首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Recessively inherited natural and induced mutations in the barley Mlo gene confer durable broad-spectrum resistance against the powdery mildew pathogen, Blumeria graminis f.sp. hordei. Mlo codes for a member of a plant-specific family of polytopic integral membrane proteins with unknown biochemical activity. Resistant barley mlo mutant alleles identify amino acid residues that are critical for Mlo function in the context of powdery mildew susceptibility.  相似文献   

2.
Barley Mlo defines the founder of a novel class of plant integral membrane proteins. Lack of the wild type protein leads to broad spectrum disease resistance against the pathogenic powdery mildew fungus and deregulated leaf cell death. Scanning N-glycosylation mutagenesis and Mlo-Lep fusion proteins demonstrated that Mlo is membrane-anchored by 7 transmembrane (TM) helices such that the N terminus is located extracellularly and the C terminus intracellularly. Fractionation of leaf cells and immunoblotting localized the protein to the plant plasma membrane. A genome-wide search for Mlo sequence-related genes in Arabidopsis thaliana revealed approximately 35 family members, the only abundant gene family encoding 7 TM proteins in higher plants. The sequence variability of Mlo family members within a single species, their topology and subcellular localization are reminiscent of the most abundant class of metazoan 7 TM receptors, the G-protein-coupled receptors.  相似文献   

3.
In plants, powdery-mildew-resistance locus o (Mlo) genes encode proteins that are calmodulin-binding proteins involved in a variety of cellular processes. However, systematic characterization of this gene family in soybean (Glycine max L. Merr.) has not been yet reported. In this study, we identified MLO domain-contained members in soybean and examined their expression under phytohormone treatment and abiotic stress conditions. A total of 20 soybean Mlo genes were identified (GmMlo1-20), which are distributed on 13 chromosomes, and display diverse exon-intron structures. Phylogenetic analysis indicated that the Mlo family can be classified into four subfamilies. Sequence comparison was used to reveal the conserved calmodulin-binding domain (CaMBD) in GmMLO proteins. The expression of GmMlo genes was influenced by various phytohormone treatments and abiotic stresses, suggesting that these Mlo genes have various roles in the response of soybean to environmental stimuli. Promoter sequence analysis revealed an overabundance of stress and/or phytohormone-related cis-elements in GmMlo genes. These data provide important clues for elucidating the functions of genes of the Mlo gene family.  相似文献   

4.
Cheng H  Kun W  Liu D  Su Y  He Q 《Molecular biology reports》2012,39(2):1903-1907
Mlo gene encodes an important transmembrane protein that is involved in biotic/abiotic stresses. Using the method of homologous, we cloned a Mlo gene from melon, named CmMlo1. The gene is 1551 bp in length, encoding 516 amino acids; it has seven-transmembrane domain topology and is a typical transmembrane protein. Localization analysis in onion epidermal cells showed that CmMlo1-GFP is localized to the plasma membrane. RT-PCR results indicated that CmMlo1 is mainly expressed in melon cotyledon and flower, with a tissue-specific distribution manner. CmMlo1 expression is not obvious under powdery mildew stress, but under cadmium stress, its expression was significantly up-regulated, indicating that CmMlo1 is possibly involved in abiotic stress.  相似文献   

5.
Powdery mildew (PM) is one of the major plant pathogens. The conventional method of PM control includes frequent use of sulfur-based fungicides adding to production costs and potential harm to the environment. PM remains a major scourge for Rosaceae crops where breeding approaches mainly resort to gene-for-gene resistance. We have tested an alternate source of PM resistance in Rosaceae. Mildew resistance locus O (MLO) has been well studied in barley due to its role in imparting broad spectrum resistance to PM. We identified PpMlo1 (Prunus persica Mlo) in peach and characterized it further to test if a similar mechanism of resistance is conserved in Rosaceae. Due to its recalcitrance in tissue culture, reverse genetic studies involving PpMloI were not feasible in peach. Therefore, Fragaria x ananassa LF9 line, a taxonomic surrogate, was used for functional analysis of PpMlo1. Agrobacterium-mediated transformation yielded transgenic strawberry plants expressing PpMlo1 in sense and antisense orientation. Antisense expression of PpMlo1 in transgenic strawberry plants conferred resistance to Fragaria-specific powdery mildew, Podosphaera macularis. Phylogenetic analysis of 208 putative Mlo gene copies from 35 plant species suggests a large number of duplications of this gene family prior to the divergence of monocots and eudicots, early in eudicot diversification. Our results indicate that the Mlo-based resistance mechanism is functional in Rosaceae, and that Fragaria can be used as a host to test mechanistic function of genes derived from related tree species. To the best of our knowledge, this work is one of the first attempts at testing the potential of using a Mlo-based resistance strategy to combat powdery mildew in Rosaceae.  相似文献   

6.
Interactions between introns via exon definition in plant pre-mRNA splicing   总被引:3,自引:1,他引:2  
The barley gene Mlo encodes a prototype of a novel class of plant proteins. In mlo mutants, absence of the 60 kDa wild-type Mlo protein results in broad-spectrum resistance to the powdery mildew fungus, Erysiphe graminis f. sp. hordei . To directly assess its function, Mlo was transiently expressed with a marker gene encoding a modified green fluorescent protein (GFP) in leaf epidermal cells of mlo resistant barley lines. Fungal inoculation of epidermal cells transfected with wild-type Mlo led to haustorium formation and abundant sporulation. Therefore, expression of the wild-type Mlo gene, in mlo resistant genotypes, is both necessary and sufficient to restore susceptibility to fungal attack. Complementation of mlo resistance alleles was restricted to single host cells, indicating a cell-autonomous function for the wild-type Mlo protein. We discuss our findings with respect to source–sink relationships of plants and biotrophic fungi and the potentially wide-ranging use of the transient complementation assay to analyse host compatibility and defence in response to powdery mildew attack.  相似文献   

7.
8.
Journal of Plant Research - The mildew locus O (Mlo) gene family is ubiquitous in land plants. Some members of this gene family are involved in negative regulation of powdery mildew resistance,...  相似文献   

9.

Key message

We demonstrate that Lr67/Yr46 has pleiotropic effect on stem rust and powdery mildew resistance and is associated with leaf tip necrosis. Genes are designated as Sr55, Pm46 and Ltn3 , respectively.

Abstract

Wheat (Triticum aestivum) accession RL6077, known to carry the pleiotropic slow rusting leaf and yellow rust resistance genes Lr67/Yr46 in Thatcher background, displayed significantly lower stem rust (P. graminis tritici; Pgt) and powdery mildew (Blumeria graminis tritici; Bgt) severities in Kenya and in Norway, respectively, compared to its recurrent parent Thatcher. We investigated the resistance of RL6077 to stem rust and powdery mildew using Avocet × RL6077 F6 recombinant inbred lines (RILs) derived from two photoperiod-insensitive F3 families segregating for Lr67/Yr46. Greenhouse seedling tests were conducted with Mexican Pgt race RTR. Field evaluations were conducted under artificially initiated stem rust epidemics with Pgt races RTR and TTKST (Ug99 + Sr24) at Ciudad Obregon (Mexico) and Njoro (Kenya) during 2010–2011; and under natural powdery mildew epiphytotic in Norway at Ås and Hamar during 2011 and 2012. In Mexico, a mean reduction of 41 % on stem rust severity was obtained for RILs carrying Lr67/Yr46, compared to RILs that lacked the gene, whereas in Kenya the difference was smaller (16 %) but significant. In Norway, leaf tip necrosis was associated with Lr67/Yr46 and RILs carrying Lr67/Yr46 showed a 20 % reduction in mean powdery mildew severity at both sites across the 2 years of evaluation. Our study demonstrates that Lr67/Yr46 confers partial resistance to stem rust and powdery mildew and is associated with leaf tip necrosis. The corresponding pleiotropic, or tightly linked, genes, designated as Sr55, Pm46, and Ltn3, can be utilized to provide broad-spectrum durable disease resistance in wheat.  相似文献   

10.

Key message

A gene encoding a coproporphyrinogen III oxidase mediates disease resistance in plants by the salicylic acid pathway.

Abstract

A number of genes that regulate powdery mildew resistance have been identified in Arabidopsis, such as ENHANCED DISEASE RESISTANCE 1 to 3 (EDR1 to 3). To further study the molecular interactions between the powdery mildew pathogen and Arabidopsis, we isolated and characterized a mutant that exhibited enhanced resistance to powdery mildew. The mutant also showed dramatic powdery mildew-induced cell death as well as growth defects and early senescence in the absence of pathogens. We identified the affected gene by map-based cloning and found that the gene encodes a coproporphyrinogen III oxidase, a key enzyme in the tetrapyrrole biosynthesis pathway, previously known as LESION INITIATION 2 (LIN2). Therefore, we designated the mutant lin2-2. Further studies revealed that the lin2-2 mutant also displayed enhanced resistance to Hyaloperonospora arabidopsidis (H.a.) Noco2. Genetic analysis showed that the lin2-2-mediated disease resistance and spontaneous cell death were dependent on PHYTOALEXIN DEFICIENT 4 (PAD4), SALICYLIC ACID INDUCTION-DEFICIENT 2 (SID2), and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), which are all involved in salicylic acid signaling. Furthermore, the relative expression levels of defense-related genes were induced after powdery mildew infection in the lin2-2 mutant. These data indicated that LIN2 plays an important role in cell death control and defense responses in plants.  相似文献   

11.
白粉病菌(Blumeria graminis)是一类高度专化性的寄生真菌,可侵染650多种单子叶植物和 9000多种双子叶植物,能够引起多种麦类作物的白粉病,给农业生产带来巨大的损失。由于白粉病菌生理小种多、变异快,所以利用专化性抗病基因难以解决植物的持久抗病性问题。人们在研究大麦白粉病时.发现大麦Mlo基因的隐性突变可导致大麦对绝大多数白粉病菌生理小种的高效持久的广谱抗病性。Schulze-Lefert等多家实验室合作于1997年成功克隆了野生的 Mlo基因。进一步研究表明.该基因编码一种植物特有的具有7个跨膜区和羧基端长尾的膜蛋白(Mlo),它可能对植物细胞的坏死起负调控作用。但Mlo基因如何表达及其在白粉病菌发育中的作用机制尚不清楚。  相似文献   

12.
白粉病菌(Blumeria graminis)是一类高度专化性的寄生真菌。可侵染650多种单子叶植物和9000多种双子叶植物.能够引起多种麦类作物的白粉病。给农业生产带来巨大的损失。由于白粉病菌生理小种多、变异快。所以利用专化性抗病基因难以解决植物的持久抗病性问题。人们在研究大麦白粉病时。发现大麦Mlo基因的隐性突变可导致大麦对绝大多数白粉病菌生理小种的高效持久的广谱抗病性。Schulze—Lefert等多家实验室合作于1997年成功克隆了野生的Mlo基因。进一步研究表明。该基因编码一种植物特有的具有7个跨膜区和羧基端长尾的膜蛋白(Mlo),它可能对植物细胞的坏死起负调控作用。但Mlo基因如何表达及其在白粉病菌发育中的作用机制尚不清楚。  相似文献   

13.
大麦抗白粉病基因Mlo的研究进展   总被引:10,自引:0,他引:10  
野生型Mlo基因是大麦抗白粉病的负调控因子,该基因突变,赋予大麦对白粉菌的广谱抗性。综述了Mlo基因结构、功能及Mlo突变的等位基因(mlo)的抗性特点;讨论了mlo基因可能的抗病机制。为mlo抗性在麦类白粉病抗病育种中的应用提供了理论基础。  相似文献   

14.

Main conclusion

A novel broad-spectrum powdery mildew resistance gene PmPB74 was identified in wheat- Agropyron cristatum introgression line Pubing 74. Development of wheat cultivars with broad-spectrum, durable resistance to powdery mildew has been restricted by lack of superior genetic resources. In this study, a wheat-A. cristatum introgression line Pubing 74, originally selected from a wide cross between the common wheat cultivar Fukuhokomugi (Fukuho) and Agropyron cristatum (L.) Gaertn (2n = 4x = 28; genome PPPP), displayed resistance to powdery mildew at both the seedling and adult stages. The putative alien chromosomal fragment in Pubing 74 was below the detection limit of genomic in situ hybridization (GISH), but evidence for other non-GISH-detectable introgressions was provided by the presence of three STS markers specific to A. cristatum. Genetic analysis indicated that Pubing 74 carried a single dominant gene for powdery mildew resistance, temporarily designated PmPB74. Molecular mapping showed that PmPB74 was located on wheat chromosome arm 5DS, and flanked by markers Xcfd81 and HRM02 at genetic distances of 2.5 and 1.7 cM, respectively. Compared with other lines with powdery mildew resistance gene(s) on wheat chromosome arm 5DS, Pubing 74 was resistant to all 28 Blumeria graminis f. sp tritici (Bgt) isolates from different wheat-producing regions of northern China. Allelism tests indicated that PmPB74 was not allelic to PmPB3558 or Pm2. Our work showed that PmPB74 is a novel gene with broad resistance to powdery mildew, and hence will be helpful in broadening the genetic basis of powdery mildew resistance in wheat.
  相似文献   

15.
Powdery mildew disease caused by Leveillula taurica is a serious fungal threat to greenhouse tomato and pepper production. In contrast to most powdery mildew species which are epiphytic, L. taurica is an endophytic fungus colonizing the mesophyll tissues of the leaf. In barley, Arabidopsis, tomato and pea, the correct functioning of specific homologues of the plant Mlo gene family has been found to be required for pathogenesis of epiphytic powdery mildew fungi. The aim of this study was to investigate the involvement of the Mlo genes in susceptibility to the endophytic fungus L. taurica. In tomato (Solanum lycopersicum), a loss-of-function mutation in the SlMlo1 gene results in resistance to powdery mildew disease caused by Oidium neolycopersici. When the tomato Slmlo1 mutant was inoculated with L. taurica in this study, it proved to be less susceptible compared to the control, S. lycopersicum cv. Moneymaker. Further, overexpression of SlMlo1 in the tomato Slmlo1 mutant enhanced susceptibility to L. taurica. In pepper, the CaMlo2 gene was isolated by applying a homology-based cloning approach. Compared to the previously identified CaMlo1 gene, the CaMlo2 gene is more similar to SlMlo1 as shown by phylogenetic analysis, and the expression of CaMlo2 is up-regulated at an earlier time point upon L. taurica infection. However, results of virus-induced gene silencing suggest that both CaMlo1 and CaMlo2 may be involved in the susceptibility of pepper to L. taurica. The fact that overexpression of CaMlo2 restored the susceptibility of the tomato Slmlo1 mutant to O. neolycopersici and increased its susceptibility to L. taurica confirmed the role of CaMlo2 acting as a susceptibility factor to different powdery mildews, though the role of CaMlo1 as a co-factor for susceptibility cannot be excluded.  相似文献   

16.
根据GenBank中公布的大麦白粉病抗性控制基因Mlo cDNA序列及一个来源于栽培一粒小麦(Triticum monococcum L.)的假定抗病基因序列分别设计引物,以携带小麦抗白粉病基因的近等基因系为材料进行RT-PCR筛选.结果获得两个表达基因的cDNA克隆.其中一个与大麦白粉病抗性控制基因Mlo的同源性达83%.另一个为非通读序列,含有两个可能的开放阅读框,分别包含抗病基因NBS保守结构域2和3以及与水稻抗稻瘟病基因Pib蛋白末端相似的13个LRR区域,推测该序列属于NBS-LRR类.白粉菌诱导前后,该片段RT-PCR扩增产物存在差异,表明该片段可能与小麦抗病性相关.利用"中国春"缺体-四体系,将该NBS-LRR类序列定位在小麦1D染色体上.  相似文献   

17.

Key message

The Ror1 gene was fine-mapped to the pericentric region of barley chromosome 1HL.

Abstract

Recessively inherited loss-of-function alleles of the barley (Hordeum vulgare) Mildew resistance locus o (Mlo) gene confer durable broad-spectrum disease resistance against the obligate biotrophic fungal powdery mildew pathogen Blumeria graminis f.sp. hordei. Previous genetic analyses revealed two barley genes, Ror1 and Ror2, that are Required for mlo-specified resistance and basal defence. While Ror2 was cloned and shown to encode a t-SNARE protein (syntaxin), the molecular nature or Ror1 remained elusive. Ror1 was previously mapped to the centromeric region of the long arm of barley chromosome 1H. Here, we narrowed the barley Ror1 interval to 0.18 cM and initiated a chromosome walk using barley yeast artificial chromosome (YAC) clones, next-generation DNA sequencing and fluorescence in situ hybridization. Two non-overlapping YAC contigs containing Ror1 flanking genes were identified. Despite a high degree of synteny observed between barley and the sequenced genomes of the grasses rice (Oryza sativa), Brachypodium distachyon and Sorghum bicolor across the wider chromosomal area, the genes in the YAC contigs showed extensive interspecific rearrangements in orientation and order. Consequently, the position of a Ror1 homolog in these species could not be precisely predicted, nor was a barley gene co-segregating with Ror1 identified. These factors have prevented the molecular identification of the Ror1 gene for the time being.  相似文献   

18.
《Genomics》2020,112(1):312-322
NBS-LRR comprises a large class of disease resistance (R) proteins that play a widespread role in plant protection against pathogens. In grapevine, powdery mildew cause significant losses in its productivity and efforts are being directed towards finding of resistance loci or genes imparting resistance/tolerance against such fungal diseases. In the present study, we performed genome-wide analysis of NBS-LRR genes during PM infection in grapevine. We identified 18, 23, 12, 16, 10, 10, 9, 20 and 14 differentially expressed NBS-LRR genes in response to PM infection in seven partially PM-resistant (DVIT3351.27, Husseine, Karadzhandal, Khalchili, Late vavilov, O34–16, Sochal) and 2 PM-susceptible (Carignan and Thompson seedless) V. vinifera accessions. Further, the identified sequences were characterized based on chromosomal locations, physicochemical properties, gene structure and motif analysis, and functional annotation by Gene Ontology (GO) mapping. The NBS-LRR genes responsive to powdery mildew could potentially be exploited to improve resistance in grapes.  相似文献   

19.
20.

Key message

By applying comparative genomics analyses, a high-density genetic linkage map narrowed the powdery mildew resistance gene Pm41 originating from wild emmer in a sub-centimorgan genetic interval.

Abstract

Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici, results in large yield losses worldwide. A high-density genetic linkage map of the powdery mildew resistance gene Pm41, originating from wild emmer (Triticum turgidum var. dicoccoides) and previously mapped to the distal region of chromosome 3BL bin 0.63–1.00, was constructed using an F5:6 recombinant inbred line population derived from a cross of durum wheat cultivar Langdon and wild emmer accession IW2. By applying comparative genomics analyses, 19 polymorphic sequence-tagged site markers were developed and integrated into the Pm41 genetic linkage map. Ultimately, Pm41 was mapped in a 0.6 cM genetic interval flanked by markers XWGGC1505 and XWGGC1507, which correspond to 11.7, 19.2, and 24.9 kb orthologous genomic regions in Brachypodium, rice, and sorghum, respectively. The XWGGC1506 marker co-segregated with Pm41 and could be served as a starting point for chromosome landing and map-based cloning as well as marker-assisted selection of Pm41. Detailed comparative genomics analysis of the markers flanking the Pm41 locus in wheat and the putative orthologous genes in Brachypodium, rice, and sorghum suggests that the gene order is highly conserved between rice and sorghum. However, intra-chromosome inversions and re-arrangements are evident in the wheat and Brachypodium genomic regions, and gene duplications are also present in the orthologous genomic regions of Pm41 in wheat, indicating that the Brachypodium gene model can provide more useful information for wheat marker development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号