共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Plants have to cope with changing seasons and adverse environmental conditions. Being sessile, plants have developed elaborate mechanisms for their survival that allow them to sense and adapt to the environment and reproduce successfully. A major adaptive trait for the survival of trees of temperate and boreal forests is the induction of growth cessation in anticipation of winters. In the last few years enormous progress has been made to elucidate the molecular mechanisms underlying SDs induced growth cessation in model perennial tree hybrid aspen (Populus tremula × P. tremuloides). In this review we discuss the molecular mechanism underlying photoperiodic control of growth cessation and adaptive responses. 相似文献
4.
5.
We previously identified a Chr 15 quantitative trait locus (QTL) Fob3b in lines of mice selected for high (Fat line) and low (Lean line) body fat content that represent a unique model of polygenic obesity. Here we genetically dissected the Fob3b interval by analyzing the phenotypes of eight overlapping congenic lines and four F2 congenic intercrosses and prioritized candidates by bioinformatics approaches. Analyses revealed that the Fob3b QTL consists of at least two separate linked QTLs Fob3b1 and Fob3b2. They exhibit additive inheritance and are linked in coupling with alleles originating from the Lean line, decreasing obesity-related traits. In further analyses, we focused on Fob3b1 because it had a larger effect on obesity-related traits than Fob3b2, e.g., the difference between homozygotes for adiposity index (ADI) percentage was 1.22 and 0.77% for Fob3b1 and Fob3b2, respectively. A set of bioinformatics tools was used to narrow down positional candidates from 85 to 4 high-priority Fob3b1 candidates. A previous single Fob3b QTL was therefore resolved into another two closely linked QTLs, confirming the fractal nature of QTLs mapped at low resolution. The interval of the original Fob3b QTL was narrowed from 22.39 to 4.98 Mbp for Fob3b1 and to 7.68 Mbp for Fob3b2, which excluded the previously assigned candidate squalene epoxidase (Sqle) as the causal gene because it maps proximal to refined Fob3b1 and Fob3b2 intervals. A high-resolution map along with prioritization of Fob3b1 candidates by bioinformatics represents an important step forward to final identification of the Chr 15 obesity QTL. 相似文献
6.
Gwaze P Bridgwater E Williams G 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2002,105(4):526-531
Inheritance of growth curves is critical for understanding evolutionary change and formulating efficient breeding plans, yet has received limited attention. Growth curves, like other characters that change in concert with development, often have higher heritability than age-specific traits. This study compared genetic parameters of height-growth curves with those of age-specific heights for a conifer, Pinus taeda L. Growth curves were fitted with: (1) a linear regression model, and (2) a non-linear model based on Richards' function using two sources of height data: two six-parent diallel tests assessed at age 2 to 10 years and two tests from a nested mating design with 222 parents assessed at 1 to 25 years. Additive genetic control of growth-curve parameters was moderate (h2 = 0.06 to 0.26) and slightly lower than that for age-specific heights. Additive variance exceeded dominance variance for rate and shape parameters, but not for the asymptote. Genetic correlations among growth-curve parameters were high. Early selection on height was as efficient as selection on growth-curve parameters. 相似文献
7.
Genetic linkage map construction and QTL identification of juvenile growth traits in Torreya grandis
Yanru Zeng Shengyue Ye Weiwu Yu Song Wu Wei Hou Rongling Wu Wensheng Dai Jun Chang 《BMC genetics》2014,15(1):1-9
Mei, Prunus mume Sieb. et Zucc., is an ornamental plant popular in East Asia and, as an important member of genus Prunus, has played a pivotal role in systematic studies of the Rosaceae. However, the genetic architecture of botanical traits in this species remains elusive. This paper represents the first genome-wide mapping study of quantitative trait loci (QTLs) that affect stem growth and form, leaf morphology and leaf anatomy in an intraspecific cross derived from two different mei cultivars. Genetic mapping based on a high-density linkage map constricted from 120 SSRs and 1,484 SNPs led to the detection of multiple QTLs for each trait, some of which exert pleiotropic effects on correlative traits. Each QTL explains 3-12% of the phenotypic variance. Several leaf size traits were found to share common QTLs, whereas growth-related traits and plant form traits might be controlled by a different set of QTLs. Our findings provide unique insights into the genetic control of tree growth and architecture in mei and help to develop an efficient breeding program for selecting superior mei cultivars. 相似文献
8.
Glutamate oxaloacetic transaminase (L-aspertate: 2-oxoglutarate aminotransferase, E.C. 2.6.1.1; GOT) was found to occur in five distinct electrophoretic forms in different tissue extracts from a number of highly inbred strains of Zea mays L. No major qualitative differences were detected in the various tissues examined, and the isozyme patterns did not undergo changes during temporal development of any given inbred strain. Cell fractionation studies showed one isozyme to be associated with the mitochondria (mGOT), another to be exclusively associated with the soluble fraction (sGOT), and a third to be associated with the glyoxysomes (gGOT). The glyoxysomal form occurs as two electrophoretically distinct variants which exist in different inbred strains of maize. The gGOT variants are under the control of two codiminant alleles (Got1A and Got1B) at the Got1 locus (isozyme5, gGOT). The genetic data and gene dosage effects suggest that GOT in maize is functionally a dimer. 相似文献
9.
CONTENTS: Summary 319 I. Introduction 320 II. The cell biology and biophysics of growth 320 III. Timing is everything: what determines when proliferation gives way to expansion? 323 IV. Anisotropic growth and the importance of polarity 325 V. How does organ identity and developmental patterning modulate growth behaviour? 326 VI. Coordination of growth at different scales 327 VII. Conclusions 329 Acknowledgements 329 References 330 SUMMARY: The growth of plant organs is under genetic control. Work in model species has identified a considerable number of genes that regulate different aspects of organ growth. This has led to an increasingly detailed knowledge about how the basic cellular processes underlying organ growth are controlled, and which factors determine when proliferation gives way to expansion, with this transition emerging as a critical decision point during primordium growth. Progress has been made in elucidating the genetic basis of allometric growth and the role of tissue polarity in shaping organs. We are also beginning to understand how the mechanisms that determine organ identity influence local growth behaviour to generate organs with characteristic sizes and shapes. Lastly, growth needs to be coordinated at several levels, for example between different cell layers and different regions within one organ, and the genetic basis for such coordination is being elucidated. However, despite these impressive advances, a number of basic questions are still not fully answered, for example, whether and how a growing primordium keeps track of its size. Answering these questions will likely depend on including additional approaches that are gaining in power and popularity, such as combined live imaging and modelling. 相似文献
10.
The inheritance of the spring habit was studied in 63 old local cultivars and landraces of common wheat from Eastern and Western Siberia and the Tyva Republic. Minimal polymorphism was observed for the dominant Vrn genes, controlling the spring habit in landraces of these regions. The control was digenic and involved the Vrnl and Vrn2 dominant genes in the majority (95%) of cultivars and was monogenic in three cultivars. None of the cultivars had the Vrn3 dominant gene, characteristic of the neighboring regions of China and Central Asia. Among 137 old local cultivars and landraces of Siberia, only one (cultivar Sibirskaya (k-23347) from Irkutsk oblast, was comparable in the response to the natural short day (photoperiod) to Chinese cultivars. Comparison of the results and the data reported for commercial cultivars revealed that the genotype frequencies of the dominant Vrn genes in Siberian landraces and commercial cultivars of common wheat remained essentially unchanged at least for the past 100 years. At the same time, Siberian landraces significantly differed in Vrn dominant gene frequencies from cultivars of the adjacent regions. It was assumed that the control of the spring habit by the two Vrn dominant genes is optimal for the climatic conditions of Siberia. 相似文献
11.
M. A. R. Mian D. A. Ashley W. K. Vencill H. R. Boerma 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1998,97(8):1210-1216
There are both economic and environmental reasons for reducing the use of herbicides for weed control in soybean [Glycine max (L.) Merr.] fields. Optimizing crop competitiveness can reduce reliance on chemical weed control. Fast and vigorous early
growth and rapid canopy development can be effective in suppressing weed infestation of crop plants. The purposes of this
study were to identify and molecularly map the quantitative trait loci (QTLs) conditioning soybean plant height and canopy
width during the early vegetative stages of soybean growth. A restriction fragment length polymorphism (RFLP) linkage map
was created using 142 markers and 116 F2-derived lines from a cross of ‘S100’בTokyo’. The parents and the 116 F2-derived lines were evaluated in the greenhouse and in the field at Athens, Ga., in 1996 and 1997. Combined over environments,
Tokyo averaged 41 and 17% taller plants than S100 at the V7 and V10 stages of development. Transgressive segregation was observed
among the progeny at both stages. Based on single-factor analysis of variance (ANOVA), three and four independent RFLP loci
were associated with plant height at the V7 and V10 stages, respectively. All three loci detected [on linkage groups (LGs)
C2 and F, and unlinked] at the V7 stage were also detected at the V10 stage along with one additional independent locus on
LG E. The Tokyo allele contributed to increased plant height at all loci except at the unlinked locus. Three QTLs (on LGs
C2, E, and F) were consistent across environments, three (on LGs C2 and F, and unlinked) were consistent across stages of
plant development, and two (on LGs C2 and F) were consistent both across environments and stages of plant development. Within
each stage of development, there was no interaction among the independent loci, and the respective loci together explained
most of the variation in the traits. Three independent RFLP loci were associated with canopy width at the V10 stage, of which
one was unique to the trait, while the remaining loci (on LGs C2 and F) were in common with the independent loci for plant
height. Canopy width had a strong correlation (r=0.87) with plant height at the V10 stage. However, mature plant height, lodging, or seed weight had no phenotypic or QTL
association with early plant height or canopy width.
Received: 10 May 1998 / Accepted: 13 July 1998 相似文献
12.
Disturbances such as fire have the potential to remove genetic variation, but seed banks may counter this loss by restoring alleles through a reservoir effect. We used allozyme analysis to characterize genetic change in two populations of the perennial Hypericum cumulicola, an endemic of the fire-prone Florida scrub. We assessed genetic variation before and 1, 2, and 3 years after fire that killed nearly all aboveground plants. Populations increased in size following fire, with most seedlings likely recruited from a persistent seed bank. Four of five loci were variable. Most alleles were present in low frequencies, but our large sample sizes allowed detection of significant trends. Expected heterozygosity increased, and allele presence and allele frequencies showed marked shifts following fire. The post-fire seedling cohort contained new alleles to the study and one new allele to the species. Population differentiation between the two study sites did not change. Our study is the first to directly documents genetic changes following fire, a dominant ecological disturbance worldwide, and is also one of the few to consider shifts in a naturally recruiting post-disturbance seedling cohort. We demonstrate the potential of seed banks to restore genetic variation lost between disturbances. Our study demonstrates that rapid genetic change can occur with disturbance and that fire can have positive effects on the genetics of rare species. 相似文献
13.
Bacteriophage (phi Sb01) of Streptococcus bovis, isolated from pooled rumen fluid of cattle, was a small siphovirus of morphotype B1. It contained double-stranded DNA of length 30.9 kb, which was digested by the restriction endonucleases, EcoRI, HindIII, and PvuII. Bacteria which survived phi Sb01 infection (strain 2BAr) grew in long chains (100-200 cells), ultimately forming large clumps of cells. This growth habit was in distinct contrast to that of the parent host strain which grew predominantly in the form of single cells or diplococci. Strain 2BAr was genetically stable, resistant to phi Sb01 attack, and the observed differences in the growth characteristics of the parent strain and 2BAr indicated that cells of 2BAr were more adherent. In the rumen ecosystem, the selection of phage-resistant bacteria with altered growth characteristics may be a factor in modifying bacterial phenotypes, and thus increasing variability among bacteria which are closely related genetically. 相似文献
14.
From the Pekin Formation (Upper Triassic) of the Deep River basin in central North Carolina, U.S.A., originate remains of a slender cycadeoidalean (bennettitalean) stem with leaves of a type combining features of the form genera Otozamites and Zamites. The plant, placed in the new genus and species Ischnophyton iconicum, is additional evidence that the common growth habit of Triassic and Jurassic cycadophytes was one involving a slender stem, without closely spaced, persistent leaf bases. 相似文献
15.
16.
Quilez J Martínez V Woolliams JA Sanchez A Pong-Wong R Kennedy LJ Quinnell RJ Ollier WE Roura X Ferrer L Altet L Francino O 《PloS one》2012,7(4):e35349
Background
The current disease model for leishmaniasis suggests that only a proportion of infected individuals develop clinical disease, while others are asymptomatically infected due to immune control of infection. The factors that determine whether individuals progress to clinical disease following Leishmania infection are unclear, although previous studies suggest a role for host genetics. Our hypothesis was that canine leishmaniasis is a complex disease with multiple loci responsible for the progression of the disease from Leishmania infection.Methodology/Principal Findings
Genome-wide association and genomic selection approaches were applied to a population-based case-control dataset of 219 dogs from a single breed (Boxer) genotyped for ∼170,000 SNPs. Firstly, we aimed to identify individual disease loci; secondly, we quantified the genetic component of the observed phenotypic variance; and thirdly, we tested whether genome-wide SNP data could accurately predict the disease.Conclusions/Significance
We estimated that a substantial proportion of the genome is affecting the trait and that its heritability could be as high as 60%. Using the genome-wide association approach, the strongest associations were on chromosomes 1, 4 and 20, although none of these were statistically significant at a genome-wide level and after correcting for genetic stratification and lifestyle. Amongst these associations, chromosome 4: 61.2–76.9 Mb maps to a locus that has previously been associated with host susceptibility to human and murine leishmaniasis, and genomic selection estimated markers in this region to have the greatest effect on the phenotype. We therefore propose these regions as candidates for replication studies. An important finding of this study was the significant predictive value from using the genomic information. We found that the phenotype could be predicted with an accuracy of ∼0.29 in new samples and that the affection status was correctly predicted in 60% of dogs, significantly higher than expected by chance, and with satisfactory sensitivity-specificity values (AUC = 0.63). 相似文献17.
QTL identification of flowering time at three different latitudes reveals homeologous genomic regions that control flowering in soybean 总被引:1,自引:0,他引:1
Liu W Kim MY Kang YJ Van K Lee YH Srinives P Yuan DL Lee SH 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2011,123(4):545-553
Since the genetic control of flowering time is very important in photoperiod-sensitive soybean (Glycine max (L.) Merr.), genes affecting flowering under different environment conditions have been identified and described. The objectives
were to identify quantitative trait loci (QTLs) for flowering time in different latitudinal and climatic regions, and to understand
how chromosomal rearrangement and genome organization contribute to flowering time in soybean. Recombinant inbred lines from
a cross between late-flowering ‘Jinpumkong 2’ and early-flowering ‘SS2-2’ were used to evaluate the phenotypic data for days
to flowering (DF) collected from Kamphaeng Saen, Thailand (14°01′N), Suwon, Korea (37°15′N), and Longjing, China (42°46′N).
A weakly positive phenotypic correlation (r = 0.36) was found between DF in Korea and Thailand; however, a strong correlation (r = 0.74) was shown between Korea and China. After 178 simple sequence repeat (SSR) markers were placed on a genetic map spanning
2,551.7 cM, four independent DF QTLs were identified on different chromosomes (Chrs). Among them, three QTLs on Chrs 9, 13
and 16 were either Thailand- or Korea-specific. The DF QTL on Chr 6 was identified in both Korea and China, suggesting it
is less environment-sensitive. Comparative analysis of four DF QTL regions revealed a syntenic relationship between two QTLs
on Chrs 6 and 13. All five duplicated gene pairs clustered in the homeologous genomic regions were found to be involved in
the flowering. Identification and comparative analysis of multiple DF QTLs from different environments will facilitate the
significant improvement in soybean breeding programs with respect to control of flowering time. 相似文献
18.
A. H. D. Brown J. J. Burdon J. P. Grace 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1990,79(6):729-736
Summary Allozyme variation as detected by starch gel electrophoresis was used to assess the extent and spatial organization of genetic variation across the entire range of Glycine canescens sensu lato. Eleven enzyme systems were assayed in 116 accessions of this taxon and 102 alleles were detected at a total of 31 loci. Eighty-one percent of loci were polymorphic. Most of this variation occurred between and very little within accessions. Three major groupings were detected. These groupings (groups 1, 2, and 3) also differed with respect to mean seed size and their geographic distribution. A further ten accessions stood out from these distinct groups. These accessions were most closely related to group 3 but were variable among themselves. In general, they were collected from highly dissected terrain, often in the remote interior of the continent. A final group of 18 problematic accessions (group X), originally tentatively identified as G. canescens on morphological grounds, was shown to be isozymically distinct from this species and was reclassified as one form of the polytypic species G. clandestina. 相似文献
19.
Marty J. Faville Siva Ganesh Mingshu Cao M. Z. Zulfi Jahufer Timothy P. Bilton H. Sydney Easton Douglas L. Ryan Jason A. K. Trethewey M. Philip Rolston Andrew G. Griffiths Roger Moraga Casey Flay Jana Schmidt Rachel Tan Brent A. Barrett 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2018,131(3):703-720
Key message
Genomic prediction models for multi-year dry matter yield, via genotyping-by-sequencing in a composite training set, demonstrate potential for genetic gain improvement through within-half sibling family selection.Abstract
Perennial ryegrass (Lolium perenne L.) is a key source of nutrition for ruminant livestock in temperate environments worldwide. Higher seasonal and annual yield of herbage dry matter (DMY) is a principal breeding objective but the historical realised rate of genetic gain for DMY is modest. Genomic selection was investigated as a tool to enhance the rate of genetic gain. Genotyping-by-sequencing (GBS) was undertaken in a multi-population (MP) training set of five populations, phenotyped as half-sibling (HS) families in five environments over 2 years for mean herbage accumulation (HA), a measure of DMY potential. GBS using the ApeKI enzyme yielded 1.02 million single-nucleotide polymorphism (SNP) markers from a training set of n = 517. MP-based genomic prediction models for HA were effective in all five populations, cross-validation-predictive ability (PA) ranging from 0.07 to 0.43, by trait and target population, and 0.40–0.52 for days-to-heading. Best linear unbiased predictor (BLUP)-based prediction methods, including GBLUP with either a standard or a recently developed (KGD) relatedness estimation, were marginally superior or equal to ridge regression and random forest computational approaches. PA was principally an outcome of SNP modelling genetic relationships between training and validation sets, which may limit application for long-term genomic selection, due to PA decay. However, simulation using data from the training experiment indicated a twofold increase in genetic gain for HA, when applying a prediction model with moderate PA in a single selection cycle, by combining among-HS family selection, based on phenotype, with within-HS family selection using genomic prediction.20.
The devastating effect of Fusarium head blight (FHB) caused by Fusarium graminearum has led to significant financial losses across the Upper Midwest of the USA. These losses have spurred the need for research in biological, chemical, and genetic control methods for this disease. To date, most of the research on FHB resistance has concentrated on hexaploid wheat (Triticum aestivum L.) lines originating from China. Other sources of resistance to FHB would be desirable. One other source of resistance for both hexaploid wheat and tetraploid durum wheat (T. turgidum L. var. durum) is the wild tetraploid, T. turgidum L. var. dicoccoides (T. dicoccoides). Previous analysis of the `Langdon'-T. dicoccoides chromosome substitution lines, LDN(Dic), indicated that the chromosome 3A substitution line expresses moderate levels of resistance to FHB. LDN(Dic-3A) recombinant inbred chromosome lines (RICL) were used to generate a linkage map of chromosome 3A with 19 molecular markers spanning a distance of 155.2 cM. The individual RICL and controls were screened for their FHB phenotype in two greenhouse seasons. Analysis of 83 RICL identified a single major quantitative trait locus, Qfhs.ndsu-3AS, that explains 37% of the phenotypic or 55% of the genetic variation for FHB resistance. A microsatellite locus, Xgwm2, is tightly linked to the highest point of the QTL peak. A region of the LDN (Dic-3A) chromosome associated with the QTL for FHB resistance encompasses a 29.3 cM region from Xmwg14 to Xbcd828. 相似文献