首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differences in the strength of sexual selection between males and females can lead to sexual dimorphism. Extra-pair paternity (EPP) can increase the variance in male reproductive success and hence the opportunity for sexual selection. Previous research on birds suggests that EPP drives the evolution of dimorphism in plumage colour and in body size. Because EPP increases the intensity of sexual selection in males, it should lead to increased dimorphism in species with larger or more colourful males, but decreased dimorphism in species with larger or more colourful females. We explored the covariation between EPP and sexual dimorphism in wing length and plumage colouration in 401 bird species, while controlling for other, potentially confounding variables. Wing length dimorphism was associated positively with the frequency of EPP, but also with social polygamy, sex bias in parental behaviour and body size and negatively with migration distance. The frequency of EPP was the only predictor of plumage colour dimorphism. In support of our prediction, high EPP levels were associated with sexual dichromatism, positively in species in which males are more colourful and negatively in those in which females are more colourful. Contrary to our prediction, high EPP rates were associated with increased wing length dimorphism in species with both male- and female-biased dimorphism. The results support a role for EPP in the evolution of both size and plumage colour dimorphism. The two forms of dimorphism were weakly correlated and predicted by different reproductive, social and life-history traits, suggesting an independent evolution.  相似文献   

2.
Abstract The evolution of sexual dimorphism may occur when natural and sexual selection result in different optimum trait values for males and females. Perhaps the most prominent examples of sexual dimorphism occur in sexually selected traits, for which males usually display exaggerated trait levels, while females may show reduced expression of the trait. In some species, females also exhibit secondary sexual traits that may either be a consequence of a correlated response to sexual selection on males or direct sexual selection for female secondary sexual traits. In this experiment, we simultaneously measure the intersex genetic correlations and the relative strength of sexual selection on males and females for a set of cuticular hydrocarbons in Drosophila serrata . There was significant directional sexual selection on both male and female cuticular hydrocarbons: the strength of sexual selection did not differ among the sexes but males and females preferred different cuticular hydrocarbons. In contrast with many previous studies of sexual dimorphism, intersex genetic correlations were low. The evolution of sexual dimorphism in D. serrata appears to have been achieved by sex-limited expression of traits controlled by genes on the X chromosome and is likely to be in its final stages.  相似文献   

3.
The evolution of sexual dimorphism involves an interaction between sex-specific selection and a breakdown of genetic constraints that arise because the two sexes share a genome. We examined genetic constraints and the effect of sex-specific selection on a suite of sexually dimorphic display traits in Drosophila serrata. Sexual dimorphism varied among nine natural populations covering a substantial portion of the species range. Quantitative genetic analyses showed that intersexual genetic correlations were high because of autosomal genetic variance but that the inclusion of X-linked effects reduced genetic correlations substantially, indicating that sex linkage may be an important mechanism by which intersexual genetic constraints are reduced in this species. We then explored the potential for both natural and sexual selection to influence these traits, using a 12-generation laboratory experiment in which we altered the opportunities for each process as flies adapted to a novel environment. Sexual dimorphism evolved, with natural selection reducing sexual dimorphism, whereas sexual selection tended to increase it overall. To this extent, our results are consistent with the hypothesis that sexual selection favors evolutionary divergence of the sexes. However, sex-specific responses to natural and sexual selection contrasted with the classic model because sexual selection affected females rather than males.  相似文献   

4.
Sexual preferences in animals are often skewed toward mates with exaggerated traits. In many vertebrates, parents provide, through the learning process of "sexual imprinting," the model for the later sexual preference. How imprinting can result in sexual preferences for mates having exaggerated traits rather than resembling the parental appearance is not clear. We test the hypothesis that a by-product of the learning process, "peak shift", may induce skewed sexual preferences for exaggerated parental phenotypes. To this end, zebra finch (Taeniopygia guttata) males were raised by white parents, with beak color as the most prominent sexual dimorphism. We manipulated this feature with nail varnish. At adult age, each male was given a preference test in which he could choose among eight females with beak colors ranging from more extreme on the paternal to more extreme on the maternal side. The males preferred females with a beak of a more extreme color than that of their mothers, i.e., they showed a peak shift. Sexual imprinting can thus generate skewed sexual preferences for exaggerated maternal phenotypes, phenotypes that have not been present at the time of the learning. We suggest that such preferences can drive the evolution of sexual dimorphism and exaggerated sexual traits.  相似文献   

5.
Abstract. Charadrii (shorebirds, gulls, and alcids) have an unusual diversity in their sexual size dimorphism, ranging from monomorphism to either male-biased or female-biased dimorphism. We use comparative analyses to investigate whether this variation relates to sexual selection through competition for mates or natural selection through different use of resources by males and females. As predicted by sexual selection theory, we found that in taxa with socially polygynous mating systems, males were relatively larger than females compared with less polygynous species. Furthermore, evolution toward socially polyandrous mating systems was correlated with decreases in relative male size. These patterns depend on the kinds of courtship displays performed by males. In taxa with acrobatic flight displays, males are relatively smaller than in taxa in which courtship involves simple flights or displays from the ground. This result remains significant when the relationship with mating system is controlled statistically, thereby explaining the enigma of why males are often smaller than females in socially monogamous species. We did not find evidence that evolutionary changes in sexual dimorphism relate to niche division on the breeding grounds. In particular, biparental species did not have greater dimorphism in bill lengths than uniparental species, contrary to the hypothesis that selection for ecological divergence on the breeding grounds has been important as a general explanation for patterns of bill dimorphism. Taken together, these results strongly suggest that sexual selection has had a major influence on sexual size dimorphism in Charadrii, whereas divergence in the use of feeding resources while breeding was not supported by our analyses.  相似文献   

6.
Theoretical and empirical observations generally support Darwin's view that sexual dimorphism evolves due to sexual selection on, and deviation in, exaggerated male traits. Wallace presented a radical alternative, which is largely untested, that sexual dimorphism results from naturally selected deviation in protective female coloration. This leads to the prediction that deviation in female rather than male phenotype causes sexual dimorphism. Here I test Wallace's model of sexual dimorphism by tracing the evolutionary history of Batesian mimicry-an example of naturally selected protective coloration-on a molecular phylogeny of Papilio butterflies. I show that sexual dimorphism in Papilio is significantly correlated with both female-limited Batesian mimicry, where females are mimetic and males are non-mimetic, and with the deviation of female wing colour patterns from the ancestral patterns conserved in males. Thus, Wallace's model largely explains sexual dimorphism in Papilio. This finding, along with indirect support from recent studies on birds and lizards, suggests that Wallace's model may be more widely useful in explaining sexual dimorphism. These results also highlight the contribution of naturally selected female traits in driving phenotypic divergence between species, instead of merely facilitating the divergence in male sexual traits as described by Darwin's model.  相似文献   

7.
Melanins are the most common pigments providing coloration in the plumage and bare skin of birds and other vertebrates. Numerous species are dichromatic in the adult or definitive plumage, but the direction of this type of sexual dichromatism (i.e. whether one sex tends to be darker than the other) has not been thoroughly investigated. Using color plates, we analysed the presence of melanin‐based color patches in 666 species belonging to 69 families regularly breeding in the Western Palearctic. Sexual dichromatism based on melanins in at least one integumentary part involved 205 (30.7%) species. The body parts contributing more frequently to dichromatism were the dorsal areas, head and breast, whereas the less dichromatic body parts were the belly and the exposed integumentary parts (i.e. bill and legs). Regarding the phylogenetic spread of dichromatisms, 37 (53.6%) families contained at least one species with melanin‐based sexual dimorphism in the definitive adult plumage. As for the direction of the color difference, males are darker than females in a majority of species, meaning that males tend to produce more eumelanin and females tend to synthesize more pheomelanin. This survey has revealed the high prevalence of melanins in the emergence of sexual dichromatism in birds, at least in the Western Palearctic. Whether the described pattern is due to sexual selection promoting more conspicuous males or to natural selection for more cryptic females remains to be determined. Given that pheomelanin synthesis concurrently consumes the antioxidant glutathione but may also reduces toxic cysteine, sex‐biased physiological factors should also be given consideration in the evolution of bird plumages.  相似文献   

8.
The mechanisms underlying evolutionary changes in sexual dimorphism have long been of interest to biologists. A striking gradient in sexual dichromatism exists among songbirds in North America, including the wood-warblers (Parulidae): males are generally more colourful than females at northern latitudes, while the sexes are similarly ornamented at lower latitudes. We use phylogenetically controlled comparative analysis to test three non-mutually exclusive hypotheses for the evolution of sexual dichromatism among wood-warblers. The first two hypotheses focus on the loss of female coloration with the evolution of migration, either owing to the costs imposed by visual predators during migration, or owing to the relaxation of selection for female social signalling at higher latitudes. The third hypothesis focuses on whether sexual dichromatism evolved owing to changes in male ornamentation as the strength of sexual selection increases with breeding latitude. To test these hypotheses, we compared sexual dichromatism to three variables: the presence of migration, migration distance, and breeding latitude. We found that the presence of migration and migration distance were both positively correlated with sexual dichromatism, but models including breeding latitude alone were not strongly supported. Ancestral state reconstruction supports the hypothesis that the ancestral wood-warblers were monochromatic, with both colourful males and females. Combined, these results are consistent with the hypotheses that the evolution of migration is associated with the relaxation of selection for social signalling among females and that there are increased predatory costs along longer migratory routes for colourful females. These results suggest that loss of female ornamentation can be a driver of sexual dichromatism and that social or natural selection may be a stronger contributor to variation in dichromatism than sexual selection.  相似文献   

9.
Sexually selected traits are limited by selection against those traits in other fitness components, such as survival. Thus, sexual selection favouring large size in males should be balanced by higher mortality of larger males. However, evidence from red-winged blackbirds (Agelaius phoeniceus) indicates that large males survive better than small males. A survival advantage to large size could result from males migrating north in early spring, when harsh weather favours large size for energetic reasons. From this hypothesis we predicted that, among species, sex differences in body size should be correlated with sex differences in timing of spring migration. The earlier males migrate relative to females, the larger they should be relative to females. We tested this prediction using a comparative analysis of data collected from 30 species of passerine birds captured on migration. After controlling for social mating system, we found that sexual size dimorphism and difference in arrival dates of males and females were significantly positively correlated. This result is consistent with the hypothesis that selection for survival ability promotes sexual size dimorphism (SSD), rather than opposes SSD as is the conventional view. If both natural selection and sexual selection favour large adult males, then limits to male size must be imposed before males become adults.  相似文献   

10.
In birds, carotenoid-based plumage coloration is more dependent on physical condition and foraging abilities and less constrained developmentally than is melanin-based coloration. Thus, female mate choice for honest signals should result in more intense sexual selection on carotenoid- than on melanin-based plumage coloration. Using variation in sexual dimorphism as an indirect measure of the intensity of sexual selection, we tested the prediction mat variation in sexual dimorphism is driven more by change in carotenoid-based coloration between males and females dian by change in melanin-based coloration. Examination of historical changes in carotenoid- versus melanin-based pigmentation in 126 extant species of Cardueline finches supported this prediction. We found that carotenoid-derived coloration changed more frequendy among congeners dian melanin-based coloration. In both sexes, increase in carotenoid-based coloration score, but not in melanin-based coloration score, was strongly associated with increase in sexual dichromatism. In addition, sexual dimorphism in carotenoid-based coloration contributed more to overall dichromatism than dimorphism in melanin-based plumage. Our results supported die hypothesis that melanin-based and carotenoid-based coloration have fundamentally different signal content and suggest that combining melanin-based and carotenoid-based coloration in comparative analyses is not appropriate.  相似文献   

11.
Sexual dimorphism is widespread in lizards, with the most consistently dimorphic traits being head size (males have larger heads) and trunk length (the distance between the front and hind legs is greater in females). These dimorphisms have generally been interpreted as follows: (1) large heads in males evolve through male-male rivalry (sexual selection); and (2) larger interlimb lengths in females provide space for more eggs (fecundity selection). In an Australian lizard (the snow skink, Niveoscincus microlepidotus), we found no evidence for ongoing selection on head size. Trunk length, however, was under positive fecundity selection in females and under negative sexual selection in males. Thus, fecundity selection and sexual selection work in concert to drive the evolution of sexual dimorphism in trunk length in snow skinks.  相似文献   

12.
The 'division-of-labour' hypothesis predicts that males and females perform different roles in parental care and that natural selection acts differently on each sex so as to produce different body size optima suited to their particular roles. Reversed sexual size dimorphism in avian species (females larger than males) may therefore be an adaptive consequence of different roles of males and females in parental care. We investigated patterns of nest attendance, brooding, foraging and provisioning rate in a tropical seabird, the Red-footed Booby Sula sula , a species showing a reversed sexual size dimorphism. During incubation, females attended the nest more often than males, and spent more time brooding the small chick than did males during daytime. Males and females did not differ in the average duration of their foraging trips. During incubation, there was a positive relationship between nest attendance and the duration of foraging trips in males, but not in females. During the small-chick stage, for the same time spent at the nest, males spent significantly more time than females at sea. On average, females fed the chick more often than did males. In males, there was a significant and positive relationship between the probability of feeding the chick and the duration of the foraging trip, whereas in females, this probability was much less dependent on the duration of the foraging trip. Overall, female Red-footed Boobies achieved slightly, but significantly, more parental commitment than did males. However, these sexual differences in parental participation were small, suggesting a minimal division of labour in the Red-footed Booby. Our results suggest that the division of labour hypothesis is unlikely to explain fully the adult size dimorphism in Red-footed Boobies.  相似文献   

13.
Variation in traits that are sexually dimorphic is usually attributed to sexual selection, in part because the influence of ecological differences between sexes can be difficult to identify. Sex‐limited dimorphisms, however, provide an opportunity to test ecological selection disentangled from reproductive differences between the sexes. Here, we test the hypothesis that ecological differences play a role in the evolution of body colour variation within and between sexes in a radiation of endemic Hawaiian damselflies. We analysed 17 Megalagrion damselflies species in a phylogenetic linear regression, including three newly discovered cases of species with female‐limited dimorphism. We find that rapid colour evolution during the radiation has resulted in no phylogenetic signal for most colour and habitat traits. However, a single ecological variable, exposure to solar radiation (as measured by canopy cover) significantly predicts body colour variation within sexes (female‐limited dimorphism), between sexes (sexual dimorphism), and among populations and species. Surprisingly, the degree of sexual dimorphism in body colour is also positively correlated with the degree of habitat differences between sexes. Specifically, redder colouration is associated with more exposure to solar radiation, both within and between species. We discuss potential functions of the pigmentation, including antioxidant properties that would explain the association with light (specifically UV) exposure, and consider alternative mechanisms that may drive these patterns of sexual dimorphism and colour variation.  相似文献   

14.
Seabirds exhibit a range of sexual size dimorphism (SSD) that includes both male-biased (males>females) and female-biased SSD (males相似文献   

15.
Sexual selection,sexual dimorphism and plant phylogeny   总被引:2,自引:0,他引:2  
Summary Darwin examined sexual dimorphism in animals, arguing that sexual selection was important in the evolution of such dimorphism. Sexual dimorphism in plants may have parallel causes and costs.The processes that contribute to sexual dimorphism may also lead to speciation and morphological differences among related species, as argued originally by Darwin. Where sexes are separate and dimorphism is well-developed, males of related animal species (both vertebrate and invertebrate) are often strikingly different from each other, while females may be virtually indistinguishable. A similar pattern may exist in plants: it is frequently the males (of dioecious taxa) or the male portions of the flower (in co-sexual flowers) that apparently have diversified. I suggest that the similarity of pattern may be accounted for by a similarity of process.In addition, sexual selection may have contributed to certain evolutionary trends within the angiosperms and, indeed, to angiosperm radiation.  相似文献   

16.
  1. In most animals, females are larger than males. Paradoxically, sexual size dimorphism is biased towards males in most mammalian species. An accepted explanation is that sexual dimorphism in mammals evolved by intramale sexual selection. I tested this hypothesis in primates, by relating sexual size dimorphism to seven proxies of sexual selection intensity: operational sex ratio, mating system, intermale competition, group sex ratio, group size, maximum mating percentage (percentage of observed copulations involving the most successful male), and total paternity (a genetic estimate of the percentage of young sired by the most successful male).
  2. I fitted phylogenetic generalised least squares models using sexual size dimorphism as the dependent variable and each of the seven measures of intensity of sexual selection as independent variables. I conducted this comparative analysis with data from 50 extant species of primates, including Homo sapiens, Pan troglodytes, and Gorilla spp.
  3. Sexual dimorphism was positively related to the four measures of female monopolisation (operational sex ratio, mating system, intermale competition, and group sex ratio) and in some cases to group size, but was not associated with maximum mating percentage or total paternity. Additional regression analyses indicated that maximum mating percentage and total paternity were negatively associated with group size.
  4. These results are predicted by reproductive skew theory: in large groups, males can lose control of the sexual behaviour of the other members of the group or can concede reproductive opportunities to others. The results are also consistent with the evolution of sexual size dimorphism before polygyny, due to the effects of natural, rather than sexual, selection. In birds, the study of molecular paternity showed that variance in male reproductive success is much higher than expected by behaviour. In mammals, recent studies have begun to show the opposite trend, i.e. that intensity of sexual selection is lower than expected by polygyny.
  5. Results of this comparative analysis of sexual size dimorphism and sexual selection intensity in primates suggest that the use of intramale sexual selection theory to explain the evolution of polygyny and sexual dimorphism in mammals should be reviewed, and that natural selection should be considered alongside sexual selection as an evolutionary driver of sexual size dimorphism and polygyny in mammals.
  相似文献   

17.
The theory of sexual selection is the most widely accepted theory explaining the evolution of mating systems and secondary sexual characters. Polygyny is the most common mating system in mammals, and there is a strong correlation between the degree of polygyny and the degree of sexual size dimorphism skewed towards males. Sexual selection theory posits that polygyny in mammals has evolved through direct, precopulatory, intrasexual selection in males, and that sexual size dimorphism is a result of male competition for mates. New results that are being obtained with the use of molecular techniques and with comparative phylogenetic methods do not appear to support predictions from this classical model in full. In this article, an expansion of the classical model is presented that combines the effects of at least four forms of selection: natural, precopulatory intrasexual, postcopulatory intrasexual, and intersexual selection. This mixed model consists of an initial phase in which natural selection operates on body size, followed by a second phase dominated by sexual selection and involving increases in sexual dimorphism and coercive behaviour of males towards females. Sexual harassment induces female aggregation, thus creating social potential for polygyny. Males compete for access to the groups of females, following two possible evolutionary scenarios, directional or equilibrium sexual selection, both producing similar behavioural polygyny, but with differences in the intensity of intra-male precopulatory sexual selection. Predictions of the mixed model are as follows: 1) polygyny can exist without high variance in male reproductive success (a fundamental requirement in the classical model); 2) extra-group fertilisation can be common; 3) sexual size dimorphism evolved prior to polygyny; 4) sexual coercion is widespread; and 5) females reduce levels of sexual coercion by joining groups.  相似文献   

18.
Sexual size dimorphism might be influenced by environmental constraints on sexual selection or by intraspecific competition between males and females. We studied bobcats (Lynx rufus) in collections of museum specimens from western North America to examine these hypotheses. Structural body size was estimated from several measurements of the skull, ln-transformed and indexed through principal components analysis. Sexual dimorphism in body size was estimated from the difference in size index of males and females, and compared to geographic and climatic variables associated with biotic provinces (ecoregions). Of several climatic variables that were associated with bobcat body size, only seasonality of climate was associated with sexual dimorphism. Sexual size dimorphism, longitude, elevation, and seasonality were intercorrelated. As longitude decreased (moving inland from west-coastal ecoregions), sexual dimorphism decreased with the increased elevation and seasonality of continental climates of the Rocky Mountains. We suggest that increased seasonality and the need for fasting endurance by females may place constraints on the degree of sexual dimorphism in bobcats. Sexual dimorphism of body size and sexual size dimorphism of trophic structures (teeth) exhibited a strong positive association over geography, thus indirectly supporting the hypothesis that intrasexual competition for prey could account for the geographic variation in sexual size dimorphism. Thus, both environmental constraints on sexual selection of body size and intersexual competition were supported as possible explanations of the degree of sexual size dimorphism that occurs in populations of bobcats.  相似文献   

19.
雌性对雄性表饰的偏好性有利于性别选择。目前尚不清楚这一偏好性是否只限于雄性表饰或这一偏好性实际上是源于影响后代适合度的基因。对于雄性可直接有利于雌性或其后代适合度的交配系统而言,答案是肯定的--雌性偏好于与对气候胁迫具有更强生理抗性的雄性交配。对果蝇Drosophila biarmipes 的室内研究已经证明了求偶过程中翅斑的作用,但是其生态学意义仍然不清楚。我们检验了有翅斑与无翅斑雄性果蝇D. biarmipes 及雌性偏好的雄性所产生的后代对环境胁迫的抗性是否不同。结果表明:在干燥或冷胁迫条件下,有翅斑的雄性果蝇比无翅斑的雄性果蝇的交配成功率明显要高。相反,在高湿条件下,无翅斑雄性果蝇的交配频率更高。我们也发现在较为干旱的条件下,与有翅斑雄性交配的雌性果蝇的生殖力以及所得后代从卵至成虫的存活率更高。我们的结果与优良基因性选择假说一致,说明交配选择能给雌性带来间接好处。这是对热带物种D. biarmipes翅色二型性生态学意义的首次报道。  相似文献   

20.
P. Frost 《Human Evolution》1994,9(2):141-153
Modern humans have been shaped by the cumulative action of natural selection, non-adaptive random change, and sexual selection. The last of these is not universal and has prevailed in one of two circumstances: (1) A surplus of females due to high male mortality, combined with ecological constraints on female participation in food procurement which discourage males from taking second wives; (2) A surplus of single males due to generalized polygyny with relatively low male mortality. These circumstances are most likely to occur in (1) Arctic tundra environments, specifically the vast expanse of tundra covering most of Europe up to 10,000 B.P., and in (2) regions dominated by generalized polygyny, notably sub-Saharan Africa. Sexual selection often acts on existing sex differences, including perhaps sexual dimorphism in human skin colour. Whereas women are universally fairer in complexion, men are browner and ruddier; parallel to this, most human societies see lighter skin as more feminine and darker skin as more masculine. Hence, sexual selection should favour lighter pigmented women when a surplus of single females must compete for a mate. Since skin colour is only mildly sex-linked, both sexes would lighten in pigmentation within the population in question. Similarly, when a surplus of single males must compete for a mate, both sexes would darken. Geographic variation in human skin colour may thus represent a selective compromise between two counterbalancing forces: natural selection, as determined by latitudinal variation in sunlight; and sexual selection, as determined by variations in the following: male mortality rates, incidence of polygyny, and ecological constraints on female participation in food procurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号