首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.

Background

The pathogenic mechanism of stroke-like episodes seen in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) has not been clarified yet. About 80% of MELAS patients have an A3243G mutation in the mitochondrial tRNALeu(UUR) gene, which is the base change at position 14 in the consensus structure of tRNALeu(UUR) gene.

Scope of review

This review aims to give an overview on the actual knowledge about the pathogenic mechanism of mitochondrial cytopathy at the molecular levels, the possible pathogenic mechanism of mitochondrial angiopathy to cause stroke-like episodes at the clinical and pathophysiological levels, and the proposed site of action of l-arginine therapy on MELAS.

Major conclusions

Molecular pathogenesis is mainly demonstrated using ρ0 cybrid system. The mutation creates the protein synthesis defects caused by 1) decreased life span of steady state amount of tRNALeu(UUR) molecules; 2) decreased ratio of aminoacyl-tRNALeu(UUR) versus uncharged tRNALeu(UUR) molecules; 3) the accumulation of aminoacylation with leucine without any misacylation; 4) accumulation of processing intermediates such as RNA 19, 5) wobble modification defects. All of these loss of function abnormalities are created by the threshold effects of cell or organ to the mitochondrial energy requirement when they establish the phenotype. Mitochondrial angiopathy demonstrated by muscle or brain pathology, as SSV (SDH strongly stained vessels), and by vascular physiology using FMD (flow mediated dilation). MELAS patients show decreased capacity of NO dependent vasodilation because of the low plasma levels of l-arginine and/or of respiratory chain dysfunction. Although the underlying mechanisms are not completely understood in stroke-like episodes in MELAS, l-arginine therapy improved endothelial dysfunction.

General significance

Though the molecular pathogenesis of an A3243G or T3271C mutation of mitochondrial tRNALeu(UUR) gene has been clarified as a mitochondrial cytopathy, the underlying mechanisms of stroke-like episodes in MELAS are not completely understood. At this point, l-arginine therapy showed promise in treating of the stroke-like episodes in MELAS. This article is part of a Special Issue entitled Biochemistry of Mitochondria.  相似文献   

2.

Background

Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) is the most common type of mitochondrial disease and is characterized by stroke-like episodes (SEs), myopathy, lactic acidosis, diabetes mellitus, hearing-loss and cardiomyopathy. The causal hypotheses for SEs in MELAS presented to date are angiopathy, cytopathy and neuronal hyperexcitability. L-arginine (Arg) has been applied for the therapy in MELAS patients.

Scope of review

We will introduce novel in vivo functional brain imaging techniques such as MRI and PET, and discuss the pathogenesis of SEs in MELAS patients. We will further describe here our clinical experience with L-arg therapy and discuss the dual pharmaceutical effects of this drug on MELAS.

Major conclusions

Administration of L-arg to MELAS patients has been successful in reducing neurological symptoms due to acute strokes and preventing recurrences of SEs in the chronic phase. L-Arg has dual pharmaceutical effects on both angiopathy and cytopathy in MELAS.

General significance

In vivo functional brain imaging promotes a better understanding of the pathogenesis and potential therapies for MELAS patients. This article is part of a Special Issue entitled Biochemistry of Mitochondria, Life and Intervention 2010.  相似文献   

3.
In stroke-like episodes of patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), changes in oxidative stress and glucose metabolism and their sequence remain obscure. We developed a novel double imaging method using positron emission tomography (PET) with [62Cu]-diacetyl-bis(N4-methylthiosemicarbazone) (62Cu-ATSM) and [18F]-fluorodeoxyglucose (18FDG) to visualize the regional oxidative stress, glucose metabolism and blood flow in brain lesions of stroke-like episodes non-invasively and rapidly. These PET imagings were performed on a MELAS patient with stroke-like lesions, and clearly demonstrated that oxidative stress following hyperemia along with increased glucose metabolism plays crucial roles in the pathogenesis of MELAS stroke-like episodes.  相似文献   

4.
In stroke-like episodes (SEs) of patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), the detection of preclinically latent lesions is a challenge. We report regional cerebral hyperperfusion observed on arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) in the preclinical phase more than 3 months before the clinical onset of SEs in 3 MELAS patients. These hyperperfused areas were not detected by conventional MRI in the preclinical phase and developed into acute lesions at the clinical onset of SEs, suggesting that ASL imaging has the potential for predicting the emergence of SEs.  相似文献   

5.

Objective

To quantify the cerebral OEF at different phases of stroke-like episodes in patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) by using MRI.

Methods

We recruited 32 patients with MELAS confirmed by gene analysis. Conventional MRI scanning, as well as functional MRI including arterial spin labeling and oxygen extraction fraction imaging, was undertaken to obtain the pathological and metabolic information of the brains at different stages of stroke-like episodes in patients. A total of 16 MRI examinations at the acute and subacute phase and 19 examinations at the interictal phase were performed. In addition, 24 healthy volunteers were recruited for control subjects. Six regions of interest were placed in the anterior, middle, and posterior parts of the bilateral hemispheres to measure the OEF of the brain or the lesions.

Results

OEF was reduced significantly in brains of patients at both the acute and subacute phase (0.266 ± 0.026) and at the interictal phase (0.295 ± 0.009), compared with normal controls (0.316 ± 0.025). In the brains at the acute and subacute phase of the episode, 13 ROIs were prescribed on the stroke-like lesions, which showed decreased OEF compared with the contralateral spared brain regions. Increased blood flow was revealed in the stroke-like lesions at the acute and subacute phase, which was confined to the lesions.

Conclusion

MRI can quantitatively show changes in OEF at different phases of stroke-like episodes. The utilization of oxygen in the brain seems to be reduced more severely after the onset of episodes in MELAS, especially for those brain tissues involved in the episodes.  相似文献   

6.
Mitochondria are found in all nucleated human cells and generate most of the cellular energy. Mitochondrial disorders result from dysfunctional mitochondria that are unable to generate sufficient ATP to meet the energy needs of various organs. Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a frequent maternally inherited mitochondrial disorder. There is growing evidence that nitric oxide (NO) deficiency occurs in MELAS syndrome and results in impaired blood perfusion that contributes significantly to several complications including stroke-like episodes, myopathy, and lactic acidosis. Both arginine and citrulline act as NO precursors and their administration results in increased NO production and hence can potentially have therapeutic utility in MELAS syndrome. Citrulline raises NO production to a greater extent than arginine, therefore, citrulline may have a better therapeutic effect. Controlled studies assessing the effects of arginine or citrulline supplementation on different clinical aspects of MELAS syndrome are needed.  相似文献   

7.
We hypothesized that serial changes in platelet (PLT) mitochondrial enzyme (ME) activities might correspond to the effects of medications for mitochondrial encephalomyopathy and stroke-like episodes (MELAS). Cytochrome c and sodium dichloroacetate (DCA) were given to a 7-year-old girl with MELAS who had an A3243G mitochondrial DNA mutation. The effects were evaluated with whole PLT-ME assays, developed by our group, using a microplate-reader. During cytochrome c treatment, complex II+III (II+III), complex IV (IV) and citrate synthase (CS) activities showed gradual but statistically significant decrease. II+III activity dropped below normal. II+III/CS activity was initially below normal, followed by a transient improvement, then decreased again before the appearance of central nervous system symptoms. II+III, IV, II+III/CS and IV/CS activities reached their lowest levels in association with a stroke-like episode, then increased with DCA treatment. Our results suggest that progressive mitochondrial dysfunction may occur before the stroke-like episodes in MELAS and that DCA treatment may increase mitochondrial activities. Our whole PLT-ME assay system may be useful for serially evaluating mitochondrial functions in relation to clinical symptoms.  相似文献   

8.
To investigate the relationship between oxidative stress and progressive spread of the stroke-like lesions in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) with 3243A>G mutation, we retrospectively analyzed the spread frequency in patients with and without treatment with the radical scavenger edaravone. Oxidative damage and defensive enzymes were histologically evaluated. Spread was significantly less frequent in the patients treated with edaravone. Although 8-hydroxy-2′-deoxyguanosine, a marker for oxidative damage of DNA, was obviously accumulated in peri-lesional surviving neurons, manganese superoxide dismutase and 8-oxoguanine glycosylase 1 were not up-regulated in those neurons. Increased oxidative stress and insufficient defense could be involved in the pathogenesis of the spreading lesions in MELAS.  相似文献   

9.
Abstract

Objective: To investigate the clinical features and imaging characteristics of mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS).

Methods: Seventeen patients with MELAS diagnosed in the Affiliated Hospital of Xuzhou Medical University from July 2014 to August 2018 were enrolled in this study and their clinical manifestations, imaging and histopathological features were retrospectively analysed. We also discussed and summarised the related literature.

Results: All of the 12 patients had seizures; stroke-like episodes in 12 cases; audio-visual impairment in 12 cases; headache in six cases; dysplasia in four cases; mental retardation in three cases; ataxia in two cases. On cranial magnetic resonance (MR) scans, the most common manifestations were in temporal–occipital–parietal lobe, cortical or subcortical areas as well as frontal lobe, thalamus, and basal ganglia showing long or equal T1 signals, long T2 signals, and hyperintense or iso-intense diffusion-weighted imaging (DWI) signals accompanied by ventricular enlargement and brain atrophy. MR spectroscopy showed that lactic acid peaks could be found in lesion sites, normal brain tissues, and cerebrospinal fluid. Muscle biopsy and genetic testing are the gold standard for diagnosing MELAS, muscle biopsy revealed COX-negative muscle fibres and SDH-stained red ragged fibres (RRF) under the sarcolemma. Mutations of mtDNA A3243G locus were common on gene testing. Improvement of mitochondrial function was observed after symptomatic and supportive treatment.

Conclusion: MELAS should be considered for patients with epileptic seizures, headache, stroke-like episodes, extraocular palsy, cognitive decline and other clinical manifestations with the lesion located in the temporal–occipital–parietal lobe regardless of the distribution of blood vessels, and further examinations including muscle biopsy and gene testing should be performed to confirm the diagnosis.  相似文献   

10.
Because chronic L-arginine supplementation improves insulin sensitivity and endothelial function in nonobese type 2 diabetic patients, the aim of this study was to evaluate the effects of a long-term oral L-arginine therapy on adipose fat mass (FM) and muscle free-fat mass (FFM) distribution, daily glucose levels, insulin sensitivity, endothelial function, oxidative stress, and adipokine release in obese type 2 diabetic patients with insulin resistance who were treated with a combined period of hypocaloric diet and exercise training. Thirty-three type 2 diabetic patients participated in a hypocaloric diet plus an exercise training program for 21 days. Furthermore, they were divided into two groups in randomized order: the first group was also treated with L-arginine (8.3 g/day), and the second group was treated with placebo. Although in the placebo group body weight, waist circumference, daily glucose profiles, fructosamine, insulin, and homeostasis model assessment index significantly decreased, L-arginine supplementation further decreased FM (P < 0.05) and waist circumference (P < 0.0001), preserving FFM (P < 0.03), and improved mean daily glucose profiles (P < 0.0001) and fructosamine (P < 0.03). Moreover, change in area under the curve of cGMP (second messenger of nitric oxide; P < 0.001), superoxide dismutase (index of antioxidant capacity; P < 0.01), and adiponectin levels (P < 0.02) increased, whereas basal endothelin-1 levels (P < 0.01) and leptin-to-adiponectin ratio (P < 0.05) decreased in the L-arginine group. Long-term oral L-arginine treatment resulted in an additive effect compared with a diet and exercise training program alone on glucose metabolism and insulin sensitivity. Furthermore, it improved endothelial function, oxidative stress, and adipokine release in obese type 2 diabetic patients with insulin resistance.  相似文献   

11.
Michelson DJ  Ashwal S 《Mitochondrion》2004,4(5-6):665-674
Stroke occurs with an increased frequency in patients with mitochondrial disorders and is a characteristic feature of the MELAS phenotype. This article explores the proposed mechanisms by which mitochondrial dysfunction may contribute to both vascular and non-vascular strokes and stroke-like episodes. The clinical features, neuroimaging, and pathologic findings of MELAS are reviewed as evidence for a cytopathologic basis for stroke in mitochondrial disorders.  相似文献   

12.
Mitochondrial encephalopathy, lactic acidosis and stroke-like episodes syndrome (MELAS) is the most frequent syndromic manifestation of A3243G mutation in mitochondrial DNA. Detection of A3243G mutation in blood is less helpful for the diagnosis of MELAS and the carriers, and the mutation ratio in blood correlates only in a limited extent with the severity of the disease. Here we compared the ratio of A3243G mutation in four easily available samples (blood, urine, hair follicle and saliva) in patients with MELAS carrying A3243G mutation as well as their maternal relatives from 32 families, to find out the samples appropriate for the detection of the patients and carriers and useful for the evaluation of clinical severity from their mutation ratio. In MELAS patients and the carriers with minor symptoms or normal phenotype, A3243G mutation ratio was significantly higher in urine than in blood. A close correlation between A3243G mutation ratio in blood and that in urine, hair follicles and saliva was found in the probands and their relatives. Clinical features closely correlated with the mutation ratio in urine. Measurement of A3243G mutation ratio in urine is a non-invasive, convenient and rapid method with its diagnostic meaning superior to blood testing.  相似文献   

13.
刘莉  邵宇权  张宝荣  蒋萍萍  都爱莲  管敏鑫 《遗传》2014,36(11):1159-1167
线粒体脑肌病伴高乳酸血症和卒中样发作综合征(Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes, MELAS)是一种异质性很强的遗传代谢性疾病,而位于tRNA Leu(UUR)基因的A3243G突变是该疾病最常见的致病位点。文章对6个汉族MELAS家系的先证者进行了临床病理、分子遗传学特征分析,探讨了线粒体基因多态性对MELAS病人表型可能产生的影响。线粒体基因检测结果显示,4例先证者为A3243G阳性,其异质性比例介于29%~59%之间,临床症状的严重性和异质性程度大致呈正相关;2例MELAS/Leigh叠加综合征先证者为A3243G阴性,复发次数和严重程度重于其他4例先证者,其中1例先证者的血液和肌肉组织中发现ND5基因T13094C突变,该位点已报道与MELAS/Leigh叠加综合征、小脑共济失调相关。另外,线粒体基因全序列测序结果显示:除主要致病突变外,还存在多个与耳聋、癫痫、糖尿病、心肌病、Leigh综合征相关的线粒体基因多态位点,临床症状严重的患者其多态位点也更多。这表明MELAS综合征的复杂表型不仅受致病突变位点的直接影响,也可能受到其他与疾病相关的多态性位点的修饰作用。  相似文献   

14.
Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a mitochondrial disease caused by mutations in the mitochondrial genome. This study investigated the efficacy of β-lapachone (β-lap), a natural quinone compound, in rescuing mitochondrial dysfunction in MELAS cybrid cells. β-Lap significantly restored energy production and mitochondrial membrane potential as well as normalized the elevated ROS level in MELAS cybrid cells. Additionally, β-lap reduced lactic acidosis and restored glucose uptake in the MELAS cybrid cells. Finally, β-lap activated Sirt1 by increasing the intracellular NAD+/NADH ratio, which was accompanied by increased mtDNA content. Two other quinone compounds (idebenone and CoQ10) that have rescued mitochondrial dysfunction in previous studies of MELAS cybrid cells had a minimal effect in the current study. Taken together, these results demonstrated that β-lap may provide a novel therapeutic modality for the treatment of MELAS.  相似文献   

15.
A mutation in mitochondrial DNA, which was originally identified in patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), can be associated with a subtype of diabetes mellitus. To determine the molecular and histological basis of impaired insulin secretion in the subjects with this mutation, we studied autopsy pancreata specimens from eight subjects diagnosed as having MELAS. The 3243 bp mutation was identified in seven out of eight pancreata examined. Immunohistochemical studies demonstrated a reduction in total islet mass, and in the numbers of both B and A cells. No evidence of insulitis or apoptosis was found. These data suggested that the 3243 bp mutation may cause the reduction of islet cells, mainly through mechanisms other than autoimmune destruction.  相似文献   

16.
Due to their prokaryotic origins, mitochondria are susceptible to a number of antibiotics that target the bacterial ribosome, and this vulnerability is exacerbated by certain mutations of the mitochondrial genome.MELAS (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes) syndrome is characterised by biochemical and structural abnormalities of the muscle mitochondria, in which episodes of lactic acidosis stem from dysfunction of assembled respiratory complex I.Linezolid is an oxazolidinone antibiotic that has been reported to induce lactic acidosis, especially after prolonged administration, through inhibition of the mitochondrially synthesised components of oxidative phosphorylation.We report a patient with longstanding MELAS who suffered a severe lactic acidosis of rapid onset, with associated features of mitochondrial failure, shortly after the commencement of linezolid therapy and in the context of an otherwise improving clinical picture.This case emphasises the importance of circumspection when utilising drugs known to be toxic to the mitochondrion in patients with mitochondrial disease. In particular, given the biochemically plausible interaction, it would seem prudent to avoid the use of linezolid in patients with MELAS whenever possible.  相似文献   

17.
The total sequences of mitochondrial DNA were determined in two patients with juvenile-onset mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) due to Complex I deficiency. Patients 1 and 2 had three and two unique point mutations, respectively, causing replacement of phylogenically conserved amino acids. A transition from G to A was found at nucleotide position 5601 in the alanine tRNA gene of Patient 2, and a transition from A to G was found at 3243 in the leucine (UUR) tRNA gene of both patients. The latter mutation located at the phylogenically conserved 5' end of the dihydrouridine loop of the tRNA molecule, and was present in two patients with adult-onset MELAS and absent in controls. These results indicate that a mass of mtDNA mutations including the A-to-G transition in the tRNA(Leu) gene is a genetic cause of MELAS.  相似文献   

18.
MELAS is a common mitochondrial disease frequently associated with the m.3243A>G point mutation in the tRNALeu(UUR) of mitochondrial DNA and characterized by stroke-like episodes with vasogenic edema and lactic acidosis. The pathogenic mechanism of stroke and brain edema is not known. Alterations in the blood brain barrier (BBB) caused by respiratory chain defects in the cortical microvessels could explain the pathogenesis. To test this hypothesis we developed a tissue culture model of the human BBB. The MELAS mutation was introduced into immortalized brain capillary endothelial cells and astrocytes. Respiratory chain activity and transendothelial electrical resistance, TEER was measured. Severe defects of respiratory chain complex I and IV activities, and a moderate deficiency of complex II activity in cells harboring the MELAS mutation were associated with low TEER, indicating that the integrity of the BBB was compromised. These data support our hypothesis that respiratory chain defects in the components of the BBB cause changes in permeability.  相似文献   

19.
We studied 42 individuals, including 8 patients with either complete or partial syndrome of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), 8 patients with either complete or partial syndrome of myoclonic epilepsy with ragged-red fibers (MERRF) and 26 maternal family members who carried either the A3243G or A8344G mutation of mitochondrial DNA (mtDNA). Clinical manifestations and prognosis were followed up in the patients harboring the A3243G or A8344G mutation. The relationship between clinical features and proportions of mutant mtDNAs in muscle biopsies, blood cells and/or hair follicles was studied. In the 8 regularly followed patients with the A3243G mutation, 4 died within 1 month to 7 years due to status epilepticus and/or recurrent stroke-like episodes. Two patients developed marked mental deterioration and 2 remained stationary. All of the patients harboring the A8344G mutation were stable or deteriorated slightly, except for 1 patient who died due to brain herniation after putaminal hemorrhage. The A3243G and A8344G mtDNA mutations were heteroplasmic in the muscle biopsies, blood cells and hair follicles of both the probands and their maternal family members. The mean proportion of A3243G mutant mtDNA in the muscle biopsies of the patients with MELAS syndrome (68.5 ± 21.3%, range 33–92%) was significantly higher than that of the asymptomatic family members (37.1 ± 12.6%, range 0–51%). The average proportions of A8344G mutant mtDNA in the muscle biopsies (90.1 ± 3.9%, range 89–95%) and hair follicles (93.9 ± 6.4%, range 84–99%) of the patients with MERRF syndrome were also significantly higher than those of the asymptomatic family members (muscle: 40.3 ± 39.5%, range 1–80%; hair follicles: 51.0 ± 44.5%, range 0.1–82%). We concluded that measurement of the proportion of mutant mtDNA in muscle biopsies may provide useful information in the identification of symptomatic patients with mitochondrial encephalomyopathies. For patients with the A3243G mutation, the prognosis was related to status epilepticus and the number of recurrent stroke-like episodes and was much worse than for patients with the A8344G mutation of mtDNA, who had stable or slowly deteriorating clinical courses.  相似文献   

20.
The A to G transition mutation at position 3260 of the mitochondrial genome is usually associated with cardiomyopathy and myopathy. One Japanese kindred reported the phenotype of mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS syndrome) in association with the A3260G mtDNA mutation. We describe the first Caucasian cases of MELAS syndrome associated with the A3260G mutation. Furthermore, this mutation was associated with exercise-induced rhabdomyolysis, hearing loss, seizures, cardiomyopathy, and autism in the large kindred. We conclude that the A3260G mtDNA mutation is associated with wide phenotypic heterogeneity with MELAS and other “classical” mitochondrial phenotypes being manifestations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号