首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genome-wide screening for gene function using RNAi in mammalian cells   总被引:6,自引:0,他引:6  
Mammalian genome sequencing has identified numerous genes requiring functional annotation. The discovery that dsRNA can direct gene-specific silencing in both model organisms and mammalian cells through RNA interference (RNAi) has provided a platform for dissecting the function of independent genes. The generation of large-scale RNAi libraries targeting all predicted genes within mouse, rat and human cells, combined with the large number of cell-based assays, provides a unique opportunity to perform high-throughput genetics in these complex cell systems. Many different formats exist for the generation of genome-wide RNAi libraries for use in mammalian cells. Furthermore, the use of these libraries in either genetic screens or genetic selections allows for the identification of known and novel genes involved in complex cellular phenotypes and biological processes, some of which underpin human disease. In this review, we examine genome-wide RNAi libraries used in model organisms and mammalian cells and provide examples of how these information rich reagents can be used for determining gene function, discovering novel therapeutic targets and dissecting signalling pathways, cellular processes and complex phenotypes.  相似文献   

2.
RNA干扰(RNAi)是双链RNA分子在mRNA水平上诱发的序列特异性转录后基因表达沉默,从基因组水平设计针对多个靶基因的RNAi序列,建立RNAi文库进行系统性、大规模的筛选工作是功能基因组学研究的有力工具。目前RNAi文库主要包括质粒(或病毒)文库、siRNA表达盒文库、寡核苷酸文库和随机RNAi文库,已经被成功应用于基因功能鉴别、信号转导途径解析和药物靶标筛选等研究领域。近年来,这一领域发展迅速,本文就RNAi文库的发展应用以及存在的问题与展望进行综述。  相似文献   

3.
The large number of candidate genes identified by modern high-throughput technologies require efficient methods for generating knockout phenotypes or gene silencing in order to study gene function. RNA interference (RNAi) is an efficient method that can be used for this purpose. Effective gene silencing by RNAi depends on a number of important parameters, including the dynamics of gene expression and the RNA dose. Using mouse hepatoma cells, we detail some of the principal characteristics of RNAi as a tool for gene silencing, such as the RNA dose level, RNA complex exposure time, and the time of transfection relative to gene induction, in the context of silencing a green fluorescent protein reporter gene. Our experiments demonstrate that different levels of silencing can be attained by modulating the dose level of RNA and the time of transfection and illustrate the importance of a dynamic analysis in designing robust silencing protocols. By quantifying the kinetics of RNAi-based gene silencing, we present a model that may be used to help determine key parameters in more complex silencing experiments and explore alternative gene silencing protocols.  相似文献   

4.
A chemical-regulated inducible RNAi system in plants   总被引:21,自引:0,他引:21  
Constitutive expression of an intron-containing self-complementary 'hairpin' RNA (ihpRNA) has recently been shown to efficiently silence target genes in transgenic plants. However, this technique cannot be applied to genes whose silencing may block plant regeneration or result in embryo lethality. To obviate these potential problems, we have used a chemical-inducible Cre/loxP (CLX) recombination system to trigger the expression of an intron-containing inverted-repeat RNA (RNAi) in plants. A detailed characterization of the inducible RNAi system in transgenic Arabidopsis thaliana and Nicotiana benthamiana plants demonstrated that this system is stringently controlled. Moreover, it can be used to induce silencing of both transgenes and endogenous genes at different developmental stages and at high efficiency and without any detectable secondary affects. In addition to inducing complete silencing, the RNAi can be produced at various times after germination to initiate and obtain different degrees of gene silencing. Upon induction, transgenic plants with genetic chimera were obtained as demonstrated by PCR analysis. Such chimeric plants may provide a useful system to study signaling mechanisms of gene silencing in Arabidopsis as well as other cases of long-distance signaling without grafting. The merits of using the inducible CLX system for RNAi expression are discussed.  相似文献   

5.
BACKGROUND: RNA interference (RNAi) has become a powerful tool in silencing target genes in various organisms. In mammals, RNAi can be induced by using short interfering RNA (siRNA). The efficacy of inducing RNAi in mammalian cells by using siRNA depends very much on the selection of the target sequences. METHODS: We developed an siRNA target sequence selection system by first constructing parallel-type siRNA expression vector libraries carrying siRNA expression fragments originating from fragmentized target genes, and then using a group selection system. For a model system, we constructed parallel-type siRNA expression vector libraries against DsRed and GFP reporter genes. RESULTS: We carried out the first screening of groups containing more than 100 random siRNA expression plasmids in total for each target gene, and successfully obtained target sequences with very strong efficacy. Furthermore, we also obtained some clones that express dsRNAs of various lengths that might induce cytotoxicity. CONCLUSIONS: This system should allow us to perform screening for powerful target sequences, by including all possible target sequences for any gene, even without knowing the whole sequence of the target gene in advance. At the same time, target sequences that should be avoided due to cytotoxicity can be identified.  相似文献   

6.
Sandy P  Ventura A  Jacks T 《BioTechniques》2005,39(2):215-224
Silencing of gene expression by RNA interference (RNAi) has become a powerful tool for the functional annotation of the Caenorhabditis elegans and Drosophila melanogaster genomes. Recent advances in the design and delivery of targeting molecules now permit efficient and highly specific gene silencing in mammalian systems as well. RNAi offers a simple, fast, and cost-effective alternative to existing gene targeting technologies both in cell-based and in vivo settings. Synthetic small interfering RNA (siRNA) and retroviral short hairpin RNA (shRNA) libraries targeting thousands of human and mouse genes are publicly available for high-throughput genetic screens, and knockdown animals can be rapidly generated by lentivirus-mediated transgenesis. RNAi also holds great promise as a novel therapeutic approach. This review provides insight into the current gene silencing techniques in mammalian systems.  相似文献   

7.
8.
Structural modifications could provide classical small interfering RNA (siRNA) structure with several advantages, including reduced off-target effects and increased silencing activity. Thus, RNA interference (RNAi)-triggering molecules with diverse structural modifications have been investigated by introducing variations on duplex length and overhang structure. However, most of siRNA structural variants are based on the linear duplex structure. In this study, we introduce a branched, non-linear tripartite-interfering RNA (tiRNA) structure that could induce silencing of multiple target genes. Surprisingly, the gene silencing by tiRNA structure does not require Dicer-mediated processing into smaller RNA units, and the 38-nt-long guide strands can trigger specific gene silencing through the RNAi machinery in mammalian cells. tiRNA also shows improved gene silencing potency over the classical siRNA structure when complexed with cationic delivery vehicles due to the enhanced intracellular delivery. These results demonstrate that tiRNA is a novel RNA nanostructure for executing multi-target gene silencing with increased potency, which could be utilized as a structural platform to develop efficient anticancer or antiviral RNAi therapeutics.  相似文献   

9.
10.
11.
Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy   总被引:33,自引:0,他引:33  
  相似文献   

12.
RNA interference (RNAi) serves as a powerful and widely used gene silencing tool for basic biological research and is being developed as a therapeutic avenue to suppress disease-causing genes. However, the specificity and safety of RNAi strategies remains under scrutiny because small inhibitory RNAs (siRNAs) induce off-target silencing. Currently, the tools available for designing siRNAs are biased toward efficacy as opposed to specificity. Prior work from our laboratory and others’ supports the potential to design highly specific siRNAs by limiting the promiscuity of their seed sequences (positions 2–8 of the small RNA), the primary determinant of off-targeting. Here, a bioinformatic approach to predict off-targeting potentials was established using publically available siRNA data from more than 50 microarray experiments. With this, we developed a specificity-focused siRNA design algorithm and accompanying online tool which, upon validation, identifies candidate sequences with minimal off-targeting potentials and potent silencing capacities. This tool offers researchers unique functionality and output compared with currently available siRNA design programs. Furthermore, this approach can greatly improve genome-wide RNAi libraries and, most notably, provides the only broadly applicable means to limit off-targeting from RNAi expression vectors.  相似文献   

13.
Synthetic shRNAs as potent RNAi triggers   总被引:19,自引:0,他引:19  
Designing potent silencing triggers is key to the successful application of RNA interference (RNAi) in mammals. Recent studies suggest that the assembly of RNAi effector complexes is coupled to Dicer cleavage. Here we examine whether transfection of optimized Dicer substrates results in an improved RNAi response. Dicer cleavage of chemically synthesized short hairpin RNAs (shRNAs) with 29-base-pair stems and 2-nucleotide 3' overhangs produced predictable homogeneous small RNAs comprising the 22 bases at the 3' end of the stem. Consequently, direct comparisons of synthetic small interfering RNAs and shRNAs that yield the same small RNA became possible. We found synthetic 29-mer shRNAs to be more potent inducers of RNAi than small interfering RNAs. Maximal inhibition of target genes was achieved at lower concentrations and silencing at 24 h was often greater. These studies provide the basis for an improved approach to triggering experimental silencing via the RNAi pathway.  相似文献   

14.
Off-target gene silencing can present a notable challenge in the interpretation of data from large-scale RNA interference (RNAi) screens. We performed a detailed analysis of off-targeted genes identified by expression profiling of human cells transfected with small interfering RNA (siRNA). Contrary to common assumption, analysis of the subsequent off-target gene database showed that overall identity makes little or no contribution to determining whether the expression of a particular gene will be affected by a given siRNA, except for near-perfect matches. Instead, off-targeting is associated with the presence of one or more perfect 3' untranslated region (UTR) matches with the hexamer or heptamer seed region (positions 2-7 or 2-8) of the antisense strand of the siRNA. These findings have strong implications for future siRNA design and the application of RNAi in high-throughput screening and therapeutic development.  相似文献   

15.
Small RNAs derived from longer non-coding RNAs   总被引:3,自引:0,他引:3  
Röther S  Meister G 《Biochimie》2011,93(11):1905-1915
  相似文献   

16.
RNA interference (RNAi) is a homology-dependent gene silencing technology that involves double-stranded RNA directed against a target gene or its promoter region. Using hairpin constructs, double-stranded RNA can be expressed in plants relatively easily, enabling this technology to be applied to a wide range of species to silence the expression of both specific endogenous genes and genes of invading pathogens. RNAi has also been used to engineer metabolic pathways to overproduce secondary products with health, yield or environmental benefits. The application of tissue-specific or inducible gene silencing, with the use of appropriate promoters, and the ability to silence several genes simultaneously should enhance our ability to create novel traits in plants.  相似文献   

17.
18.
RNA interference (RNAi) was investigated with the aim of achieving gene silencing with diverse RNAi platforms that include small interfering RNA (siRNA), short hairpin RNA (shRNA) and antisense oligonucleotides (ASO). Different versions of each system were used to silence the expression of specific subunits of the heterotrimeric signal transducing G-proteins, G alpha i2 and G beta 2, in the RAW 264.7 murine macrophage cell line. The specificity of the different RNA interference (RNAi) platforms was assessed by DNA microarray analysis. Reliable RNAi methodologies against the genes of interest were then developed and applied to functional studies of signaling networks. This study demonstrates a successful knockdown of target genes and shows the potential of RNAi for use in functional studies of signaling molecules.  相似文献   

19.
amiRNAi-实现高效稳定的特异基因沉默新方法   总被引:3,自引:1,他引:3  
RNA干扰技术(RNA interference,RNAi)是实现基因沉默的有效工具。近年来,随着分子生物学与生物技术的快速发展,在RNAi基础上又发展出另一种特异性更高的基因沉默技术—amiRNAi (artificial microRNA interference)。amiRNAs是一类由内源miRNA前体生成的长21个核苷酸的人工小RNA分子,它能在不影响其他基因表达的情况下特异地介导单个或多个靶基因高效稳定沉默。与普通的RNAi相比,amiRNAi具有特异性高、稳定性强和沉默效应可预见等优点。因而amiRNAi可能成为基因功能分析的最有效工具之一,同时amiRNAi对于基因负调控研究和应用而言前景广阔。着重介绍了amiRNAi技术的原理、优势及其潜在的应用价值。  相似文献   

20.
In Drosophila, the RNA interference (RNAi) genes participate in Polycomb (Pc)-mediated transgene silencing. Recently, the involvement of the RNAi genes in Pc silencing, pairing-sensitive silencing and long-range contacts among Pc-associated sequences has been explored. These Pc-associated sequences are involved with the control of the proper expression of developmental HOX genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号