首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 103 毫秒
1.
铜污染土壤的生物修复研究进展   总被引:1,自引:0,他引:1  
随着工业化与农业化进程的加快,土壤重金属污染问题日益突出。铜(Cu)既是生命体生长发育的必需微量元素,也是重金属污染物之一。土壤中过量的Cu不仅会对植物产生毒害,而且能够通过食物链的富集作用,对人类健康造成严重威胁。生物修复技术作为治理重金属污染土壤的一种新型技术受到广泛关注。文中对生物修复的主要技术如植物修复、微生物修复、植物-微生物联合修复、动物修复等在治理Cu污染土壤方面的研究进展进行综述,以期为重金属污染土壤有效治理和可持续农业的发展提供理论依据。  相似文献   

2.
Field application vectors (FAVs), which are a combination of a selective substrate, a host, and a cloning vector, have been developed for the purpose of expressing foreign genes in nonsterile, competitive environments in which the gene products provide no advantage to the host. Such gene products are exemplified by the enzymes for the cometabolism of polychlorinated biphenyls (PCBs) through the biphenyl degradation pathway. Attempts to use highly competent PCB-cometabolizing strains in the environment in the absence of biphenyl have not been successful, while the addition of biphenyl is limited by its human toxicity and low water solubility. Broad-substrate-specificity PCB-degradative genes (bphABC) were cloned from a naturally occurring isolate. Pseudomonas sp. strain ENV307, into broad-host-range plasmid pRK293. The resulting PCB-degrading plasmids were transferred to the FAV host Pseudomonas paucimobilis 1IGP4, which utilizes the nontoxic, water-soluble, nonionic surfactant Igepal CO-720 as a selective growth substrate. Plasmid stability in the recombinant strains was determined in the absence of antibiotic selection. PCB-degrading activity was determined by resting cell assays. Treatment of contaminated soil (10, 100, or 1,000 ppm of Aroclor 1242) by surfactant amendment (1.0% [wt/wt]Igepal CO-720 in wet soil) and inoculation with recombinant isolates of strain 1IGP4 (approximately 4 x 10(6) cells per g of soil) resulted in degradation of many of the individual PCB congeners in the absence of biphenyl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Bioremediation is a spontaneous or controlled process in which biological, mainly microbiological, methods are used to degrade or transform contaminants to non or less toxic products, reducing the environmental pollution. The most important parameters to define a contaminated site are: biodegradability, contaminant distribution, lixiviation grade, chemical reactivity of the contaminants, soil type and properties, oxygen availability and occurrence of inhibitory substances. Biological treatments of organic contaminations are based on the degradative abilities of the microorganisms. Therefore the knowledge on the physiology and ecology of the biological species or consortia involved as well as the characteristics of the polluted sites are decisive factors to select an adequate biorremediation protocol. Basidiomycetes which cause white rot decay of wood are able to degrade lignin and a variety of environmentally persistent pollutants. Thus, white rot fungi and their enzymes are thought to be useful not only in some industrial process like biopulping and biobleaching but also in bioremediation. This paper provides a review of different aspects of bioremediation technologies and recent advances on ligninolytic metabolism research.  相似文献   

4.
The aim of this work is to present a critical review on slurry bioreactors (SB) and their application to bioremediation of soils and sediments polluted with recalcitrant and toxic compounds. The scope of the review encompasses the following subjects: (i) process fundamentals of SB and analysis of advantages and disadvantages; (ii) the most recent applications of SB to laboratory scale and commercial scale soil bioremediation, with a focus on pesticides, explosives, polynuclear aromatic hydrocarbons, and chlorinated organic pollutants; (iii) trends on the use of surfactants to improve availability of contaminants and supplementation with degradable carbon sources to enhance cometabolism of pollutants; (iv) recent findings on the utilization of electron acceptors other than oxygen; (v) bioaugmentation and advances made on characterization of microbial communities of SB; (vi) developments on ecotoxicity assays aimed at evaluating bioremediation efficiency of the process.  相似文献   

5.
The biodegradation potential of insensitive munition melt cast formulations IMX101 and IMX104 was investigated in two unamended training range soils under aerobic and anaerobic growth conditions. Changes in community profiles in soil microcosms were monitored via high-throughput 16S rRNA sequencing over the course of the experiments to infer key microbial phylotypes that may be linked to IMX degradation. Complete anaerobic biotransformation occurred for IMX101 and IMX104 constituents 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one during the 30-day incubation period with Camp Shelby (CS) soil. By comparison, soil from Umatilla chemical depot demonstrated incomplete DNAN degradation with reduced transformation rates for both IMX101 and IMX104. Aerobic soil microcosms for both soils demonstrated reduced transformation rates compared to anaerobic degradation for all IMX constituents with DNAN the most susceptible to biotransformation by CS soil. Overall, IMX constituents hexahydro-1,3,5-trinitro-1,3,5-triazine and 1-nitroguanidine did not undergo significant transformation. In CS soil, organisms that have been associated with explosives degradation, namely members of the Burkholderiaceae, Bacillaceae, and Paenibacillaceae phylotypes increased significantly in anaerobic treatments whereas Sphingomonadaceae increased significantly in aerobic treatments. Collectively, these data may be used to populate fate and transport models to provide more accurate estimates for assessing environmental costs associated with release of IMX101 and IMX104.  相似文献   

6.
Burkholderia sp. GB-01 strain was used to study different factors affecting its growth for inoculum production and then evaluated for abamectin degradation in soil for optimization under various conditions. The efficiency of abamectin degradation in soil by strain GB-01 was seen to be dependent on soil pH, temperature, initial abamectin concentration, and inoculum size along with inoculation frequency. Induction studies showed that abamectin depletion was faster when degrading cells were induced by pre-exposure to abamectin. Experiments performed with varying concentrations (2–160 mg Kg−1) of abamectin-spiked soils showed that strain GB-01 could effectively degrade abamectin over the range of 2–40 mg Kg−1. The doses used were higher than the recommended dose for an agricultural application of abamectin, taking in account the over-use or spill situations. A cell density of approximately 108 viable cells g−1 dry weight of soil was found to be suitable for bioremediation over a temperature range of 30–35°C and soil pH 7.5–8.5. This is the first report on bacterial degradation of abamectin in soil by a Burkholderia species, and our results indicated that this bacterium may be useful for efficient removal of abamectin from contaminated soils.  相似文献   

7.
Bioremediation, the use of microorganisms to detoxify and degrade hazardous wastes, is an emerging in situ treatment technology for the remediation of contaminated aquifers and subsurface soils. This technology depends upon the alteration of the physical/chemical conditions in the subsurface environment to optimize microbiological activity. As such, successful bioremediation depends not only upon an understanding of microbial degradation processes, but also upon an understanding of the complex interactions that occur between the contaminants, the subsurface environment, and the indigenous microbial populations at each site. At present, these interactions are poorly understood. Site‐specific evaluation and design therefore are essential for bioremediation. In this paper, we review microbiological, hydrological, and geochemical factors that should be considered in evaluating the appropriateness of bioremediation for hazardous waste‐contaminated aquifers and subsurface soils.  相似文献   

8.
Selenium concentrations in the soil environment are directly linked to its transfer in the food chain, eventually causing either deficiency or toxicity associated with several physiological dysfunctions in animals and humans. Selenium bioavailability depends on its speciation in the soil environment, which is mainly influenced by the prevailing pH, redox potential, and organic matter content of the soil. The selenium cycle in the environment is primarily mediated through chemical and biological selenium transformations. Interactions of selenium with microorganisms and plants in the soil environment have been studied in order to understand the underlying interplay of selenium conversions and to develop environmental technologies for efficient bioremediation of seleniferous soils. In situ approaches such as phytoremediation, soil amendment with organic matter and biovolatilization are promising for remediation of seleniferous soils. Ex situ remediation of contaminated soils by soil washing with benign leaching agents is widely considered for removing heavy metal pollutants. However, it has not been applied until now for remediation of seleniferous soils. Washing of seleniferous soils with benign leaching agents and further treatment of Se-bearing leachates in bioreactors through microbial reduction will be advantageous as it is aimed at removal as well as recovery of selenium for potential re-use for agricultural and industrial applications. This review summarizes the impact of selenium deficiency and toxicity on ecosystems in selenium deficient and seleniferous regions across the globe, and recent research in the field of bioremediation of seleniferous soils.  相似文献   

9.
Bacteria designed for bioremediation.   总被引:17,自引:0,他引:17  
Although many environmental pollutants are efficiently degraded by microorganisms, others persist and constitute a severe health hazard. In some instances, persistence is a consequence of the inadequate catabolic potential of the available microorganisms. Gene technology, combined with a solid knowledge of catabolic pathways and microbial physiology, enables the experimental evolution of new or improved catabolic activities for such pollutants.  相似文献   

10.
Bioremediation of soil contaminated by organic compounds can remove the contaminants to a large extent, but residual contamination levels may remain which are not or only slowly biodegraded. Residual levels often exceed existing clean-up guidelines and thereby limit the use of bioremediation in site clean-up. A method for estimating the expected residual levels would be a useful tool in the assessment of the feasability of bioremediation. In this study, three soil types from a creosote-contaminated field site, which had been subjected to 6 months of bioremediation in laboratory column studies, were used to characterize the residual contamination levels and assess their availability for biodegradation. The soils covered a wide range of organic carbon levels and particle size distributions. Results from the biodegradation studies were compared with desorption rate measurements and selective extractability using butanol. Residual levels of polycyclic aromatic hydrocarbons after bioremediation were found to be strongly dependent on soil type. The presence of both soil organic matter and asphaltic compounds in the soil was found to be associated with higher residual levels. Good agreement was found between the biodegradable fraction and the rapidly desorbable fraction in two of the three soils studied. Butanol extraction was found to be a useful method for roughly estimating the biodegradable fraction in the soil samples. The results indicate that both desorption and selective extraction measurements could aid the assessment of the feasability for bioremediation and identifying acceptable end-points. Received: 15 September 1999 / Received revision: 7 February 2000 / Accepted: 13 February 2000  相似文献   

11.
根分泌物在污染土壤生物修复中的作用   总被引:17,自引:2,他引:17  
对根分泌物在植物根际微生态环境中 ,通过土壤 植物 微生物系统协同作用高效修复重金属和有机污染土壤的环境过程与机理进行了综述。根分泌物在重金属污染土壤植物修复中的作用主要表现在活化污染区重金属元素 ,使固定态转化为植物可吸收态 ,大大提高了重金属的植物有效性 ,通过植物的超积累作用 ,降低土壤中重金属污染物的含量 ;此外 ,根分泌物也可以和重金属形成稳定的螯合体 ,降低他们在土壤中的移动性 ,起到固定和钝化作用。对于有机污染物 ,根分泌物一方面为根际的微生物提供了丰富的营养和能源 ,使植物根际的微生物数量和代谢活力比非根际区高 ,增强了微生物对环境中的有机污染物的降解能力 ;另一方面植物根分泌到根际的酶系统可直接参与有机污染物降解的生化过程 ,提高降解效率。并对此领域今后研究工作的方向做了探讨  相似文献   

12.
ABSTRACT

The bioremediation of petroleum hydrocarbons (PHCs)-polluted soils was studied by an ex-situ, lab-scale, biopile experiment with different parameters: aeration rate (1 h day?1 and 2 h day?1), soil moisture (44% and 60%), and microorganisms consortia addition (320 and 640 mL). The trial was conducted using eight treatment cells, each having different parameters, and one control cell for 18 weeks on soil containing 7600 ± 400 mg kg?1 total PHCs, taken from a former petroleum product warehouse in Sfantu Gheorghe, Covasna County (Romania). The microorganisms used for bioremediation were isolated from the native microflora of the polluted soil and grown in laboratory on culture media. A bioremediation yield up to 76% was obtained in the test cells, while in the control cell the reduction of PHCs content by 16% was attributed to natural attenuation. The results indicated that by addition of microorganisms the bioremediation is much more effective than natural attenuation. The results also revealed an accentuated decrease in PHC concentrations after 4 weeks of treatment, irrespective of the treatment conditions.  相似文献   

13.
丛枝菌根对有机污染土壤的修复作用及机理   总被引:7,自引:0,他引:7  
丛枝菌根(AM)是丛枝菌根真菌(AMF)与植物根系相互作用的互惠共生体,能改良土壤结构,增强植物抗性.自然界中已知的AMF有170多种,分布广泛,且可与大多数植物共生.利用AM修复有机污染土壤正成为一个崭新的研究方向.本文综述了AM对多环芳烃、酞酸脂、石油和农药等一些典型有机污染物污染土壤的修复作用.AM修复有机污染土壤的机理主要包括:AMF代谢有机污染物;AM分泌酶,降解污染物;AM影响根系分泌作用,并促进根际微生物对有机污染物的降解;AMF宿主植物吸收积累污染物.AM修复研究中,高效AMF的筛选、复合菌种效应、土壤老化、AM作用下植物对有机污染物的吸收积累等几方面仍有待于深入研究.  相似文献   

14.
《Fungal Ecology》2008,1(1):4-12
Ligninolytic basidiomycetes associated with wood decay are a physiologically distinct group of saprotrophic fungi capable of decomposition of all major components of wood. Although wood is their natural substrate, several species can survive in soil if suitable substrates are available, the soil-colonizing ability of species in the genera Phanerochaete, Pleurotus and Trametes being comparable to that of the soil-inhabiting basidiomycetes utilizing plant litter. Wood-inhabiting ligninolytic basidiomycetes (WLB) in soil interact with soil microflora, and some species are very efficient competitors affecting both the soil microbial biomass and the composition of the indigenous microbial community. The extracellular enzymes utilized by saprotrophic basidiomycetes for nutrient acquisition participate in the interspecific interactions with other soil biota but are also involved in the transformation of soil organic matter – lignocellulose and humic compounds. Bioremediation research has significantly enriched our knowledge of the ecology of basidiomycetes, but it has also identified several limitations for practical applicability of WLB at a field scale, and has led to the conclusion that natural attenuation or bioaugmentation are todays methods of choice for on site treatment.  相似文献   

15.
Biological treatment of polycyclic aromatic hydrocarbons (PAH) has been demonstrated to be a feasible and common remediation technology which has been successfully applied to the clean-up of contaminated soils. Because bioavailability of the contaminants is of great importance for a successful bioremediation, a chemical pre-oxidation step by ozone was tested to enhance the subsequent biodegradation steps. Oxidation of PAH by ozone should result in reaction products that have a better solubility in water and thus a better bioavailability. A major part of this work was done by examinations of the model substance phenanthrene as a typical compound of PAH. After initial ozonation of phenanthrene, analysis by GC-MS showed at least seven identified conversion-products of phenanthrene. In comparison with phenanthrene these conversion products were more efficiently biodegraded by Sphingomonas yanoikuyae or mixed cultures when the ozonation process resulted in monoaromatic compounds. Primary ozonation products with biphenylic structures were found not to be biodegradable. Investigations into the toxicity of contaminated and ozonated soils were carried out by well-established toxicity assays using Bacillus subtilis and garden cress. The ozonated soils surprisingly showed higher toxic or inhibitory effects towards different organisms than the phenanthrene or PAH itself. The microbial degradation of phenanthrene in slurry reactors by S. yanoikuyae was not enhanced significantly by preozonation of the contaminated soil.  相似文献   

16.
17.
有机污染土壤中菌根的作用   总被引:6,自引:1,他引:6  
近年来,土壤有机污染问题日益突出,传统的修复方法存在局限性。菌根是植物根系与菌根真菌形成的共生体,能增强植物的逆境抗胁迫能力,对于促进有机污染物的降解和转化具有积极的作用。本文主要阐述了石油、多环芳烃、多氯联苯、农药和酞酸酯等几类典型的有机污染土壤中外生菌根和丛枝菌根的作用;旨在说明利用菌根技术修复有机污染土壤是生物修复的一项重要工具,具有广阔的发展前景,为进一步研究菌根的作用以及更好地运用菌根技术奠定基础。  相似文献   

18.
An extensive taxonomic analysis of the bacterial strain Burkholderia sp. DBT1, previously isolated from an oil refinery wastewater drainage, is discussed here. This strain is capable of transforming dibenzothiophene through the 'destructive' oxidative pathway referred to as the Kodama pathway. Burkholderia DBT1 has also been proved to use fluorene, naphthalene and phenanthrene as carbon and energy sources, although growth on the first two compounds requires a preinduction step. This evidence suggests that the strain DBT1 exerts a versatile metabolism towards polycyclic aromatic hydrocarbons other than condensed thiophenes. Phylogenetic characterization using a polyphasic approach was carried out to clarify the actual taxonomic position of this strain, potentially exploitable in bioremediation. In particular, investigations were focused on the possible exclusion of Burkholderia sp. DBT1 from the Burkholderia cepacia complex. Analysis of the sequences of 16S, recA and gyrB genes along with the DNA-DNA hybridization procedure indicated that the strain DBT1 belongs to the species Burkholderia fungorum, suggesting the proposal of the taxonomic denomination B. fungorum DBT1.  相似文献   

19.
There is a need to develop technology to allow the remediation of soil in polar regions that have been contaminated by hydrocarbon fuel spills. Bioremediation is potentially useful for this purpose, but has not been well demonstrated in polar regions. We investigated biopiles for on-site bioremediation of soil contaminated with Arctic diesel fuel in two independent small-scale field experiments at different sites on the Arctic tundra. The results were highly consistent with one another. In biopiles at both sites, extensive hydrocarbon removal occurred after one summer. After 1 year in treatments with optimal conditions, total petroleum hydrocarbons were reduced from 196 to below 10 mg per kg of soil at one site, and from 2,109 to 195 mg per kg of soil at the other site. Addition of ammonium chloride and sodium phosphate greatly stimulated hydrocarbon removal and indicates that biodegradation was the primary mechanism by which this was achieved. Inoculation with cold-adapted, mixed microbial cultures further stimulated hydrocarbon removal during the summer immediately following inoculation. At one site, soil temperature was monitored during the summer season, and a clear plastic cover increased biopile soil temperature, measured as degree-day accumulation, by 30-49%. Our results show that on-site bioremediation of fuel-contaminated soil at Arctic tundra sites is feasible.  相似文献   

20.
Indiscriminate disposal of wastes on landfills has led to increase in heavy metal contamination in landfill soils. However, the ability of the indigenous microorganisms to remediate the polluted environment can be of great influence in reclamation of such soils. The objectives of this study were to assess the bioremediation potential of the screened indigenous bacteria and evaluate the effects of carbon source and pH in the enhancement of the bioremediation process. Bacterial isolates from landfill sites were screened for their capability to utilize heavy metal (Cd and Pb). Nutrient Agar was supplemented with five different concentrations of each metal (25 to 600 mgL-1). Viable counts of the isolates were taken four times at two days interval. Pseudomonas aeruginosa, Klebsiella edwardsii and Enterobacter cloacae were selected based on their tolerance to heavy metal for remediation process. Peptone broth was also supplemented using different concentrations of heavy metals. The remediation process was assessed by monitoring the growth of biomass using UV spectrophotometer at 600 nm and the residual heavy metal was evaluated after 8 days of incubation using AAS. Pseudomonas aeruginosa exhibited the highest bioremediation potential among the bacterial isolates with 58.80 and 33.67 remediation percentage in 50 mg Cd L-1 and 300 mg Pb L-1 . However, higher remediation percentage (79.87 and 92.41) was observed by Klebsiella edwardsii through addition of carbon source (5 g/L) and varying the pH (6) of the media in the heavy metal contaminated medium. The results of this study indicate that the effectiveness of the indigenous bacteria in remediation process can be enhanced through the addition of carbon source and increase pH for effective reclamation of contaminated soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号