首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role wild bird species play in the transmission and ecology of avian influenza virus (AIV) is well established; however, there are significant gaps in our understanding of the worldwide distribution of these viruses, specifically about the prevalence and/or significance of AIV in Central and South America. As part of an assessment of the ecology of AIV in Guatemala, we conducted active surveillance in wild birds on the Pacific and Atlantic coasts. Cloacal and tracheal swab samples taken from resident and migratory wild birds were collected from February 2007 to January 2010.1913 samples were collected and virus was detected by real time RT-PCR (rRT-PCR) in 28 swab samples from ducks (Anas discors). Virus isolation was attempted for these positive samples, and 15 isolates were obtained from the migratory duck species Blue-winged teal. The subtypes identified included H7N9, H11N2, H3N8, H5N3, H8N4, and H5N4. Phylogenetic analysis of the viral sequences revealed that AIV isolates are highly similar to viruses from the North American lineage suggesting that bird migration dictates the ecology of these viruses in the Guatemalan bird population.  相似文献   

2.
Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have caused mortality in numerous species of wild birds; this is atypical for avian influenza virus (AIV) infections in these avian species, especially for species within the order Anseriformes. Although these infections document the susceptibility of wild birds to H5N1 HPAI viruses and the spillover of these viruses from infected domestic birds to wild birds, it is unknown whether H5N1 HPAI viruses can persist in free-living avian populations. In a previous study, we established that wood ducks (Aix sponsa) are highly susceptible to infection with H5N1 HPAI viruses. To quantify this susceptibility and further evaluate the likelihood of H5N1 HPAI viral maintenance in a wild bird population, we determined the concentration of virus required to produce infection in wood ducks. To accomplish this, 25 wood ducks were inoculated intranasally at 12-16 wk of age with decreasing concentrations of a H5N1 HPAI virus (A/Whooper Swan/Mongolia/244/05 [H5N1]). The median infectious dose and the lethal dose of H5N1 HPAI virus in wood ducks were very low (10(0.95) and 10(1.71) median embryo infectious dose [EID(50)]/ml, respectively) and less than that of chickens (10(2.80) and 10(2.80) EID(50)/ml). These results confirm that wood ducks are highly susceptible to infection with H5N1 HPAI virus. The data from this study, combined with what is known experimentally about H5N1 HPAI virus infection in wood ducks and viral persistence in aquatic environments, suggest that the wood duck would represent a sensitive indicator species for H5N1 HPAI. Results also suggest that the potential for decreased transmission efficiency associated with reduced viral shedding (especially from the cloaca) and a loss of environmental fitness (in water), may be offset by the ability of this virus to be transmitted through a very low infectious dose.  相似文献   

3.
Highly pathogenic avian influenza (HPAI) H5N1 virus persists in Asia, posing a threat to poultry, wild birds, and humans. Previous work in Southeast Asia demonstrated that HPAI H5N1 risk is related to domestic ducks and people. Other studies discussed the role of migratory birds in the long distance spread of HPAI H5N1. However, the interplay between local persistence and long-distance dispersal has never been studied. We expand previous geospatial risk analysis to include South and Southeast Asia, and integrate the analysis with migration data of satellite-tracked wild waterfowl along the Central Asia flyway. We find that the population of domestic duck is the main factor delineating areas at risk of HPAI H5N1 spread in domestic poultry in South Asia, and that other risk factors, such as human population and chicken density, are associated with HPAI H5N1 risk within those areas. We also find that satellite tracked birds (Ruddy Shelduck and two Bar-headed Geese) reveal a direct spatio-temporal link between the HPAI H5N1 hot-spots identified in India and Bangladesh through our risk model, and the wild bird outbreaks in May-June-July 2009 in China (Qinghai Lake), Mongolia, and Russia. This suggests that the continental-scale dynamics of HPAI H5N1 are structured as a number of persistence areas delineated by domestic ducks, connected by rare transmission through migratory waterfowl.  相似文献   

4.
We investigated avian influenza infections in wild birds, poultry, and humans at Eastern Dongting Lake, China. We analyzed 6,621 environmental samples, including fresh fecal and water samples, from wild birds and domestic ducks that were collected from the Eastern Dongting Lake area from November 2011 to April 2012. We also conducted two cross-sectional serological studies in November 2011 and April 2012, with 1,050 serum samples collected from people exposed to wild birds and/or domestic ducks. Environmental samples were tested for the presence of avian influenza virus (AIV) using quantitative PCR assays and virus isolation techniques. Hemagglutination inhibition assays were used to detect antibodies against AIV H5N1, and microneutralization assays were used to confirm these results. Among the environmental samples from wild birds and domestic ducks, AIV prevalence was 5.19 and 5.32%, respectively. We isolated 39 and 5 AIVs from the fecal samples of wild birds and domestic ducks, respectively. Our analysis indicated 12 subtypes of AIV were present, suggesting that wild birds in the Eastern Dongting Lake area carried a diverse array of AIVs with low pathogenicity. We were unable to detect any antibodies against AIV H5N1 in humans, suggesting that human infection with H5N1 was rare in this region.  相似文献   

5.
Waterbirds represent the major natural reservoir for low pathogenic (LP) avian influenza viruses (AIV). Among the wide diversity of subtypes that have been described, two of them (H5 and H7) may become highly pathogenic (HP) after their introduction into domestic bird populations and cause severe outbreaks, as is the case for HP H5N1 in South-Eastern Asia. Recent experimental studies demonstrated that HP H5N1 AIV infection in ducks does not necessarily have significant pathological effects. These results suggest that wild migratory ducks may asymptomatically carry HP AIV and potentially spread viruses over large geographical distances. In this study, we investigated the potential spreading distance of HP AIV by common teal (Anas crecca), mallard (A. platyrhynchos), and Eurasian pochard (Aythya ferina). Based on capture-mark-recapture method, we characterized their wintering movements from a western Mediterranean wetland (Camargue, South of France) and identified the potential distance and direction of virus dispersal. Such data may be crucial in determining higher-risk areas in the case of HP AIV infection detection in this major wintering quarter, and may serve as a valuable reference for virus outbreaks elsewhere.  相似文献   

6.
Domestic ducks in southern China act as an important reservoir for influenza viruses and have also facilitated the establishment of multiple H6 influenza virus lineages. To understand the continuing evolution of these established lineages, 297 H6 viruses isolated from domestic ducks during 2006 and 2007 were genetically and antigenically analyzed. Phylogenetic analyses showed that group II duck H6 viruses had replaced the previously predominant group I lineage and extended their geographic distribution from coastal to inland regions. Group II H6 virus showed that the genesis and development of multiple types of deletions in the neuraminidase (NA) stalk region could occur in the influenza viruses from domestic ducks. A gradual replacement of the N2 NA subtype with N6 was observed. Significant antigenic changes occurred within group II H6 viruses so that they became antigenically distinguishable from group I and gene pool viruses. Gene exchange between group II H6 viruses and the established H5N1, H9N2, or H6N1 virus lineages in poultry in the region was very limited. These findings suggest that domestic ducks can facilitate significant genetic and antigenic changes in viruses established in this host and highlight gaps in our knowledge of influenza virus ecology and even the evolutionary behavior of this virus family in its aquatic avian reservoirs.  相似文献   

7.
Waterfowl are the natural reservoir of all influenza A viruses, which are usually nonpathogenic in wild aquatic birds. However, in late 2002, outbreaks of highly pathogenic H5N1 influenza virus caused deaths among wild migratory birds and resident waterfowl, including ducks, in two Hong Kong parks. In February 2003, an avian H5N1 virus closely related to one of these viruses was isolated from two humans with acute respiratory distress, one of whom died. Antigenic analysis of the new avian isolates showed a reactivity pattern different from that of H5N1 viruses isolated in 1997 and 2001. This finding suggests that significant antigenic variation has recently occurred among H5N1 viruses. We inoculated mallards with antigenically different H5N1 influenza viruses isolated between 1997 and 2003. The new 2002 avian isolates caused systemic infection in the ducks, with high virus titers and pathology in multiple organs, particularly the brain. Ducks developed acute disease, including severe neurological dysfunction and death. Virus was also isolated at high titers from the birds' drinking water and from contact birds, demonstrating efficient transmission. In contrast, H5N1 isolates from 1997 and 2001 were not consistently transmitted efficiently among ducks and did not cause significant disease. Despite a high level of genomic homology, the human isolate showed striking biological differences from its avian homologue in a duck model. This is the first reported case of lethal influenza virus infection in wild aquatic birds since 1961.  相似文献   

8.
The role of many wild waterbird species in the ecology and epidemiology of avian influenza viruses (AIV) remains unclear. We report the first isolation of AIV from American White Pelicans (Pelecanus erythrorhynchos; Pelecaniformes) in North America. Two H13N9 AIVs were isolated from hatchling birds in breeding colonies in Minnesota, USA, during 2007 and 2008. Based on molecular sequencing of the hemagglutinin and neuraminidase genes, the 2008 virus was genetically related to AIVs previously isolated from gulls and shorebirds in North America. The 2007 isolate was most related to AIVs from Eurasian gulls and North American ducks, reflecting both global movement of these viruses and reassortment between viruses associated with duck and gull reservoirs.  相似文献   

9.
The potential existence of a wild bird reservoir for highly pathogenic avian influenza (HPAI) has been recently questioned by the spread and the persisting circulation of H5N1 HPAI viruses, responsible for concurrent outbreaks in migratory and domestic birds over Asia, Europe, and Africa. During a large-scale surveillance programme over Eastern Europe, the Middle East, and Africa, we detected avian influenza viruses of H5N2 subtype with a highly pathogenic (HP) viral genotype in healthy birds of two wild waterfowl species sampled in Nigeria. We monitored the survival and regional movements of one of the infected birds through satellite telemetry, providing a rare evidence of a non-lethal natural infection by an HP viral genotype in wild birds. Phylogenetic analysis of the H5N2 viruses revealed close genetic relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. In addition, genetic analysis did not reveal known gallinaceous poultry adaptive mutations, suggesting that the emergence of HP strains could have taken place in either wild or domestic ducks or in non-gallinaceous species. The presence of coexisting but genetically distinguishable avian influenza viruses with an HP viral genotype in two cohabiting species of wild waterfowl, with evidence of non-lethal infection at least in one species and without evidence of prior extensive circulation of the virus in domestic poultry, suggest that some strains with a potential high pathogenicity for poultry could be maintained in a community of wild waterfowl.  相似文献   

10.
Wild birds are the natural reservoirs of avian influenza viruses, and surveillance and assessment of these viruses in wild birds provide valuable information for early warning and control of animal diseases. In this study, we isolated 19 H7N7 avian influenza viruses from wild bird between 2018 and 2020. Full genomic analysis revealed that these viruses bear a single basic amino acid in the cleavage site of their hemagglutinin gene, and formed four different genotypes by actively reassorting other avian influenza viruses circulating in wild birds and ducks. The H7N7 viruses bound to both avian-type and human-type receptors, although their affinity for human-type receptors was markedly lower than that for avian-type receptors. Moreover, we found that the H7N7 viruses could replicate efficiently in the upper respiratory tract and caecum of domestic ducks, and that the H5/H7 inactivated vaccine used in poultry in China provided complete protection against H7N7 wild bird virus challenge in ducks. Our findings demonstrate that wild bird H7N7 viruses pose a substantial threat to the poultry industry across the East Asian-Australian migratory flyway, emphasize the importance of influenza virus surveillance in both wild and domestic birds, and support the development of active control strategies against H7N7 virus.  相似文献   

11.
Since the recent spread of highly pathogenic (HP) H5N1 subtypes, avian influenza virus (AIV) dispersal has become an increasing focus of research. As for any other bird-borne pathogen, dispersal of these viruses is related to local and migratory movements of their hosts. In this study, we investigated potential AIV spread by Common Teal (Anas crecca) from the Camargue area, in the South of France, across Europe. Based on bird-ring recoveries, local duck population sizes and prevalence of infection with these viruses, we built an individual-based spatially explicit model describing bird movements, both locally (between wintering areas) and at the flyway scale. We investigated the effects of viral excretion duration and inactivation rate in water by simulating AIV spread with varying values for these two parameters. The results indicate that an efficient AIV dispersal in space is possible only for excretion durations longer than 7 days. Virus inactivation rate in the environment appears as a key parameter in the model because it allows local persistence of AIV over several months, the interval between two migratory periods. Virus persistence in water thus represents an important component of contamination risk as ducks migrate along their flyway. Based on the present modelling exercise, we also argue that HP H5N1 AIV is unlikely to be efficiently spread by Common Teal dispersal only.  相似文献   

12.
近年来华东地区家鸭中禽流感病毒的亚型分布   总被引:3,自引:0,他引:3  
[目的]为了研究近年来华东地区家鸭中禽流感病毒的亚型分布情况.[方法]对2002-2006年分离自华东地区家鸭的180株禽流感病毒的HA亚型和其中88株禽流感病毒的NA亚型分别进行了测定.[结果]近年来华东地区家鸭中至少存在9种HA亚型和6种NA亚型组成的H1N1,H3N1,H3N2,H3N8,H4N6,H5N1,H5N2,H6N2,H6N8,H8N4,H9N2,H10N3,H11N2共13种亚型的禽流感病毒.[结论]华东地区家鸭中有多种亚型的禽流感病毒分布,应加强家鸭禽流感的监测和防制工作.  相似文献   

13.
渤海湾两株H2亚型禽流感病毒的 遗传进化分析   总被引:1,自引:0,他引:1  
野鸟是禽流感病毒的自然储存库,病毒可以随着宿主的迁徙传播给其他野鸟与家禽。渤海湾是鸟类南北迁徙的重要停歇地,也是东亚-澳大利西亚鸟类迁徙通道的重要组成部分,每年有大量水鸟在渤海湾停歇,促进了禽流感病毒的传播。为了解渤海湾地区禽流感病毒的传播及进化与水鸟迁徙的相关性,2018年春季鸟类迁徙期间的4和5月份,在渤海湾采集鸻鹬类粪便样品2 120份,对样品进行检测,分离出2株H2亚型禽流感病毒。对这2株H2亚型禽流感病毒进行了分子特征及遗传进化分析,并结合渤海湾水鸟的环志回收数据,对H2亚型病毒的重组及遗传进化与水鸟迁徙的联系进行了分析。结果表明,2株分离株的HA蛋白裂解位点符合低致病性禽流感病毒的分子特征,它们的8个基因片段同源性均不高,其中879-H2N7的8个基因片段分别与我国福建和澳大利亚的毒株同源性最高,遗传关系最近;854-H2N8的8个基因片段分别与我国湖南以及日本、韩国、孟加拉国和越南的毒株同源性最高,遗传关系最近。渤海湾水鸟的环志回收数据分析表明,879-H2N7随着野鸟的迁徙在渤海湾、福建沿海和澳大利亚之间进行传播与扩散;854-H2N8可能跨越东亚-澳大利西亚和中亚-印度两条通道之间进行基因重组和进化,并会随着鸟类迁徙进行传播和扩散。  相似文献   

14.
Avian (AIV) and equine influenza virus (EIV) have been repeatedly shown to circulate among Mongolia’s migrating birds or domestic horses. In 2009, 439 Mongolian adults, many with occupational exposure to animals, were enrolled in a prospective cohort study of zoonotic influenza transmission. Sera were drawn upon enrollment and again at 12 and 24 months. Participants were contacted monthly for 24 months and queried regarding episodes of acute influenza-like illnesses (ILI). Cohort members confirmed to have acute influenza A infections, permitted respiratory swab collections which were studied with rRT-PCR for influenza A. Serologic assays were performed against equine, avian, and human influenza viruses. Over the 2 yrs of follow-up, 100 ILI investigations in the cohort were conducted. Thirty-six ILI cases (36%) were identified as influenza A infections by rRT-PCR; none yielded evidence for AIV or EIV. Serological examination of 12 mo and 24 mo annual sera revealed 37 participants had detectable antibody titers (≥1∶10) against studied viruses during the course of study follow-up: 21 against A/Equine/Mongolia/01/2008(H3N8); 4 against an avian A/Teal/Hong Kong/w3129(H6N1), 11 against an avian-like A/Hong Kong/1073/1999(H9N2), and 1 against an avian A/Migrating duck/Hong Kong/MPD268/2007(H10N4) virus. However, all such titers were <1∶80 and none were statistically associated with avian or horse exposures. A number of subjects had evidence of seroconversion to zoonotic viruses, but the 4-fold titer changes were again not associated with avian or horse exposures. As elevated antibodies against seasonal influenza viruses were high during the study period, it seems likely that cross-reacting antibodies against seasonal human influenza viruses were a cause of the low-level seroreactivity against AIV or EIV. Despite the presence of AIV and EIV circulating among wild birds and horses in Mongolia, there was little evidence of AIV or EIV infection in this prospective study of Mongolians with animal exposures.  相似文献   

15.
The Caucasus, at the border of Europe and Asia, is important for migration and over-wintering of wild waterbirds. Three flyways, the Central Asian, East Africa-West Asia, and Mediterranean/Black Sea flyways, converge in the Caucasus region. Thus, the Caucasus region might act as a migratory bridge for influenza virus transmission when birds aggregate in high concentrations in the post-breeding, migrating and overwintering periods. Since August 2009, we have established a surveillance network for influenza viruses in wild birds, using five sample areas geographically spread throughout suitable habitats in both eastern and western Georgia. We took paired tracheal and cloacal swabs and fresh feces samples. We collected 8343 swabs from 76 species belonging to 17 families in 11 orders of birds, of which 84 were real-time RT-PCR positive for avian influenza virus (AIV). No highly pathogenic AIV (HPAIV) H5 or H7 viruses were detected. The overall AIV prevalence was 1.6%. We observed peak prevalence in large gulls during the autumn migration (5.3–9.8%), but peak prevalence in Black-headed Gulls in spring (4.2–13%). In ducks, we observed increased AIV prevalence during the autumn post-moult aggregations and migration stop-over period (6.3%) but at lower levels to those observed in other more northerly post-moult areas in Eurasia. We observed another prevalence peak in the overwintering period (0.14–5.9%). Serological and virological monitoring of a breeding colony of Armenian Gulls showed that adult birds were seropositive on arrival at the breeding colony, but juveniles remained serologically and virologically negative for AIV throughout their time on the breeding grounds, in contrast to gull AIV data from other geographic regions. We show that close phylogenetic relatives of viruses isolated in Georgia are sourced from a wide geographic area throughout Western and Central Eurasia, and from areas that are represented by multiple different flyways, likely linking different host sub-populations.  相似文献   

16.
One of the fundamental unknowns in the field of influenza biology is a panoramic understanding of the role wild birds play in the global maintenance and spread of influenza A viruses. Wild aquatic birds are considered a reservoir host for all lowly pathogenic avian influenza A viruses (AIV) and thus serve as a potential source of zoonotic AIV, such as Australasian‐origin H5N1 responsible for morbidity and mortality in both poultry and humans, as well as genes that may contribute to the emergence of pandemic viruses. Years of broad, in‐depth wild bird AIV surveillance have helped to decipher key observations and ideas regarding AIV evolution and viral ecology including the trending of viral lineages, patterns of gene flow within and between migratory flyways and the role of geographic boundaries in shaping viral evolution (Bahl et al. 2009 ; Lam et al. 2012 ). While these generally ‘virus‐centric’ studies have ultimately advanced our broader understanding of AIV dynamics, recent studies have been more host‐focused, directed at determining the potential impact of host behaviour on AIV, specifically, the influence of bird migration upon AIV maintenance and transmission. A large number of surveillance studies have taken place in Alaska, United States—a region where several global flyways overlap—with the aim of detecting the introduction of novel, Australasian‐origin highly pathogenic H5N1 AIV into North America. By targeting bird species with known migration habits, long‐distance migrators were determined to be involved in the intercontinental movement of individual AIV gene segments, but not entire viruses, between the Australasian and North American flyways (Koehler et al. 2008 ; Pearce et al. 2010 ). Yet, bird movement is not solely limited to long‐distance migration, and the relationship of resident or nonmigratory and intermediate‐distance migrant populations with AIV ecology has only recently been explored by Hill et al. ( 2012 ) in this issue of Molecular Ecology. Applying a uniquely refined, multidimensional approach, Hill et al. validate the innovative use of stable isotope assays for qualifying migration status of wild mallards within the Pacific flyway. The authors reveal that AIV prevalence and diversity did not differ in wintering mallard ducks with different migration strategies, and while migrant mallards do indeed introduce AIV, these viruses do not circulate as the predominant viruses in resident birds. On the other hand, resident mallards from more temperate regions act as reservoirs, possibly contributing to the unseasonal circulation and extended transmission period of AIV. This study highlights the impact of animal behaviour on shaping viral evolution, and the unique observations made will help inform prospective AIV surveillance efforts in wild birds.  相似文献   

17.
Waterfowl represent the natural reservoir of all subtypes of influenza A viruses, including H5N1. Ducks are especially considered major contributors to the spread of H5N1 influenza A viruses because they exhibit diversity in morbidity and mortality. Therefore, as a preventive strategy against endemic as well as pandemic influenza, it is important to reduce the spread of H5N1 influenza A viruses in duck populations. Here, we describe the pathogenicity of dominant clades (clades 1 and 2) of H5N1 influenza A viruses circulating in birds in Asia. Four representatives of dominant clades of the viruses cause symptomatic infection but lead to different profiles of lethality in domestic ducks. We also demonstrate the efficacy, cross-protectiveness, and immunogenicity of three different inactivated oil emulsion whole-virus H5 influenza vaccines (derived by implementing reverse genetics) to the viruses in domestic ducks. A single dose of the vaccines containing 1 μg of hemagglutinin protein provides complete protection against a lethal A/Duck/Laos/25/06 (H5N1) influenza virus challenge, with no evidence of morbidity, mortality, or shedding of the challenge virus. Moreover, two of the three vaccines achieved complete cross-clade or cross-subclade protection against the heterologous avian influenza virus challenge. Interestingly, the vaccines induce low or undetectable titers of hemagglutination inhibition (HI), cross-HI, and/or virus neutralization antibodies. The mechanism of complete protection in the absence of detectable antibody responses remains an open question.  相似文献   

18.
Wild waterfowl are primary reservoirs of avian influenza viruses (AIV). However the role of sea ducks in the ecology of avian influenza, and how that role differs from freshwater ducks, has not been examined. We obtained and analyzed sera from North Atlantic sea ducks and determined the seroprevalence in those populations. We also tested swab samples from North Atlantic sea ducks for the presence of AIV. We found relatively high serological prevalence (61%) in these sea duck populations but low virus prevalence (0.3%). Using these data we estimated that an antibody half-life of 141 weeks (3.2 years) would be required to attain these prevalences. These findings are much different than what is known in freshwater waterfowl and have implications for surveillance efforts, AIV in marine environments, and the roles of sea ducks and other long-lived waterfowl in avian influenza ecology.  相似文献   

19.
20.
Avian influenza viruses (AIV) are of great socioeconomic and health concern, notably in Southeast Asia where highly pathogenic strains, such as highly pathogenic avian influenza (HPAI) H5N1 and other H5 and H7 AIVs, continue to occur. Wild bird migrants are often implicated in the maintenance and spread of AIV. However, little systematic surveillance of wild birds has been conducted in Southeast Asia to evaluate whether the prevalence of AIV in wild birds is higher than in other parts of the world where HPAI outbreaks occur less frequently. Across Bangladesh, we randomly sampled a total of 3585 wild and domestic birds to assess the prevalence of AIV and antibodies against AIV and compared these with prevalence levels found in other endemic and non-endemic countries. Our study showed that both resident and migratory wild birds in Bangladesh do not have a particularly elevated AIV prevalence and AIV sero-prevalence compared to wild birds from regions in the world where H5N1 is not endemic and fewer AIV outbreaks in poultry occur. Like elsewhere, notably wild birds of the orders Anseriformes were identified as the main wild bird reservoir, although we found exceptionally high sero-prevalence in one representative of the order Passeriformes, the house crow (Corvus splendens), importantly living on offal from live bird markets. This finding, together with high sero- and viral prevalence levels of AIV in domestic birds, suggests that wild birds are not at the base of the perpetuation of AIV problems in the local poultry sector, but may easily become victim to AIV spill back from poultry into some species of wild birds, potentially assisting in further spread of the virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号