首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assembly of bacteriophage P22 procapsids has long served as a model for assembly of spherical viruses. Historically, assembly of viruses has been viewed as a non-equilibrium process. Recently alternative models have been developed that treat spherical virus assembly as an equilibrium process. Here we have investigated whether P22 procapsid assembly reactions achieve equilibrium or are irreversibly trapped. To assemble a procapsid-like particle in vitro, pure coat protein monomers are mixed with scaffolding protein. We show that free subunits can exchange with assembled structures, indicating that assembly is a reversible, equilibrium process. When empty procapsid shells (procapsids with the scaffolding protein stripped out) were diluted so that the concentration was below the dissociation constant ( approximately 5 microM) for coat protein monomers, free monomers were detected. The released monomers were assembly-competent; when NaCl was added to metastable partial capsids that were aged for an extended period, the released coat subunits were able to rapidly re-distribute from the partial capsids and form whole procapsids. Lastly, radioactive monomeric coat subunits were able to exchange with the subunits from empty procapsid shells. The data presented illustrate that coat protein monomers are able to dissociate from procapsids in an active state, that assembly of procapsids is consistent with reactions at equilibrium and that the reaction follows the law of mass action.  相似文献   

2.
Recombinant FMDV empty capsids have been produced in insect cells and larvae using the baculovirus expression system, although protein yield and efficiency of capsid assembly have been highly variable. In this work, two strategies were compared for the expression of FMDV A/Arg/01 empty capsids: infection with a dual-promoter baculovirus vector coding for the capsid precursor (P12A) and the protease 3C under the control of the polyhedrin and p10 promoters, respectively (BacP12A-3C), or a single-promoter vector coding the P12A3C cassette (BacP12A3C). Expression levels and assembly into empty capsids were analyzed in insect cells and larvae. We observed that the use of the single-promoter vector allowed higher levels of expression both in insect cells and larvae. Recombinant capsid proteins produced by both vectors were recognized by monoclonal antibodies (mAbs) directed against conformational epitopes of FMDV A/Arg/01 and proved to self-assemble into empty capsids (75S) and pentamers (12S) when analyzed by sucrose gradient centrifugation.  相似文献   

3.
Empty capsid species formed from the self- and extract-mediated assembly of poliovirus type 1 14S particles in vitro and procapsids isolated from virus-infected cells were subjected to isoelectric focusing in charge-free agarose gels. The empty capsid formed in the self-assembly reaction had an isoelectric point (pI) of 5.0, whereas procapsids and extract-assembled empty capsids focused at pH 6.8. Unreacted 14S particles focused at pH 4.8 to 5.0. The sedimentation coefficient (s20,w) and density of the empty capsid species were also determined. Procapsids had a density in CsCl of 1.31 g/cm3, whereas empty capsids formed by self- or extract-mediated assembly had a density of 1.29 g/cm3. Both extract-assembled empty capsids and procapsids had an s20,w of 75S, whereas self-assembled empty capsids had an s20,w of 71S. Self-assembled empty capsids were not converted to pI 6.8 empty capsids by incubation with poliovirus-infected HeLa cell extracts. The dissociated polypeptides of self-assembled empty capsids (pI 5.0) and procapsids (pI 6.8) behaved identically when analyzed by isoelectric focusing in the presence of 9 M urea and by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. These results suggest that infected cell extracts possess a factor that influences the final conformation of the empty shell (pI 6.8, 75S) formed from 14S particles and that this influences is exerted at the initiation step or during the polymerization reaction. A small amount of this activity (less than or equal to 20% of infected extracts) was detected in uninfected cells; the significance of this remains unknown.  相似文献   

4.
Lumazine synthases have been observed in the form of pentamers, dimers of pentamers, icosahedral capsids consisting of 60 subunits and larger capsids with unknown molecular structure. Here we describe the analysis of the assembly of native and mutant forms of lumazine synthases from Bacillus subtilis and Aquifex aeolicus at various pH values and in the presence of different buffers using small angle X-ray scattering and electron microscopy. Both wild-type lumazine synthases are able to form capsids with a diameter of roughly 160 A and larger capsids with diameters of around 300 A. The relative abundance of smaller and larger capsids is strongly dependent on buffer and pH. Both forms can co-exist and are in some cases accompanied by other incomplete or deformed capsids. Several mutants of the B. subtilis lumazine synthase, in which residues in or close to the active site were replaced, as well as an insertion mutant of A. aeolicus lumazine synthase form partially or exclusively larger capsids with a diameter of about 300 A. The mutations also reduce or inhibit enzymatic activity, suggesting that the catalytic function of the enzyme is tightly correlated with its quaternary structure. The data show that multiple assembly forms are a general feature of lumazine synthases.  相似文献   

5.
Hepatitis B virus (HBV) capsids play an important role in viral nucleic acid metabolism and other elements of the virus life cycle. Misdirection of capsid assembly (leading to formation of aberrant particles) may be a powerful approach to interfere with virus production. HBV capsids can be assembled in vitro from the dimeric capsid protein. We show that a small molecule, bis-ANS, binds to capsid protein, inhibiting assembly of normal capsids and promoting assembly of noncapsid polymers. Using equilibrium dialysis to investigate binding of bis-ANS to free capsid protein, we found that only one bis-ANS molecule binds per capsid protein dimer, with an association energy of -28.0 +/- 2.0 kJ/mol (-6.7 +/- 0.5 kcal/mol). Bis-ANS inhibited in vitro capsid assembly induced by ionic strength as observed by light scattering and size exclusion chromatography. The binding energy of bis-ANS for capsid protein calculated from assembly inhibition data was -24.5 +/- 0.9 kJ/mol (-5.9 +/- 0.2 kcal/mol), essentially the same binding energy observed in studies of unassembled protein. These data indicate that capsid protein bound to bis-ANS did not participate in assembly; this mechanism of assembly inhibition is analogous to competitive or noncompetitive inhibition of enzymes. While assembly of normal capsids is inhibited, our data suggest that bis-ANS leads to formation of noncapsid polymers. Evidence of aberrant polymers was identified by light scattering and electron microscopy. We propose that bis-ANS acts as a molecular "wedge" that interferes with normal capsid protein geometry and capsid formation; such wedges may represent a new class of antiviral agent.  相似文献   

6.
Different variants of hepatitis C virus core protein (HCcAg) have proved to self-assemble in vitro into virus-like particles (VLPs). However, difficulties in obtaining purified mature HCcAg have limited these studies. In this study, a high degree of monomeric HCcAg purification was accomplished using chromatographic procedures under denaturing conditions. Size exclusion chromatography and sucrose density gradient centrifugation of renatured HCcAg (in the absence of structured RNA) under reducing conditions suggested that it assembled into empty capsids. The electron microscopy analysis of renatured HCcAg showed the presence of spherical VLPs with irregular shapes and an average diameter of 35nm. Data indicated that HCcAg monomers assembled in vitro into VLPs in the absence of structured RNA, suggesting that recombinant HCcAg used in this work contains all the information necessary for the assembly process. However, they also suggest that some cellular factors might be required for the proper in vitro assembly of capsids.  相似文献   

7.
Mason-Pfizer monkey virus (M-PMV) preassembles immature capsids in the cytoplasm prior to transporting them to the plasma membrane. Expression of the M-PMV Gag precursor in bacteria results in the assembly of capsids indistinguishable from those assembled in mammalian cells. We have used this system to investigate the structural requirements for the assembly of Gag precursors into procapsids. A series of C- and N-terminal deletion mutants progressively lacking each of the mature Gag domains (matrix protein [MA]-pp24/16-p12-capsid protein [CA]-nucleocapsid protein [NC]-p4) were constructed and expressed in bacteria. The results demonstrate that both the CA and the NC domains are necessary for the assembly of macromolecular arrays (sheets) but that amino acid residues at the N terminus of CA define the assembly of spherical capsids. The role of these N-terminal domains is not based on a specific amino acid sequence, since both MA-CA-NC and p12-CA-NC polyproteins efficiently assemble into capsids. Residues N terminal of CA appear to prevent a conformational change in which the N-terminal proline plays a key role, since the expression of a CA-NC protein lacking this proline results in the assembly of spherical capsids in place of the sheets assembled by the CA-NC protein.  相似文献   

8.
Parvovirus capsids are assembled from multiple forms of a single protein and are quite stable structurally. However, in order to infect cells, conformational plasticity of the capsid is required and this likely involves the exposure of structures that are buried within the structural models. The presence of functional asymmetry in the otherwise icosahedral capsid has also been proposed. Here we examined the protein composition of canine parvovirus capsids and evaluated their structural variation and permeability by protease sensitivity, spectrofluorometry, and negative staining electron microscopy. Additional protein forms identified included an apparent smaller variant of the virus protein 1 (VP1) and a small proportion of a cleaved form of VP2. Only a small percentage of the proteins in intact capsids were cleaved by any of the proteases tested. The capsid susceptibility to proteolysis varied with temperature but new cleavages were not revealed. No global change in the capsid structure was observed by analysis of Trp fluorescence when capsids were heated between 40 degrees C and 60 degrees C. However, increased polarity of empty capsids was indicated by bis-ANS binding, something not seen for DNA-containing capsids. Removal of calcium with EGTA or exposure to pHs as low as 5.0 had little effect on the structure, but at pH 4.0 changes were revealed by proteinase K digestion. Exposure of viral DNA to the external environment started above 50 degrees C. Some negative stains showed increased permeability of empty capsids at higher temperatures, but no effects were seen after EGTA treatment.  相似文献   

9.
Sesbania mosaic virus (SeMV) capsids are stabilized by protein-protein, protein-RNA and calcium-mediated protein-protein interactions. The N-terminal random domain of SeMV coat protein (CP) controls RNA encapsidation and size of the capsids and has two important motifs, the arginine-rich motif (ARM) and the beta-annulus structure. Here, mutational analysis of the arginine residues present in the ARM to glutamic acid was carried out. Mutation of all the arginine residues in the ARM almost completely abolished RNA encapsidation, although the assembly of T=3 capsids was not affected. A minimum of three arginine residues was found to be essential for RNA encapsidation. The mutant capsids devoid of RNA were less stable to thermal denaturation when compared to wild-type capsids. The results suggest that capsid assembly is entirely mediated by CP-dependent protein-protein inter-subunit interactions and encapsidation of genomic RNA enhances the stability of the capsids. Because of the unique structural ordering of beta-annulus segment at the icosahedral 3-folds, it has been suggested as the switch that determines the pentameric and hexameric clustering of CP subunits essential for T=3 capsid assembly. Surprisingly, mutation of a conserved proline within the segment that forms the beta-annulus to alanine, or deletion of residues 48-53 involved in hydrogen bonding interactions with residues 54-58 of the 3-fold related subunit or deletion of all the residues (48-59) involved in the formation of beta-annulus did not affect capsid assembly. These results suggest that the switch for assembly into T=3 capsids is not the beta-annulus. The ordered beta-annulus observed in the structures of many viruses could be a consequence of assembly to optimize intersubunit interactions.  相似文献   

10.
The assembly of virus capsids or other spherical polymers--empty, closed structures composed of hundreds of protein subunits--is poorly understood. Assembly of a closed spherical polymer is unlike polymerization of a filament or crystal, examples of open-ended polymers. This must be considered to develop physically meaningful analyses. We have developed a model of capsid assembly, based on a cascade of low-order reactions, that allows us to calculate kinetic simulations. The behavior of this model resembles assembly kinetics observed in solution (Zlotnick, A., J. M. Johnson, P. W. Wingfield, S. J. Stahl, and D. Endres. 1999. Biochemistry. 38:14644-14652). We exhibit two examples of this general model describing assembly of dodecahedral and icosahedral capsids. Using simulations based on these examples, we demonstrate how to extract robust estimates of assembly parameters from accessible experimental data. These parameters, nucleus size, average nucleation rate, and average free energy of association can be determined from measurement of subunit and capsid as time and concentration vary. Mathematical derivations of the analyses, carried out for a general model, are provided in an Appendix. The understanding of capsid assembly developed in this paper is general; the examples provided can be readily modified to reflect different biological systems. This enhanced understanding of virus assembly will allow a more quantitative analysis of virus stability and biological or antiviral factors that affect assembly.  相似文献   

11.
The pH and ionic strength dependence of the states of aggregation of brome mosaic virus protein has been investigated by small angle neutron scattering, quasielastic light-scattering, analytical centrifugation and electron microscopy. At pH above neutrality, protein oligomers are found in dynamical equilibrium, comprising monomers, dimers and aggregates of higher molecular weight. By lowering the pH. capsids assemble spontaneously with dimensions in solution which depend on ionic strength. If formed by dialysis, they contain 180 monomers, but are 30 Å larger in diameter than the native virus. If formed by pH-jump, they contain less monomers; the deficiency decreases with decreasing the final pH and the initial protein concentration. Upon dehydration for electron microscopy, capsids contract by 10%.  相似文献   

12.
Adenovirus empty capsids are immature intermediates that lack DNA and viral core proteins. Highly purified preparations of empty and full capsids were generated by subjecting purified adenovirus preparations to repeated cesium chloride gradient separations. PAGE results revealed that empty capsids contain at least five bands that correspond to proteins absent from the mature virus proteome. Peptide mapping by matrix-assisted laser desorption/ionization time-of-flight MS revealed that three of these bands correspond to varying forms of L1 52/55kDa, a protein involved in the encapsidation of the viral DNA. One band at around 31kDa was found to include precursors to proteins VI and VIII. These precursors correspond to proteins that have not been cleaved by the adenovirus-encoded protease and are not present in the mature full capsids. The precursor to protein VIII (pVIII), a capsid cement protein, is used in this study as a marker in reverse-phased HPLC (RP-HPLC) analyses of adenovirus for the quantitation of empty capsids. A novel calculation method applied to the integration of RP-HPLC chromatograms allowed for the generation of a percentage empty capsid value in a given adenovirus preparation. The percentage empty capsid values generated to date by this method show a high degree of precision and good agreement with a cesium chloride gradient/SDS-PAGE quantitation method of empty capsids. The advantage of this method lies in the accurate, precise, and rapid generation of the percentage of empty capsids in a given purified virus preparation without relying on tedious and time-consuming cesium chloride gradient separations and extractions.  相似文献   

13.
Foot-and-mouth disease virus (FMDV) manifests an extreme sensitivity to acid, which is thought to be important for entry of the RNA genome into the cell. We have compared the low-pH-induced disassembly in vitro of virions and natural empty capsids of three subtypes of serotype A FMDV by enzyme-linked immunosorbent assay and sucrose gradient sedimentation analysis. For all three subtypes (A22 Iraq 24/64, A10(61), and A24 Cruzeiro), the empty capsid was more stable by 0.5 pH unit on average than the corresponding virion. Unexpectedly, in the natural empty capsids used in this study, the precursor capsid protein VP0 was found largely to be cleaved into VP2 and VP4. For picornaviruses the processing of VP0 is closely associated with encapsidation of viral RNA, which is considered likely to play a catalytic role in the cleavage. Investigation of the cleavage of VP0 in natural empty capsids failed to implicate the viral RNA. However, it remains possible that these particles arise from abortive attempts to encapsidate RNA. Empty capsids expressed from a vaccinia virus recombinant showed essentially the same acid lability as natural empty capsids, despite differing considerably in the extent of VP0 processing, with the synthetic particles containing almost exclusively uncleaved VP0. These results indicate that it is the viral RNA that modulates acid lability in FMDV. In all cases the capsids dissociate at low pH directly into pentameric subunits. Comparison of the three viruses indicates that FMDV A22 Iraq is about 0.5 pH unit more sensitive to low pH than types A10(61) and A24 Cruzeiro. Sequence analysis of the three subtypes identified several differences at the interface between pentamers and highlighted a His-alpha-helix dipole interaction which spans the pentamer interface and appears likely to influence the acid lability of the virus.  相似文献   

14.
The maturation of pseudorabies virus DNA from the replicative concatemeric form to molecules of genome length was examined using nine DNA+ temperature-sensitive mutants of pseudorabies virus, each belonging to a different complementation group. At the nonpermissive temperature, cells infected with each of the mutants synthesized concatemeric DNA. Cleavage of the concatemeric DNA to genome-length viral DNA was defective in all the DNA+ ts mutants tested, indicating that several viral gene products are involved in the DNA maturation process. In none of the ts mutant-infected cells were capsids with electron-dense cores (containing DNA) formed. Empty capsids with electron-translucent cores were, however, formed in cells infected with six of the nine temperature-sensitive mutants; in cells infected with three of the mutants, no capsid assembly occurred. Because these three mutants are deficient both in maturation of DNA and in the assembly of viral capsids, we conclude that maturation of viral DNA is dependent upon the assembly of capsids. In cells infected with two of the mutants (tsN and tsIE13), normal maturation of viral DNA occurred after shiftdown of the cells to the permissive temperature in the presence of cycloheximide, indicating that the temperature-sensitive proteins involved in DNA maturation became functional after shiftdown. Furthermore, because cycloheximide reduces maturation of DNA in wild-type-infected cells but not in cells infected with these two mutants, we conclude that a protein(s) necessary for the maturation of concatemeric DNA, which is present in limiting amounts during the normal course of infection, accumulated in the mutant-infected cells at the nonpermissive temperature. Concomitant with cleavage of concatemeric DNA, full capsids with electron-dense cores appeared after shiftdown of tsN-infected cells to the permissive temperature, indicating that there may be a correlation between maturation of DNA and formation of full capsids. The number of empty and full capsids (containing electron-dense cores) present in tsN-infected cells incubated at the nonpermissive temperature, as well as after shiftdown to the permissive temperature in the presence of cycloheximide, was determined by electron microscopy and by sedimentation analysis in sucrose gradients. After shiftdown to the permissive temperature in the presence of cycloheximide, the number of empty capsids present in tsN-infected cells decreased with a concomitant accumulation of full capsids, indicating that empty capsids are precursors to full capsids.  相似文献   

15.
The capsids of most spherical viruses are icosahedral, an arrangement of multiples of 60 subunits. Though it is a salient point in the life cycle of any virus, the physical chemistry of virus capsid assembly is poorly understood. We have developed general models of capsid assembly that describe the process in terms of a cascade of low order association reactions. The models predict sigmoidal assembly kinetics, where intermediates approach a low steady state concentration for the greater part of the reaction. Features of the overall reaction can be identified on the basis of the concentration dependence of assembly. In simulations, and on the basis of our understanding of the models, we find that nucleus size and the order of subsequent "elongation" reactions are reflected in the concentration dependence of the extent of the reaction and the rate of the fast phase, respectively. The reaction kinetics deduced for our models of virus assembly can be related to the assembly of any "spherical" polymer. Using light scattering and size exclusion chromatography, we observed polymerization of assembly domain dimers of hepatitis B virus (HBV) capsid protein. Empty capsids assemble at a rate that is a function of protein concentration and ionic strength. The kinetics of capsid formation were sigmoidal, where the rate of the fast phase had second-power concentration dependence. The extent of assembly had third-power concentration dependence. Simulations based on the models recapitulated the concentration dependences observed for HBV capsid assembly. These results strongly suggest that in vitro HBV assembly is nucleated by a trimer of dimers and proceeds by the addition of individual dimeric subunits. On the basis of this mechanism, we suggest that HBV capsid assembly could be an important target for antiviral therapeutics.  相似文献   

16.
Sesbania mosaic virus (SeMV) capsids are stabilized by RNA-protein, protein-protein and calcium-mediated protein-protein interactions. The removal of calcium has been proposed to be a prerequisite for the disassembly of the virus. The crystal structure of native T=3 SeMV capsid revealed that residues D146 and D149 from one subunit and Y205, N267 and N268 of the neighboring subunit form the calcium-binding site (CBS). The CBS environment is found to be identical even in the recombinant CP-NDelta65 T=1 capsids. Here, we have addressed the role of calcium and the residues involved in calcium co-ordination in the assembly and stability of T=3 and T=1 capsids by mutational analysis. Deletion of N267 and N268 did not affect T=3 or T=1 assembly, although the capsids were devoid of calcium, suggesting that assembly does not require calcium ions. However, the stability of the capsids was reduced drastically. Site-directed mutagenesis revealed that either a single mutation (D149N) or a double mutation (D146N-D149N) of SeMV coat protein affected drastically both the assembly and stability of T=3 capsids. On the other hand, the D146N-D149N mutation in CP-NDelta65 did not affect the assembly of T=1 capsid, although their stability was reduced considerably. Since the major difference between the T=3 and T=1 capsids is the absence of the N-terminal arginine-rich motif (N-ARM) and the beta-annulus from the subunits forming the T=1 capsids, it is possible that D149 initiates the N-ARM-RNA interactions that lead to the formation of the beta-annulus, which is essential for T=3 capsid assembly.  相似文献   

17.
For many protein multimers, association and dissociation reactions fail to reach the same end point; there is hysteresis preventing one and/or the other reaction from equilibrating. We have studied in vitro assembly of dimeric hepatitis B virus (HBV) capsid protein and dissociation of the resulting T = 4 icosahedral capsids. Empty HBV capsids composed of 120 capsid protein dimers were more resistant to dissociation by dilution or denaturants than anticipated from assembly experiments. Using intrinsic fluorescence, circular dichroism, and size exclusion chromatography, we showed that denaturants dissociate the HBV capsids without unfolding the capsid protein; unfolding of dimer only occurred at higher denaturant concentrations. The apparent energy of interaction between dimers measured in dissociation experiments was much stronger than when measured in assembly studies. Unlike assembly, capsid dissociation did not have the concentration dependence expected for a 120-subunit complex; consequently the apparent association energy systematically varied with reactant concentration. These data are evidence of hysteresis for HBV capsid dissociation. Simulations of capsid assembly and dissociation reactions recapitulate and provide an explanation for the observed behavior; these results are also applicable to oligomeric and multidomain proteins. In our calculations, we find that dissociation is impeded by temporally elevated concentrations of intermediates; this has the paradoxical effect of favoring re-assembly of those intermediates despite the global trend toward dissociation. Hysteresis masks all but the most dramatic decreases in contact energy. In contrast, assembly reactions rapidly approach equilibrium. These results provide the first rigorous explanation of how virus capsids can remain intact under extreme conditions but are still capable of "breathing." A biological implication of enhanced stability is that a triggering event may be required to initiate virus uncoating.  相似文献   

18.
Abstract

The structure of the three quasi-equivalent protein subunits A, B and C of the spherical, T = 3 southern bean mosaic virus (SBMV) have been carefully built in accordance with a refined electron density map of the complete virus. The lower electron density in the RNA portion of the map could not be explicitly interpreted in terms of a preferred RNA structure on which some icosahedral symmetry might have been imposed. However, the extremely basic nature of the interior surface of the coat protein must be associated with the binding and organization of the RNA. Comparison with the small spherical, T = 1 satellite tobacco necrosis virus (STNV; Liljas et al., J. Mol. Biol. 159, 93–108,1982) and the T = 1 aggregate of alfalfa mosaic virus (AMV) protein (Fukuyama et al., J. Mol. Biol. 150, 33–41, 1981) showed similar results.

The pattern of basic residues on the SBMV coat protein surface facing the RNA is able to dock a 9 base pair double-helical A-RNA structure with surprising accuracy. The basic residues are each associated with a different phosphate and the protein can make interactions with five bases in the minor groove. This may be one of a small number of ways in which the RNA interacts with SBMV coat protein.

The self-assembly of SBMV has been studied in relation to the presence of the 63 basic amino-terminal coat protein sequence, pH, Ca2+ and Mg2+ ions and RNA. These results have led to a two-state model where the “relaxed” dimers initially self-assemble into 10-mer caps which nucleate the assembly of T = 1 or T = 3 capsids depending on the charge state of the carboxyl group clusters in the subunit contact region. The two-state condition of dimers in a viral coat protein extends the range of structures originally envisaged by Caspar and Klug (Cold Spring Harbor Symp. Quant. Biol. 27, 1–24, 1962).  相似文献   

19.
20.
Assembly of hepatitis B virus capsid-like (core) particles occurs efficiently in a variety of heterologous systems via aggregation of approximately 180 molecules of a single 21.5-kDa core protein (p21.5), resulting in an icosahedral capsid structure with T = 3 symmetry. Recent studies on the assembly of hepatitis B virus core particles in Xenopus oocytes suggested that dimers of p21.5 represent the major building block from which capsids are generated. Here we determined the concentration dependence of this assembly process. By injecting serially diluted synthetic p21.5 mRNA into Xenopus oocytes, we expressed different levels of intracellular p21.5 and monitored the production of p21.5 dimers and capsids by radiolabeling and immunoprecipitation, by radioimmunoassay, or by quantitative enzyme-linked immunosorbent assay analysis. The data revealed that (i) p21.5 dimers and capsids are antigenically distinct, (ii) capsid assembly is a highly cooperative and concentration-dependent process, and (iii) p21.5 must accumulate to a signature concentration of approximately 0.7 to 0.8 microM before capsid assembly initiates. This assembly process is strikingly similar to the assembly of RNA bacteriophage R17 as defined by in vitro studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号