首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
小干扰RNA (small interfering RNA,siRNA)是RNA干扰的引发物,激发与之互补的目标mRNA沉默,对基因调控及疾病治疗有重要意义。siRNA作为药物需要克服血管屏障、实现细胞内吞及溶酶体逃逸,同时还需要避免核酸酶作用下发生降解。因此,设计合适的纳米载体以帮助siRNA成功递送进细胞并发挥作用是目前siRNA药物发展的重要目标。纳米载体的材料种类、尺寸、结构、表面修饰等精确设计是实现siRNA药物成功递送的重要因素。随着研究的深入和应用的发展,siRNA药物纳米载体的精确控制制备、精准靶向递送及多功能化取得了较好的成果。本文围绕siRNA药物纳米载体,对siRNA药物应用及其递送困难、siRNA药物纳米载体主要设计策略、目前siRNA药物上市情况进行介绍,同时对其未来发展方向进行展望。  相似文献   

2.
BackgroundIn past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity.Scope of reviewThe applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems.Major conclusionsIn spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment.General significanceThis review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells.  相似文献   

3.
BackgroundLiposomes are predominantly used sorts of nanocarriers for active a targeted delivery through surface functionalization using targeting ligand. The folate receptors are overexpressed in various cancers including breast cancer and because of its binding aptitude specifically to folate receptors, folic acid became the attractive ligand.MethodsIn this research, we have developed a folate and Poly-l-Lysine conjugate and coated this conjugate onto the liposomes. The prepared liposomes were characterized using DLS, FTIR, NMR, SEM, TEM, XRD, AFM, stability and drug release studies. Furthermore, in vitro studies were carried out on FR overexpressed breast cancer cell line.ResultsThe FA-LUT-ABC-Lip have diameter of 183 ± 3.17 nm with positive surface charge +33.65 ± 3 mV and the drug release studies confirm the NIR responsive payload cleavage. The coated formulation (in presence of NIR light) effectively reduced the IC50 values and kills breast cancer cells through FR mediated internalization and accelerated drug release. Moreover, LUT Formulation shows anticancer effect due to significant inhibition of cell migration and proliferation by regulating VEGF expression and induced apoptosis through the caspase-3 up-regulation.ConclusionIt is evident from the in vitro studies that the formulation was found to be very effective and can be explored for triggered and targeted delivery of the substances through active targeting.General significanceCombining receptor mediated drug delivery with triggered release aid in more amounts of drug reaching the target site and achieving enhanced therapeutic activity.  相似文献   

4.
Targeted therapy for cancer using pH-responsive nanocarrier systems   总被引:1,自引:0,他引:1  
Manchun S  Dass CR  Sriamornsak P 《Life sciences》2012,90(11-12):381-387
Most of the conventional chemotherapeutic agents used against cancer have poor efficacy. An approach to improve the efficacy of cancer chemotherapy is the development of carrier systems that can be triggered to release the anticancer drug in response to extracellular or intracellular chemical stimuli. To this end, pH-responsive nanocarriers have been developed to target drugs either to the slightly acidic extracellular fluids of tumor tissue or, after endocytosis, to the endosomes or lysosomes within cancer cells. These systems can release the drug by specific processes after accumulation in tumor tissues via the enhanced permeability and retention (EPR) effect or they can release the drugs in endosomes or lysosomes by pH-controlled hydrolysis after they are taken up by the cell via the endocytic pathway. This strategy facilitates the specific delivery of the drug while reducing systemic side-effects with high potential for improving the efficacy of cancer chemotherapy.  相似文献   

5.
Co-culture models are currently bridging the gap between classical cultures and in vivo animal models. Exploring this novel approach unlocks the possibility to mimic the tumor microenvironment in vitro, through the establishment of cancer-stroma synergistic interactions. Notably, these organotypic models offer a perfect platform for the development and pre-clinical evaluation of candidate nanocarriers loaded with anti-tumoral drugs in a high throughput screening mode, with lower costs and absence of ethical issues. However, this evaluation was until now limited to co-culture systems established with precise cell ratios, not addressing the natural cell heterogeneity commonly found in different tumors. Therefore, herein the multifunctional nanocarriers efficiency was characterized in various fibroblast-MCF-7 co-culture systems containing different cell ratios, in order to unravel key design parameters that influence nanocarrier performance and the therapeutic outcome. The successful establishment of the co-culture models was confirmed by the tissue-like distribution of the different cells in culture. Nanoparticles incubation in the various co-culture systems reveals that these nanocarriers possess targeting specificity for cancer cells, indicating their suitability for being used in this illness therapy. Additionally, by using different co-culture ratios, different nanoparticle uptake profiles were obtained. These findings are of crucial importance for the future design and optimization of new drug delivery systems, since their real targeting capacity must be addressed in heterogenous cell populations, such as those found in tumors.  相似文献   

6.
Liposomes and lipid-core micelles prepared of polyethylene glycol-phosphatidylethanolamine (PEG-PE) conjugates have been modified with nucleosome-specific monoclonal antinuclear autoantibody (ANA) 2C5 (mAb 2C5) specifically recognizing a broad variety of cancer cells through the cancer cell surface-bound nucleosomes. mAb 2C5 preserves its specific properties upon the binding with the lipid-based pharmaceutical nanocarriers, and 2C5-modified immunoliposomes and immunomicelles demonstrate an enhanced binding with tumor cells both in vitro and in vivo. We have investigated the delivery of therapeutic and diagnostic agents with such tumor-targeted immunoliposomes and immunomicelles to various tumors in vivo and in vitro. Both lipid-based nanocarriers provided enhanced tumor delivery of imaging agents ((111)In) and antitumor drugs (doxorubicin and photodynamic therapy agents) to tumor cells under different experimental settings. Pharmaceutical lipid-based nanoparticular carriers modified with mAb 2C5 could represent universal systems for tumor-specific delivery of various soluble and insoluble pharmaceuticals.  相似文献   

7.
类风湿关节炎(RA)是全世界难治性自身免疫疾病,其治疗药物虽不断发展,但病灶药物浓度达不到有效水平导致药物疗效不理想或存在各种毒副反应,因此,基于新技术、新方法研究开发针对RA的安全、高效新型制剂是必要的.研究表明,纳米技术的运用可提高药物生物利用度,经皮给药可改善口服和注射带来的毒副作用.对近年来基于经皮给药系统治疗...  相似文献   

8.
Despite the remarkable advancement in the health care sector, cancer remains the second most fatal disease globally. The existing conventional cancer treatments primarily include chemotherapy, which has been associated with little to severe side effects, and radiotherapy, which is usually expensive. To overcome these problems, target-specific nanocarriers have been explored for delivering chemo drugs. However, recent reports on using a few proteins having anticancer activity and further use of them as drug carriers have generated tremendous attention for furthering the research towards cancer therapy. Biomolecules, especially proteins, have emerged as suitable alternatives in cancer treatment due to multiple favourable properties including biocompatibility, biodegradability, and structural flexibility for easy surface functionalization. Several in vitro and in vivo studies have reported that various proteins derived from animal, plant, and bacterial species, demonstrated strong cytotoxic and antiproliferative properties against malignant cells in native and their different structural conformations. Moreover, surface tunable properties of these proteins help to bind a range of anticancer drugs and target ligands, thus making them efficient delivery agents in cancer therapy. Here, we discuss various proteins obtained from common exogenous sources and how they transform into effective anticancer agents. We also comprehensively discuss the tumor-killing mechanisms of different dietary proteins such as bovine α-lactalbumin, hen egg-white lysozyme, and their conjugates. We also articulate how protein nanostructures can be used as carriers for delivering cancer drugs and theranostics, and strategies to be adopted for improving their in vivo delivery and targeting. We further discuss the FDA-approved protein-based anticancer formulations along with those in different phases of clinical trials.  相似文献   

9.
Nanomedicines have gained more and more attention in cancer therapy thanks to their ability to enhance the tumour accumulation and the intracellular uptake of drugs while reducing their inactivation and toxicity. In parallel, nanocarriers have been successfully employed as diagnostic tools increasing imaging resolution holding great promises both in preclinical research and in clinical settings. Lipid-based nanocarriers are a class of biocompatible and biodegradable vehicles that provide advanced delivery of therapeutic and imaging agents, improving pharmacokinetic profile and safety. One of most promising engineering challenges is the design of innovative and versatile multifunctional targeted nanotechnologies for cancer treatment and diagnosis. This review aims to highlight rational approaches to design multifunctional non liposomal lipid-based nanocarriers providing an update of literature in this field.  相似文献   

10.
随着核酸纳米技术的飞速发展,核酸自组装纳米载体已成为药物递送领域的研究热点。针对核酸自组装纳米载体在药物递送中的应用进展进行了系统综述,讨论了不同的核酸自组装策略,阐述了多种靶向递送和药物控制释放方法,同时,总结了核酸自组装纳米递送载体在蛋白质药物、核酸药物、小分子药物和纳米药物递送中的应用,并针对该领域的挑战和未来发展趋势进行了总结和展望,以期为药物递送领域和新型药物系统研究提供参考。  相似文献   

11.
Drug delivery vectors are widely applied to increase drug efficacy while reducing the side effects and potential toxicity of a drug. They allow for patient-tailored therapy, dose titration, and therapeutic drug monitoring. A major part of drug delivery systems makes use of large nanocarriers: liposomes or virus-like particles (VLPs). These systems allow for a relatively large amount of cargo with good stability of vectors, and they offer multiple options for targeting vectors in vivo. Here we discuss endocytic pathways that are available for drug delivery by large nanocarriers. We focus on molecular aspects of the process, including an overview of potential molecular targets for studies of drug delivery vectors and for future solutions allowing targeted drug delivery.  相似文献   

12.
Drug delivery is a rapidly growing area of research motivated by the nanotechnology revolution, the ideal of personalized medicine, and the desire to reduce the side effects of toxic anti-cancer drugs. Amongst a bewildering array of different nanostructures and nanocarriers, those examples that are fundamentally bio-inspired and derived from natural sources are particularly preferred. Delivery of vaccines is also an active area of research in this field. Bacterial cells and their components that have been used for drug delivery, include the crystalline cell-surface layer known as “S-layer”, bacterial ghosts, bacterial outer membrane vesicles, and bacterial products or derivatives (e.g. spores, polymers, and magnetic nanoparticles). Considering the origin of these components from potentially pathogenic microorganisms, it is not surprising that they have been applied for vaccines and immunization. The present review critically summarizes their applications focusing on their advantages for delivery of drugs, genes, and vaccines.  相似文献   

13.
The conjugation of anti-cancer drugs to endogenous ligands has proven to be an effective strategy to enhance their pharmacological selectivity and delivery towards neoplasic tissues. Since cell proliferation has a strong requirement for iron, cancer cells express high levels of transferrin receptors (TfnR), making its ligand, transferrin (Tfn), of great interest as a delivery agent for therapeutics. However, a critical gap exists in the ability to non-invasively determine whether drugs conjugated to Tfn are internalized into target cells in vivo. Due to the enhanced permeability and retention (EPR) effect, it remains unknown whether these Tfn-conjugated drugs are specifically internalized into cancer cells or are localized non-specifically as a result of a generalized accumulation of macromolecules near tumors. By exploiting the dimeric nature of the TfnR that binds two molecules of Tfn in close proximity, we utilized a Förster Resonance Energy Transfer (FRET) based technique that can discriminate bound and internalized Tfn from free, soluble Tfn. In order to non-invasively visualize intracellular amounts of Tfn in tumors through live animal tissues, we developed a novel near infrared (NIR) fluorescence lifetime FRET imaging technique that uses an active wide-field time gated illumination platform. In summary, we report that the NIR fluorescence lifetime FRET technique is capable of non-invasively detecting bound and internalized forms of Tfn in cancer cells and tumors within a live small animal model, and that our results are quantitatively consistent when compared to well-established intensity-based FRET microscopy methods used in in vitro experiments.  相似文献   

14.
Cyclodextrins (CDs) are used in oral pharmaceutical formulations, by means of inclusion complexes formation, with the following advantages for the drugs: (1) solubility, dissolution rate, stability, and bioavailability enhancement; (2) to modify the drug release site and/or time profile; and (3) to reduce or prevent gastrointestinal side effects and unpleasant smell or taste, to prevent drug–drug or drug–additive interactions, or even to convert oil and liquid drugs into microcrystalline or amorphous powders. A more recent trend focuses on the use of CDs as nanocarriers, a strategy that aims to design versatile delivery systems that can encapsulate drugs with better physicochemical properties for oral delivery. Thus, the aim of this work was to review the applications of the CDs and their hydrophilic derivatives on the solubility enhancement of poorly water-soluble drugs in order to increase their dissolution rate and get immediate release, as well as their ability to control (to prolong or to delay) the release of drugs from solid dosage forms, either as complexes with the hydrophilic (e.g., as osmotic pumps) and/or hydrophobic CDs. New controlled delivery systems based on nanotechnology carriers (nanoparticles and conjugates) have also been reviewed.  相似文献   

15.
Targeted delivery of drugs to tumors represents a significant advance in cancer diagnosis and therapy. Therefore, development of novel tumor-specific ligands or pharmaceutical nanocarriers is highly desirable. In this study, we utilized phage display to identify a new targeting peptide, SP90, which specifically binds to breast cancer cells, and recognizes tumor tissues from breast cancer patients. We used confocal and electron microscopy to reveal that conjugation of SP90 with liposomes enables efficient delivery of drugs into cancer cells through endocytosis. Furthermore, in vivo fluorescent imaging demonstrated that SP90-conjugated quantum dots possess tumor-targeting properties. In tumor xenograft and orthotopic models, SP90-conjugated liposomal doxorubicin was found to improve the therapeutic index of the chemotherapeutic drug by selectively increasing its accumulation in tumors. We conclude that the targeting peptide SP90 has significant potential in improving the clinical benefits of chemotherapy in the treatment and the diagnosis of breast cancer.  相似文献   

16.
Multidrug resistance (MDR) is a significant challenge to effective cancer chemotherapy treatment. However, the development of a drug delivery system that allows for the sustained release of combined drugs with improved vesicle stability could overcome MDR in cancer cells. To achieve this, we have demonstrated codelivery of doxorubicin (Dox) and paclitaxel (PTX) via a crosslinked multilamellar vesicle (cMLV). This combinatorial delivery system achieves enhanced drug accumulation and retention, in turn resulting in improved cytotoxicity against tumor cells, including drug-resistant cells. Moreover, this delivery approach significantly overcomes MDR by reducing the expression of P-glycoprotein (P-gp) in cancer cells, thus improving antitumor activity in vivo. Thus, by enhancing drug delivery to tumors and lowering the apoptotic threshold of individual drugs, this combinatorial delivery system represents a potentially promising multimodal therapeutic strategy to overcome MDR in cancer therapy.  相似文献   

17.
Nanotechnology has enabled the development of novel therapeutic and diagnostic strategies, such as advances in targeted drug delivery systems, versatile molecular imaging modalities, stimulus responsive components for fabrication, and potential theranostic agents in cancer therapy. Nanoparticle modifications such as conjugation with polyethylene glycol have been used to increase the duration of nanoparticles in blood circulation and reduce renal clearance rates. Such modifications to nanoparticle fabrication are the initial steps toward clinical translation of nanoparticles. Additionally, the development of targeted drug delivery systems has substantially contributed to the therapeutic efficacy of anti-cancer drugs and cancer gene therapies compared with nontargeted conventional delivery systems. Although multifunctional nanoparticles offer numerous advantages, their complex nature imparts challenges in reproducibility and concerns of toxicity. A thorough understanding of the biological behavior of nanoparticle systems is strongly warranted prior to testing such systems in a clinical setting. Translation of novel nanodrug delivery systems from the bench to the bedside will require a collective approach. The present review focuses on recent research efforts citing relevant examples of advanced nanodrug delivery and imaging systems developed for cancer therapy. Additionally, this review highlights the newest technologies such as microfluidics and biomimetics that can aid in the development and speedy translation of nanodrug delivery systems to the clinic.  相似文献   

18.
Quantum dots (QDs) are semiconductor nanoparticles ranging in size from 2 to 10 nm. QDs are increasingly being developed for biomedical imaging, targeted drug delivery and green energy technology. These have led to much research on QD interactions with various physical, chemical and biological systems. For biological systems, research has focused on the biocompatibility/cytotoxicity of QDs in the context of imaging/therapy. However, there is a paucity of work on how biological systems and bioactive molecules might be used to alter the optoelectronic properties of QDs. Here, it is shown that these properties can be altered by reactive oxygen species (ROS) from chemotherapeutic media and biological cells following controlled changes in cellular activities. Using CdSe/ZnS core‐shell QDs, spectroscopic analysis of optically excited QDs with HL60, K562 and T98G cancer cell lines is performed. Our results show statistically significant (P < 0.0001) modulation of the fluorescence emission spectra of the QDs due to the ROS produced by common chemotherapeutic drugs, daunorubicin and doxorubicin and by cells following chemotherapy/radiotherapy. This optical modulation, in addition to assessing ROS generation, will possibly enhance applications of QDs in simultaneous diagnostic imaging and nanoparticle‐mediated drug delivery as well as simultaneous ROS assessment and radiosensitization for improved outcomes in cancer treatments. Reactive molecular species produced by biological cells and chemotherapeutic drugs can create electric fields that alter the photophysical properties of QDs, and this can be used for concurrent monitoring of cellular activities, while inducing changes in those cellular activities.   相似文献   

19.
介孔二氧化硅因具有有序介孔结构、比表面积大、生物相容性好及表面易于修饰等特点, 在生物医药等领域显示出了极大的应用前景, 目前, 基于介孔二氧化硅的纳米药物输送体系已成为众多科研工作者研究的热点. 本文讨论了靶向修饰及成像等多功能化的介孔二氧化硅药物输送体系的研究进展, 同时详细介绍了一系列具有特定形态结构(如中空/摇铃状、纳米管等)的介孔二氧化硅基载药体系的制备、表面修饰及在其在药物输送、释放等领域的应用研究. 最后, 对目前介孔二氧化硅基药物输送体系(主要包括具有特定形态结构的介孔二氧化硅药物载体、多功能复合药物载体及可生物降解的介孔二氧化硅药物输送体系等)在实际应用中存在的问题进行了分析并对其未来的发展前景进行了展望.  相似文献   

20.
Many existing chemotherapeutic drugs, repurposed drugs and newly developed small-molecule anticancer compounds have high lipophilicity and low water-solubility. Currently, these poorly water-soluble anticancer drugs (PWSAD) are generally solubilized using high concentrations of surfactants and co-solvents, which frequently lead to adverse side effects. In recent years, researchers have been actively exploring the use of nanotechnology as an alternative to the solvent-based drug solubilization approach. Several classes of nanocarrier systems (lipid-based, polymer-based and albumin-based) are widely studied for encapsulation and delivery of the existing and new PWSAD. These nanocarriers were also shown to offer several additional advantages such as enhanced tumour accumulation, reduced systemic toxicity and improved therapeutic effectiveness. In this article, the recent nanotechnological advances in PWSAD delivery will be reviewed. The barriers commonly encountered in the development of PWSAD nanoformulations (e.g. formulation issues and nanotoxicity issues) and the strategies to overcome these barriers will also be discussed. It is our goal to provide the pharmaceutical scientists and clinicians with more in-depth information about the nanodelivery approach, thus, more efficacious and safe PWSAD nanoformulations can be developed with improved translational success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号