. The effects of exogenous juvenile hormone (JH) III treatments on the termination of such reproductive arrest and ecdysteroid contents in LD females were also examined. In general, ecdysteroid titres in both haemolymph and ovaries were significantly higher in reproductively active SD females than in reproductively inactive LD females. A clear difference was also observed in oocyte growth between SD and LD individuals. JH III applications (three consecutive topical applications, 150 μg per insect per day from day 3) stimulated ovarian development in LD females and significantly increased the haemolymph and ovarian ecdysteroids to a level comparable to that of reproductively active SD adult females.  相似文献   

14.
CONSTANS delays Arabidopsis flowering under short days   总被引:1,自引:0,他引:1  
Long days (LD) promote flowering of Arabidopsis thaliana compared with short days (SD) by activating the photoperiodic pathway. Here we show that growth under very‐SD (3 h) or darkness (on sucrose) also accelerates flowering on a biological scale, indicating that SD actively repress flowering compared with very‐SD. CONSTANS (CO) repressed flowering under SD, and the early flowering of co under SD required FLOWERING LOCUS T (FT). FT was expressed at a basal level in the leaves under SD, but these levels were not enhanced in co. This indicates that the action of CO in A. thaliana is not the mirror image of the action of its homologue in rice. In the apex, CO enhanced the expression of TERMINAL FLOWER 1 (TFL1) around the time when FT expression is important to promote flowering. Under SD, the tfl1 mutation was epistatic to co and in turn ft was epistatic to tfl1. These observations are consistent with the long‐standing but not demonstrated model where CO can inhibit FT induction of flowering by affecting TFL1 expression.  相似文献   

15.
We developed a clonal culture of Sargassum horneri to investigate the effect of photoperiod on reproduction in this species. Regenerated vegetative thalli were obtained using lateral branches excised from a thallus grown from a single embryo under short‐day conditions (SD = 10:14 h light : dark cycle). Lateral branches excised from the SD‐regenerated thallus became vegetative thalli that remained in that phase as long as they were cultured under SD. When an excised lateral branch was cultured under long‐day conditions (LD = 14:10 h light : dark cycle), it began to enter the reproductive phase while still less than 50 mm long. Induction of the reproductive phase was accompanied by a distinctive morphological change – suppression of blade formation at the apical region of the branch; elongation of branches without blades was then followed by differentiation of receptacles bearing conceptacles on their surface. Apices of receptacles were able to interconvert between reproductive and vegetative phases, as blades resprouted upon transfer from LD to SD. The critical day length for induction of receptacle formation was between 13 and 14 h; receptacle formation was also induced under SD conditions with night breaks (NBs). These results strongly suggest that reproductive regulation of S. horneri is a photoperiodic long‐day response. NBs with blue and green light were effective for reproductive induction but not with red light. This suggests that blue‐ and/or green‐light photoreceptors are involved in the photoperiodic reproductive response of S. horneri.  相似文献   

16.
Flowering and dwarfism induced by 5‐azacytidine and zebularine, which both cause DNA demethylation, were studied in a short‐day (SD) plant Pharbitis nil (synonym Ipomoea nil), var. Violet whose photoinduced flowering state does not last for a long period of time. The DNA demethylating reagents induced flowering under non‐inductive long‐day (LD) conditions. The flower‐inducing effect of 5‐azacytidine did not last for a long period of time, and the plants reverted to vegetative growth. The progeny of the plants that were induced to flower by DNA demethylation did not flower under the non‐inductive photoperiodic conditions. These results suggest that the flowering‐related genes were activated by DNA demethylation and then remethylated again in the progeny. The DNA demethylation also induced dwarfism. The dwarfism did not last for a long period of time, was not heritable and was overcome by gibberellin A3 but not by t‐zeatin or kinetin. The change in the genome‐wide methylation state was examined by methylation‐sensitive amplified fragment length polymorphism (MS‐AFLP) analysis. The analysis detected many more polymorphic fragments between the DNA samples isolated from the cotyledons treated with SD than from the cotyledons under LD conditions, indicating that the DNA methylation state was altered by photoperiodic conditions. Seven LD‐specific fragments were extracted from the gel of the MS‐AFLP and were sequenced. One of these fragments was highly homologous with the genes encoding ribosomal proteins.  相似文献   

17.
Application experiments have suggested that short‐day‐induced cessation of elongation growth in trees is caused by photoperiodic regulation of the conversion of gibberellin GA19 to GA20. In the present study we examined further the photoperiodic control of GA metabolism in trees with focus on the conversion of GA19 in Salix pentandra, hybrid aspen (Populus tremula × tremuloides) and silver birch (Betula pendula) using [17,17‐2H2]‐GA19 or unlabelled GAs in application studies. GA20 and GA1 were able to restore growth also in hybrid aspen and silver birch under short days (SD), whereas GA19 had no or only a very small activity. Contrary to hybrid aspen and S. pentandra, the activity of GA20 in silver birch was significantly lower than that of GA1. Gas chromatography‐mass spectrometry (GC‐MS) analysis revealed a smaller turnover of [2H2]‐GA19 in SD than in long days (LD) in hybrid aspen. No such difference in turnover of [2H2]‐GA19 was observed in photoperiod‐insensitive hybrid aspen overexpressing PHYA. Application of unlabelled GAs to seedlings of S. pentandra, hybrid aspen and silver birch under SD followed by quantification of metabolites by GC‐MS analysis, showed that applied GA19 was not readily converted to GA20 and GA1. Although the sensitivity to GAs is also known to decrease under SD, the present data are in favour of a photoperiodic regulation of the metabolism of GA19in vivo in the woody species S. pentandra, hybrid aspen and silver birch. The data might also suggest that silver birch differs from S. pentandra and hybrid aspen by exhibiting a possible photoperiodic control also of the conversion of GA20 to GA1.  相似文献   

18.
19.
We evaluated the direct effects of three different CO2 concentrations (400, 600 and 1,000 ppm) on the population parameters and growth of the bean bug, Riptortus pedestris, while being fed on soybean. The raw life history data from R. pedestris was analyzed using an age‐stage, two‐sex life table to take the viable development rate among individuals into account. Based on the age‐stage, two‐sex life table analysis, the population projections of R. pedestris provide the stage structure and variability of the population growth under different CO2 treatments. Our results showed significantly shorter immature durations and higher pre‐adult survival rate under elevated CO2 (1,000 ppm) than those under ambient CO2 (400 ppm). The population of R. pedestris reared under elevated CO2 conditions showed higher intrinsic and finite rates of increase but a lower mean generation time than R. pedestris reared under ambient CO2 conditions. Our results show the population parameters and growth of R. pedestris are influenced by increased CO2 relative to ambient CO2 treatment. Further studies on the long‐term direct effects of different CO2 levels on R. pedestris are essential to understand their population dynamics and to establish appropriate management strategies.  相似文献   

20.
Two photoperiodic responses, the development of sporophylls and hairs, havebeen quantified in sporophytes of the brown alga Undaria pinnatifida. In a finalexperiment, the algae were cultivated in outdoor, 2000-L seawater tanks in agreenhouse for up to 12 weeks, and daylength was regulated by automatic blindsmounted on top of the tanks. Vegetative young sporophytes were treated undershort-day (SD; 8 h light per day) or long-day conditions (LD; 16 h light perday), at 12 h light per day or in a night-break regime (NB; 8 h light per day,7.5 h dark, 1 h light, 7.5 h dark). The earliest sporophyll development wasobserved 6, 7 or 9 weeks under LD, NB or SD conditions, respectively. After 12 weeksthe sporophylls were significantly longer and wider under LD or NB conditions than inthe SD regime, and only half of the experimental algae had formed sporophyllsunder SD conditions, but all algae under LD or NB conditions. In a foregoing 7-weekculture experiment performed in 300-lL indoor tanks, enhanced sporophyll formationhad also been observed under LD and not under SD conditions (NB omitted). In bothexperiments, blade elongation rates remained high until the end of theexperiments in SD, but declined during sporophyll initiation in LD, NB or at 12 hlight per day. Another difference caused by photoperiod was observed in regard to thedevelopment of surface hair spots which occurred in both experiments on the bladesin LD, NB or at 12 h light per day with identical densities, but were completelylacking under SD conditions. It is concluded that U. pinnatifida is afacultatative long-day plant in regard to reproduction forming vigorously sporophyllsin long days, and an obligate long-day plant in regard to hair formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号