首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alcoholism has complex etiology and there is evidence for both genetic and environmental factors in its pathophysiology. Chronic, long-term alcohol abuse and alcohol dependence are associated with neuronal loss with the prefrontal cortex being particularly susceptible to neurotoxic damage. This brain region is involved in the development and persistence of alcohol addiction and neurotoxic damage is likely to exacerbate the reinforcing effects of alcohol and may hinder treatment. Understanding the mechanism of alcohol’s neurotoxic effects on the brain and the genetic risk factors associated with alcohol abuse are the focus of current research. Because of its well-established role in neurodegenerative and neuropsychological disorders, and its emerging role in the pathophysiology of addiction, here we review the genetic and epigenetic factors involved in regulating α-synuclein expression and its potential role in the pathophysiology of chronic alcohol abuse. Elucidation of the mechanisms of α-synuclein regulation may prove beneficial in understanding the role of this key synaptic protein in disease and its potential for therapeutic modulation in the treatment of substance use disorders as well as other neurodegenerative diseases.  相似文献   

2.
3.

Background

Fetal alcohol exposure causes in the offspring a collection of permanent physiological and neuropsychological deficits collectively termed Fetal Alcohol Spectrum Disorder (FASD). The timing and amount of exposure cannot fully explain the substantial variability among affected individuals, pointing to genetic influences that mediate fetal vulnerability. However, the aspects of vulnerability that depend on the mother, the father, or both, are not known.

Methodology/Principal Findings

Using the outbred Sprague-Dawley (SD) and inbred Brown Norway (BN) rat strains as well as their reciprocal crosses, we administered ethanol (E), pair-fed (PF), or control (C) diets to the pregnant dams. The dams'' plasma levels of free thyroxine (fT4), triiodothyronine (T3), free T3 (fT3), and thyroid stimulating hormone (TSH) were measured to elucidate potential differences in maternal thyroid hormonal environment, which affects specific aspects of FASD. We then compared alcohol-exposed, pair fed, and control offspring of each fetal strain on gestational day 21 (G21) to identify maternal and paternal genetic effects on bodyweight and placental weight of male and female fetuses.

Conclusions

SD and BN dams exhibited different baseline hypothalamic-pituitary-thyroid function. Moreover, the thyroid function of SD dams was more severely affected by alcohol consumption while that of BN dams was relatively resistant. This novel finding suggests that genetic differences in maternal thyroid function are one source of maternal genetic effects on fetal vulnerability to FASD. The fetal vulnerability to decreased bodyweight after alcohol exposure depended on the genetic contribution of both parents, not only maternal contribution as previously thought. In contrast, the effect of maternal alcohol consumption on placental weight was consistent and not strain-dependent. Interestingly, placental weight in fetuses with different paternal genetic contributions exhibited opposite responses to caloric restriction (pair feeding). In summary, these novel findings demonstrate both maternal and paternal genetic contributions to in utero vulnerability to alcohol, refining our understanding of the genetically-based heterogeneity seen in human FASD.  相似文献   

4.
The gastric-derived orexigenic peptide ghrelin affects brain circuits involved in energy balance as well as in reward. Indeed, ghrelin activates an important reward circuit involved in natural- as well as drug-induced reward, the cholinergic-dopaminergic reward link. It has been hypothesized that there is a common reward mechanism for alcohol and sweet substances in both animals and humans. Alcohol dependent individuals have higher craving for sweets than do healthy controls and the hedonic response to sweet taste may, at least in part, depend on genetic factors. Rat selectively bred for high sucrose intake have higher alcohol consumption than non-sucrose preferring rats and vice versa. In the present study a group of alcohol-consuming individuals selected from a population cohort was investigated for genetic variants of the ghrelin signalling system in relation to both their alcohol and sucrose consumption. Moreover, the effects of GHS-R1A antagonism on voluntary sucrose-intake and operant self-administration, as well as saccharin intake were investigated in preclinical studies using rodents. The effects of peripheral grelin administration on sucrose intake were also examined. Here we found associations with the ghrelin gene haplotypes and increased sucrose consumption, and a trend for the same association was seen in the high alcohol consumers. The preclinical data show that a GHS-R1A antagonist reduces the intake and self-administration of sucrose in rats as well as saccharin intake in mice. Further, ghrelin increases the intake of sucrose in rats. Collectively, our data provide a clear indication that the GHS-R1A antagonists reduces and ghrelin increases the intake of rewarding substances and hence, the central ghrelin signalling system provides a novel target for the development of drug strategies to treat addictive behaviours.  相似文献   

5.
The effects of alcohol on fetal development   总被引:1,自引:0,他引:1  
Prenatal exposure to alcohol has profound effects on many aspects of fetal development. Although alterations of somatic growth and specific minor malformations of facial structure are most characteristic, the effects of alcohol on brain development are most significant in that they lead to substantial problems with neurobehavioral development. Since the initial recognition of the fetal alcohol syndrome (FAS), a number of important observations have been made from studies involving both humans and animals. Of particular importance, a number of maternal risk factors have been identified, which may well be of relevance relative to the development of strategies for prevention of the FAS as well as intervention for those who have been affected. These include maternal age >30 years, ethnic group, lower socioeconomic status, having had a previously affected child, maternal under-nutrition, and genetic background. The purpose of this review is to discuss these issues as well as to set forth a number of questions that have not adequately been addressed relative to alcohol's effect on fetal development. Of particular importance is the critical need to identify the full spectrum of structural defects associated with the prenatal effects of alcohol as well as to establish a neurobehavioral phenotype. Appreciation of both of these issues is necessary to understand the full impact of alcohol on fetal development.  相似文献   

6.
7.
The role of kappa-opioid receptors (KOR) in the regulation of alcohol-related behaviors is not completely understood. For example, alcohol consumption has been reported to increase following treatment with KOR antagonists in rats, but was decreased in mice with genetic deletion of KOR. Recent studies have further suggested that KOR antagonists may selectively decrease alcohol self-administration in rats following a history of dependence. We assessed the effects of the KOR antagonist JDTic on alcohol self-administration, reinstatement of alcohol seeking induced by alcohol-associated cues or stress, and acute alcohol withdrawal-induced anxiety ('hangover anxiety'). JDTic dose-dependently reversed hangover anxiety when given 48 hours prior to testing, a time interval corresponding to the previously demonstrated anxiolytic efficacy of this drug. In contrast, JDTic decreased alcohol self-administration and cue-induced reinstatement of alcohol seeking when administered 2 hours prior to testing, but not at longer pre-treatment times. For comparison, we determined that the prototypical KOR antagonist nor-binaltorphimine can suppress self-administration of alcohol at 2 hours pre-treatment time, mimicking our observations with JDTic. The effects of JDTic were behaviorally specific, as it had no effect on stress-induced reinstatement of alcohol seeking, self-administration of sucrose, or locomotor activity. Further, we demonstrate that at a 2 hours pre-treatment time JDTic antagonized the antinociceptive effects of the KOR agonist U50,488H but had no effect on morphine-induced behaviors. Our results provide additional evidence for the involvement of KOR in regulation of alcohol-related behaviors and provide support for KOR antagonists, including JDTic, to be evaluated as medications for alcoholism.  相似文献   

8.
The zebrafish is increasingly utilized in the analysis of the effects of ethanol (alcohol) on brain function and behavior. We have shown significant population-dependent alcohol-induced changes in zebrafish behavior and have started to analyze alterations in dopaminergic and serotoninergic responses. Here, we analyze the effects of alcohol on levels of selected neurochemicals using a 2 × 3 (chronic × acute) between-subject alcohol exposure paradigm randomized for two zebrafish populations, AB and SF. Each fish first received the particular chronic treatment (0 or 0.5 vol/vol % alcohol) and subsequently the acute exposure (0, 0.5 or 1.0 % alcohol). We report changes in levels of dopamine, DOPAC, serotonin, 5HIAA, glutamate, GABA, aspartate, glycine and taurine as quantified from whole brain extracts using HPLC. We also analyze monoamine oxidase and tyrosine hydroxylase enzymatic activity. The results demonstrate that compared to SF, AB is more responsive to both acute alcohol exposure and acute alcohol withdrawal at the level of neurochemistry, a finding that correlates well with prior behavioral observations and one which suggests the involvement of genes in the observed alcohol effects. We discuss correlations between the current results and prior behavioral findings, and stress the importance of characterization of zebrafish strains for future behavior genetic and psychopharmacology studies.  相似文献   

9.
As our understanding of genetics has improved, genome-wide association studies (GWAS) have identified numerous variants associated with lifestyle behaviours and health outcomes. However, what is sometimes overlooked is the possibility that genetic variants identified in GWAS of disease might reflect the effect of modifiable risk factors as well as direct genetic effects. We discuss this possibility with illustrative examples from tobacco and alcohol research, in which genetic variants that predict behavioural phenotypes have been seen in GWAS of diseases known to be causally related to these behaviours. This consideration has implications for the interpretation of GWAS findings.  相似文献   

10.
We explored if the disposition to react with aggression while alcohol intoxicated was moderated by polymorphic variants of the oxytocin receptor gene (OXTR). Twelve OXTR polymorphisms were genotyped in 116 Finnish men [aged 18-30, M = 22.7, standard deviation (SD) = 2.4] who were randomly assigned to an alcohol condition in which they received an alcohol dose of 0.7 g pure ethanol/kg body weight or a placebo condition. Aggressive behavior was measured using a laboratory paradigm in which it was operationalized as the level of aversive noise administered to a fictive opponent. No main effects of the polymorphisms on aggressive behavior were found after controlling for multiple testing. The interactive effects between alcohol and two of the OXTR polymorphisms (rs4564970 and rs1488467) on aggressive behavior were nominally significant and remained significant for the rs4564970 when controlled for multiple tests. To the best of our knowledge, this is the first experimental study suggesting interactive effects of specific genetic variants and alcohol on aggressive behavior in humans.  相似文献   

11.
Individual variation in alcohol consumption in human populations is determined by genetic, environmental, social and cultural factors. In contrast to humans, genetic contributions to complex behavioral phenotypes can be readily dissected in Drosophila, where both the genetic background and environment can be controlled and behaviors quantified through simple high‐throughput assays. Here, we measured voluntary consumption of ethanol in ~3000 individuals of each sex from an advanced intercross population derived from 37 lines of the Drosophila melanogaster Genetic Reference Panel. Extreme quantitative trait loci mapping identified 385 differentially segregating allelic variants located in or near 291 genes at P < 10?8. The effects of single nucleotide polymorphisms associated with voluntary ethanol consumption are sex‐specific, as found for other alcohol‐related phenotypes. To assess causality, we used RNA interference knockdown or P{MiET1} mutants and their corresponding controls and functionally validated 86% of candidate genes in at least one sex. We constructed a genetic network comprised of 23 genes along with a separate trio and a pair of connected genes. Gene ontology analyses showed enrichment of developmental genes, including development of the nervous system. Furthermore, a network of human orthologs showed enrichment for signal transduction processes, protein metabolism and developmental processes, including nervous system development. Our results show that the genetic architecture that underlies variation in voluntary ethanol consumption is sexually dimorphic and partially overlaps with genetic factors that control variation in feeding behavior and alcohol sensitivity. This integrative genetic architecture is rooted in evolutionarily conserved features that can be extrapolated to human genetic interaction networks.  相似文献   

12.

Background

Observational studies have generated conflicting evidence on the effects of moderate maternal alcohol consumption during pregnancy on offspring cognition mainly reflecting problems of confounding. Among mothers who drink during pregnancy fetal alcohol exposure is influenced not only by mother’s intake but also by genetic variants carried by both the mother and the fetus. Associations between children’s cognitive function and both maternal and child genotype at these loci can shed light on the effects of maternal alcohol consumption on offspring cognitive development.

Methods

We used a large population based study of women recruited during pregnancy to determine whether genetic variants in alcohol metabolising genes in this cohort of women and their children were related to the child’s cognitive score (measured by the Weschler Intelligence Scale) at age 8.

Findings

We found that four genetic variants in alcohol metabolising genes in 4167 children were strongly related to lower IQ at age 8, as was a risk allele score based on these 4 variants. This effect was only seen amongst the offspring of mothers who were moderate drinkers (1–6 units alcohol per week during pregnancy (per allele effect estimates were −1.80 (95% CI = −2.63 to −0.97) p = 0.00002, with no effect among children whose mothers abstained during pregnancy (0.16 (95%CI = −1.05 to 1.36) p = 0.80), p-value for interaction  = 0.009). A further genetic variant associated with alcohol metabolism in mothers was associated with their child’s IQ, but again only among mothers who drank during pregnancy.  相似文献   

13.
Alcohol‐induced increases in nucleus accumbens glutamate actively regulate alcohol consumption, and the alcohol responsiveness of corticoaccumbens glutamate systems relates to genetic variance in alcohol reward. Here, we extend earlier data for inbred mouse strain differences in accumbens glutamate by examining for differences in basal and alcohol‐induced changes in the striatal expression of glutamate‐related signaling molecules between inbred C57BL/6J and DBA2/J mice. Repeated alcohol treatment (8 × 2 g/kg) increased the expression of Group1 metabotropic glutamate receptors, the NR2a/b subunits of the N‐methyl‐d ‐aspartate receptor, Homer2a/b, as well as the activated forms of protein kinase C (PKC) epsilon and phosphoinositol‐3‐kinase within ventral, but not dorsal, striatum. Regardless of prior alcohol experience, C57BL/6J mice exhibited higher accumbens levels of mGluR1/5, Homer2a/b, NR2a and activated kinases vs. DBA2/J mice, whereas an alcohol‐induced rise in dorsal striatum mGluR1/5 expression was observed only in C57BL/6J mice. We next employed virus‐mediated gene transfer approaches to ascertain the functional relevance of the observed strain difference in accumbens Homer2 expression for B6/D2 differences in alcohol‐induced glutamate sensitization, as well as alcohol preference/intake. Manipulating nucleus accumbens shell Homer2b expression actively regulated these measures in C57BL/6J mice, whereas DBA2/J mice were relatively insensitive to the neurochemical and behavioral effects of virus‐mediated changes in Homer2 expression. These data support the over‐arching hypothesis that augmented accumbens Homer2‐mediated glutamate signaling may be an endophenotype related to genetic variance in alcohol consumption. If relevant to humans, such data pose polymorphisms affecting glutamate receptor/Homer2 signaling in the etiology of alcoholism.  相似文献   

14.
Common genetic factors may contribute to the high comorbidity between tobacco smoking and alcohol use disorder. Here, we assessed behavioral and biological effects of nicotine in replicate mouse lines selectively bred for high (HAP2/3) or low alcohol preference (LAP2/3). In Experiment 1, free‐choice (FC) oral nicotine and quinine intake were assessed in HAP2/3 and LAP2/3 mice. Effects of nicotinic acetylcholine receptor blockade by mecamylamine on nicotine intake in HAP2 mice were also examined. In Experiment 2, HAP2/3 and LAP2/3 mice were tested for differences in sensitivity to nicotine‐induced taste conditioning. In Experiment 3, the effects of a single nicotine injection on nucleus accumbens (NAc) and dorsal striatum monoamine levels in HAP2/3 and LAP2/3 mice were tested. In Experiment 1, HAP2/3 mice showed greater nicotine intake and intake ratio than LAP2/3 mice. There were no line differences in quinine intake. Mecamylamine reduced nicotine intake and intake ratio in HAP2 mice. In Experiment 2, HAP2/3 mice showed weaker nicotine‐induced conditioned taste aversion (CTA) compared with LAP2/3 mice. In Experiment 3, nicotine treatment increased NAc dopamine turnover across both HAP2/3 and LAP2/3 mouse lines. These results show that there is a positive genetic correlation between oral alcohol intake (high alcohol intake/preference selection phenotype) and oral nicotine intake and a negative genetic correlation between oral alcohol intake and sensitivity to nicotine‐induced CTA.  相似文献   

15.
16.
Abstract

Alcoholism has been described as a behavioral condition comprised of symptoms of alcohol dependence and the psycho‐socio‐biologic consequences of chronic alcohol dependence. Progress in clarifying the role of genetic factors in explaining differences in onset of dependence upon alcohol, frequency of consequences of chronic alcohol use, and transmission of patterns of alcoholism within a family pedigree has been based upon use of diagnostic methods that reliably and validly separate alcohol dependence from alcohol abuse. Twin methods, which control for genotypic variation, and adoption studies, which control for differences in rearing, have provided significant support for a genetic vulnerability hypothesis for development of alcoholism and a genetic heterogeneity hypothesis for type of alcoholism. The author reviews data from basic and clinical investigation of two subtypes of alcoholism: one associated with antisocial personality, and one that is “familial” (family‐history‐positive alcoholism). Significant differences in onset and clinical course for these subtypes suggest that differential plans for matching treatment to the individual alcoholic may be warranted.  相似文献   

17.
The results of many studies support the influence of the corticotropin‐releasing factor (CRF) system on ethanol (EtOH) consumption and EtOH‐induced neuroadaptations that are critical in the addiction process. This review summarizes the preclinical data in this area after first providing an overview of the components of the CRF system. This complex system involves hypothalamic and extra‐hypothalamic mechanisms that play a role in the central and peripheral consequences of stressors, including EtOH and other drugs of abuse. In addition, several endogenous ligands and targets make up this system and show differences in their involvement in EtOH drinking and in the effects of chronic or repeated EtOH treatment. In general, genetic and pharmacological approaches paint a consistent picture of the importance of CRF signaling via type 1 CRF receptors (CRF1) in EtOH‐induced neuroadaptations that result in higher levels of intake, encourage alcohol seeking during abstinence and alter EtOH sensitivity. Furthermore, genetic findings in rodents, non‐human primates and humans have provided some evidence of associations of genetic polymorphisms in CRF‐related genes with EtOH drinking, although additional data are needed. These results suggest that CRF1 antagonists have potential as pharmacotherapeutics for alcohol use disorders. However, given the broad and important role of these receptors in adaptation to environmental and other challenges, full antagonist effects may be too profound and consideration should be given to treatments with modulatory effects.  相似文献   

18.
The gene-environment interactions' approach could explain some epidemiological and clinical factors associated with addictive behaviours. Twin studies first help to disentangle the respective roles of environment and genetic effects, finding convincing evidence for common genetic vulnerability in several addictive behaviours, and helping to delimit what syndrome could belong to the addictive disorder spectrum. Assessing gene x environment interaction (G x E) needs specifically designed studies, using multiplicative or additive approaches. Focusing on this G x E interaction already showed its relevancy in many recent studies, using both epidemiological and molecular approaches. For example, in a non-human primate model of alcohol dependence assessing the respective role of genetic vulnerability (having the short allele located in the promoter region of the gene coding for the serotonin transporter) and severe fostering conditions (as locked up in a cage with other inmates for the first six months of life), the only group of monkeys that has a significant risk of using spontaneously alcohol is the one that gathers both risk factors, i.e. being peer-raised and having the short allele. Such approach could help to more accurately select specific candidate genes, to identify more homogenous subgroups of patients (as sharing the same genetic vulnerability), to understand how genetic factors mediate the risk of associated psychiatric disorders, and ultimately, may lead to more focused, i.e. more efficient, prevention strategies.  相似文献   

19.
Caenorhabditis elegans is an attractive model system for determining the targets of neuroactive compounds. Genetic screens in C. elegans provide a relatively unbiased approach to the identification of genes that are essential for behavioral effects of drugs and neuroactive compounds such as alcohol. Much work in vertebrate systems has identified multiple potential targets of ethanol but which, if any, of those candidates are responsible for the behavioral effects of alcohol is uncertain. Here we provide detailed methodology for a genetic screen for mutants of C. elegans that are resistant to the depressive effects of ethanol on locomotion and for the subsequent behavioral analysis of those mutants. The methods we describe should also be applicable for use in screening for mutants that are resistant or hypersensitive to many neuroactive compounds and for identifying the molecular targets or biochemical pathways mediating drug responses. Published: June 8, 2004.  相似文献   

20.
Abstract

Human responses to alcohol—especially sensitivity and acute behavioral tolerance—are being studied within a behavioral genetic design involving comparisons of scores from monozygotic twins, dizygotic twins, nontwin siblings, and unrelated (adoptee) pairs reared in the same family from infancy. The planned genetic analyses must await completion of data collection. The present sample is, however, adequate for analyses of means and for some analyses of individual differences in responses. For most of the measures being used, we find the usual mean decrement in performance after alcohol dosing to 0.100 BAC, but individual differences in response to alcohol are large, and a few individuals actually improve in performance after dosing. Also, on two tests, Cancellation and Block Rotations, there is a significant mean improvement in performance immediately after dosing. As yet we do not have a satisfactory explanation for this phenomenon. On most but not all of the tests, performance improves after the initial decrement during a 3‐hour period in which blood alcohol levels are maintained by additional hourly doses. This improvement may be due in part to practice effects, as well as to the development of acute behavioral tolerance to ethanol (ABTE). We are still exploring ways in which these effects may be disentangled, using data from concurrent placebo control subjects and from pre‐dosing test sessions. It is already apparent, nevertheless, that most of the variability in sensitivity and ABTE is related to pre‐existing individual variability rather than to gender, age, height, weight, or drinking history. By mailing annual questionnaires to all participants, we hope to be able to test the hypothesis that those who were relatively insensitive to ethanol or who showed a relatively large amount of ABTE during the test sessions may be at increased risk for heavy alcohol consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号