首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study is aimed at simultaneous cellulase synthesis and coir pith degradation by Aspergillus nidulans using coir pith as chief substrate. The lignocellulosic biomass, coir pith is known to be an excellent carbon source for microbial cellulase production under solid state fermentation. The alkali pretreatment with sodium hydroxide was seen to enhance enzymatic hydrolysis. The effect of coir pith weight, moisture content, initial pH and growth temperature on cellulase activity and yield were investigated by response surface methodology (RSM) employing a four-factor-five-level central composite design (CCD). The results of Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD) and Scanning electron microscopy (SEM) of coir pith showed structural changes through pretreatment, in favor of enzymatic hydrolysis. Maximum carboxy methyl cellulase activity (CMCase) of 28.64 U/g and cellulase yield of 66.32% were achieved with 8 g coir pith at 70% moisture content and 40 °C temperature with pH 5 as evident from run numbers 25 and 30. Filter paper (FPase) and cellobiase (CBase) activities of 10.23 U/g and 4.31 U/g respectively were observed on the 11th day after the inoculation.  相似文献   

2.
The ability of Aspergillus nidulans (EIDAM) WINT to grow and sporulate at various temperatures and to degrade soluble and insoluble forms of cellulose were studied. A. nidulans was found to grow and sporulate best at 37°C in continuous light and alternating light-darkness respectively. The fungus was able to cause losses in the dry weights of filter papers on incubation and made appreciable growth on CMC and hemicellulose. The culture filtrates contained cellulases which hydrolysed filter papers and CMC to reducing sugars, and were only able to produce these enzymes in the presence of cellulose or its derivatives in the growth medium. The CM-cellulases had peak activity at pH 5.2 and at 50°C while optimal FP-activity occurred at a pH of 5.5 and at 45°C. The participatory role of A. nidulans in composting is discussed.  相似文献   

3.
The production of cellulase by Bacillus subtilis MU S1, a strain isolated from Eravikulam National Park, was optimized using one-factor-at-a-time (OFAT) and statistical methods. Physical parameters like incubation temperature and agitation speed were optimized using OFAT and found to be 40?°C and 150?rpm, respectively, whereas, medium was optimized by statistical tools. Plackett-Burman design (PBD) was employed to screen the significant variables that highly influence cellulase production. The design showed carboxymethyl cellulose (CMC), yeast extract, NaCl, pH, MgSO4 and NaNO3 as the most significant components that affect cellulase production. Among these CMC, yeast extract, NaCl and pH showed positive effect whereas MgSO4 and NaNO3 were found to be significant at their lower levels. The optimum levels of the components that positively affect enzyme production were determined using response surface methodology (RSM) based on central composite design (CCD). Three factors namely CMC, yeast extract and NaCl were studied at five levels whilst pH of the medium was kept constant at 7. The optimal levels of the components were CMC (13.46?g/l), yeast extract (8.38?g/l) and NaCl (6.31?g/l) at pH 7. The maximum cellulase activity in optimized medium was 566.66?U/ml which was close to the predicted activity of 541.05?U/ml. Optimization of physical parameters and medium components showed an overall 3.2-fold increase in activity compared to unoptimized condition (179.06?U/ml).  相似文献   

4.
The bacterial strain Paenibacillus xylanilyticus KJ-03 was isolated from a sample of soil used for cultivating Amorphophallus konjac. The cellulase gene, cel5A was cloned using fosmid library and expressed in Escherichia coli BL21 (trxB). The cel5A gene consists of a 1,743 bp open reading frame and encodes 581 amino acids of a protein. Cel5A contains N-terminal signal peptide, a catalytic domain of glycosyl hydrolase family 5, and DUF291 domain with unknown function. The recombinant cellulase was purified by Ni-affinity chromatography. The cellulase activity of Cel5A was detected in clear band with a molecular weight of 64 kDa by zymogram active staining. The maximum activity of the purified enzyme was displayed at a temperature of 40 °C and pH 6.0 when carboxymethyl cellulose was used as a substrate. It has 44% of its maximum activity at 70 °C and retained 66% of its original activity at 45 °C for 1 h. The purified cellulase hydrolyzed avicel, CMC, filter paper, xylan, and 4-methylumbelliferyl β-d-cellobiose, but no activity was detected against p-nitrophenyl β-d-glucoside. The end products of the hydrolysis of cellotetraose and cellopentaose by Cel5A were detected by thin layer chromatography, while enzyme did not hydrolyze cellobiose and cellotriose.  相似文献   

5.
6.
Use of cellulase for denim washing is a standard eco-friendly technique to achieve desirable appearance and softness for cotton fabrics and denims. But enzymatic washing of denim till date involved acid cellulase (Trichoderma reesei) and neutral cellulase (Humicola isolens) the use of which has a drawback of backstaining of the indigo dye on to the fabric. Though it has been suggested that pH is a major factor in controlling backstaining there are no reports on use of cellulase under alkaline conditions for denim washing. In this study for the first time an alkali stable endoglucanase from alkalothermophilic Thermomonospora sp. (T-EG) has been used for denim biofinishing under alkaline conditions. T-EG is effective in removing hairiness with negligible weight loss and imparting softness to the fabric. Higher abrasive activity with lower backstaining was a preferred property for denim biofinishing exhibited by T-EG. The activities were comparable to acid and neutral cellulases that are being regularly used. The enzyme was also effective under non-buffering conditions which is an added advantage for use in textile industry. A probable mechanism of enzymatic finishing of cotton fabric has been represented based on the unique properties of T-EG.  相似文献   

7.
The optimum pH, temperature and concentration of the substrate, carboxymethyl-cellulose (CMC), for the production of cellulases by Aspergillus nidulans were found to be 3.05, 37°C and 1%, respectively. When grown on CMC under optimum conditions, it produced the three components of the cellulase complex, exo-β-1,4-glucanase, endo-β-1,4-glucanase and β-1,4-glucosidase, both in cell free as well as cell-associated states. The enzyme yields in shake cultures were lower than those obtained during stationary cultivation. Among the defined substrates, lactose emerged as the best inducer for exo-glucanase and endo-glucanase, while β-glucosidase was best induced by pectin. Endo-glucanase production increased significantly when A. nidulans was grown on insoluble delignified lognocellulosic substrates, with the maximum being on paddy straw.It appears that the synthesis of individual components of the cellulase system of A. nidulans may not be regulated in a strictly coordinated manner.  相似文献   

8.
A halostable cellulase with a molecular mass of 29 kDa was purified from culture supernatants of the halophilic bacterium Salinivibrio sp. NTU-05 by way of the Fast Protein Liquid Chromatography method and the biochemical properties of the halostable cellulase was studied. The enzyme was active over a range of 0–25% sodium chloride examined in culture broth. The optimum cellulase activity was observed at 5% sodium chloride. Results from the salinity stability test indicated 24% of enzyme activity was retained at 25% sodium chloride for 4 h. The enzyme was also shown to be slightly thermostable with 40% residual activity under 60 °C for 4 h. The enzyme has a Km of 3.03 mg/ml and a Vmax of 142.86 mol/min/mg when tested using carboxymethyl-cellulose (CMC). The enzyme activity increased in the presence of K+, Mg2+, Na+ ions and decreased when Hg2+ ions were present. The deduced internal amino acid sequence of the Salinivibrio sp. NTU-05 cellulase showed similarity to the sequence of the glycoside hydrolase family protein. These are some of the novel characteristics that make this enzyme have potential applications in cellulose biodegradation.  相似文献   

9.
A potentially novel aerobic, thermophilic, and cellulolytic bacterium designated as Brevibacillus sp. strain JXL was isolated from swine waste. Strain JXL can utilize a broad range of carbohydrates including: cellulose, carboxymethylcellulose (CMC), xylan, cellobiose, glucose, and xylose. In two different media supplemented with crystalline cellulose and CMC at 57°C under aeration, strain JXL produced a basal level of cellulases as FPU of 0.02 IU/ml in the crude culture supernatant. When glucose or cellobiose was used besides cellulose, cellulase activities were enhanced ten times during the first 24 h, but with no significant difference between these two simple sugars. After that time, however, culture with glucose demonstrated higher cellulase activities compared with that from cellobiose. Similar trend and effect on cellulase activities were also obtained when glucose or cellobiose served as a single substrate. The optimal doses of cellobiose and glucose for cellulase induction were 0.5 and 1%. These inducing effects were further confirmed by scanning electron microscopy (SEM) images, which indicated the presence of extracellular protuberant structures. These cellulosome-resembling structures were most abundant in culture with glucose, followed by cellobiose and without sugar addition. With respect to cellulase activity assay, crude cellulases had an optimal temperature of 50°C and a broad optimal pH range of 6–8. These cellulases also had high thermotolerance as evidenced by retaining more than 50% activity at 100°C after 1 h. In summary, this is the first study to show that the genus Brevibacillus may have strains that can degrade cellulose.  相似文献   

10.
11.
ACladosporium species produced large amounts of cellulase enzyme components when grown in shake-culture with medium containing carboxymethylcellulose. There was significantly less activity when Avicel, filter paper or cotton were used as substrates. KNO3 was better than NH4Cl or urea for the production of cellulase. Tween 80 at 0.1% (w/v) increased the production of cellulase by 1.5 to 4.5-fold. All the cellulase components were optimally active in the assay at pH 5.0 and 60°C.  相似文献   

12.
Wall-localized cellulase was partially purified from freeze-dried maize coleoptiles by a combination of DEAE-Sepharose, Superdex-200 gel filtration and Hydroxyapatite column chromatography. Activity was measured by both reducing sugar assay and dot assay on agarose gel containing carboxymethylcellulose(CMC). In situ activity staining on a nondenaturing gel overlaid on agarose gel containing CMC turned out to be a quite reliable method to detect cellulase activity. The molecular mass of partially-purified cellulase was determined to be about 53 kD based on SDS-PAGE, and the N-terminal amino acid sequence of this cellulase was NH2-AGAKGANXLGGLXRA. The enzyme hydrolyzed CMC with an optimal pH of 4.5 and optimal temperature of 40°C. It also catalyzed carboxymethylcellulose with aK m of 2.02 mg/mL and aV max of 160 ng/h/mL The β-1,4-glucosyl linkages of CMC, fibrous cellulose and lichenan were cleaved specifically by this enzyme. Reducing reagents such as cysteine-HCI, dithiothreitol and glutathione strongly enhanced the activity, suggesting that SH-groups of the enzyme were protected from oxidation. N-ethylmaleimide which is a sulfhydryl-reacting reagent did not seem to inhibit the activity, indicating that cysteine residues were not located near the active site of the enzyme. These results will be valuable in understanding the structure of wall-localized cellulase in maize coleoptiles and in predicting its possible function in the cell wall.  相似文献   

13.
A novel approach for upgrading both the wrinkle free and softness properties of cotton fabrics without adversely affecting their strength properties using an eco-friendly finishing regimes was investigated. Factors affecting the performance properties of the finished substrate such as pre-treatment, i.e., carboxymethylation (CMC) or ionic-crosslinking, post-treatment with amino functional silicone softener and its concentration, degree of carboxymethylation as well as thermofixation conditions were studied. The obtained results revealed that post-treatment with the amino based silicone micro emulsion (SiE) up to 30 g/L at pH 4 to a wet pickup of 100% followed by drying at 100 °C for 5 min and curing at 170 °C for 3 min results in a remarkable improvement in fabric resiliency (expressed as dry and wet wrinkle recovery angles), as well as in softness degree, without seriously affecting its retained strength. Improvement extent of the aforementioned properties is governed by the nature of the pre-treatment steps. Fixation of the amino-functional silicone softener onto/or within the modified cellulose structure is accompanied by a formation of semi-inter and/or intra-penetrated network (semi-IPN) thereby enhancing both the extent of crosslinking and networking as well as providing very high softness. FTIR analysis proved the formation of Si–O–Si–cellulose complex. Scanning electron micrograph shows that cotton, CMC and ionic crosslinked cotton fabrics treated with SiE shows higher surface smoothness and considerable reduction in protruding loose fibers, ditches and grooves compared with the untreated one.  相似文献   

14.
Phytase production by Aspergillus niger NCIM 563 was optimized by using wheat bran in solid state fermentation (SSF). An integrated statistical optimization approach involving the combination of Placket–Burman design (PBD) and Box–Behnken design (BBD) was employed. PBD was used to evaluate the effect of 11 variables related to phytase production, and five statistically significant variables, namely, glucose, dextrin, NaNO3, distilled water, and MgSO4·7H2O, were selected for further optimization studies. The levels of five variables for maximum phytase production were determined by a BBD. Phytase production improved from 50 IU/g dry moldy bran (DMB) to 154 IU/g DMB indicating 3.08-fold increase after optimization. A simultaneous reduction in fermentation time from 7 to 4 days shows a high productivity of 38,500 IU/kg/day. Scaling up the process in trays gave reproducible phytase production overcoming industrial constraints of practicability and economics. The culture extract also had 133.2, 41.58, and 310.34 IU/g DMB of xylanase, cellulase, and amylase activities, respectively. The partially purified phytase was optimally active at 55°C and pH 6.0. The enzyme retained ca. 75% activity over a wide pH range 2.0–9.5. It also released more inorganic phosphorus from soybean meal in a broad pH range from 2.5 to 6.5 under emulated gastric conditions. Molecular weight of phytase on Sephacryl S-200 was approximately 87 kDa. The K m and V max observed were 0.156 mM and 220 μm/min/mg. The SSF phytase from A. niger NCIM 563 offers an economical production capability and its wide pH stability shows its suitability for use in poultry feed.  相似文献   

15.
A novel bacterial strain with high cellulase activity (2.82 U/ml) was isolated, and then identified by its morphological character and 16S rRNA sequence, and named Bacillus subtilis strain I15. The extracellular thermostable cellulase exhibited the maximum activity at 60°C and pH 6.0. It was very stable since more than 90% of original CMCase activity was maintained at 65°C after incubation for 2 h. The cellulase gene, celI15, was cloned and extracellularly expressed by Escherichia coli BL21 (DE3), which encoded the extracellular protein of about 52 kDa. The extracellular activity of CelI15 from E. coli BL21 was up to about 6.78 U/ml, and all the other properties were almost the same as that from the wild-type strain.  相似文献   

16.
Endoglucanase is a part of cellulase which hydrolyzes cellulose into glucose. In this study, we cloned endoglucanase III (EG III) gene from Trichoderma viride strain AS 3.3711 using a PCR-based exon splicing method, and expressed EG III recombinant protein in both silkworm BmN cell line and silkworm larvae with an improved Bac-to-Bac/BmNPV mutant baculovirus expression system, which lacks the chiA and v-cath genes of Bombyx mori nucleopolyhedrovirus (BmNPV). The result showed that around 45 kDa protein was visualized in BmN cells at 48 h after the second generation recombinant mBacmid/BmNPV/EG III baculovirus infection. The enzymes from recombinant baculoviruses infected silkworms exhibited significant maximum enzyme activity at the environmental condition of pH 8.0 and temperature 50°C, and increased 20.94 and 19.13% compared with that from blank mBacmid/BmNPV baculoviruses infected silkworms and normal silkworms, respectively. It was stable at pH range from 5.0 to 9.0 and at temperature range from 40 to 60°C. It provided a possibility to generate transgenic silkworms expressing bio-active cellulase, which can catabolize dietary fibers more efficiently, and it might be of great significance for sericulture industry.  相似文献   

17.
A thorough investigation into conditions appropriate for effecting combined eco-friendly bioscouring and/or bleaching of cotton-based fabrics was undertaken. Fabrics used include cotton, grey mercerized cotton, cotton/polyester blend 50/50 and cotton/polyester blend 35/65. The four cotton-based fabric were subjected to bioscouring by single use of alkaline pectinase enzymes or by using binary mixtures of alkaline pectinase and cellulase enzymes under a variety of conditions. Results of bioscouring show that, the bioscoured substrates exhibit fabrics performances which are comparable with these of the conventional alkali scouring. It has been also found that, incorporation of ethylenediaminetetraacetic acid (EDTA) in the bioscouring with mixture from alkaline pectinase and cellulase improves the performance of the bioscoured fabrics. Addition of β-cyclodextrin to the bioscouring solution using alkaline pectinase in admixtures with cellulase acts in favor of technical properties and performance of the bioscoured fabrics. Concurrent bioscouring and bleaching by in situ formed peracetic acid using tetraacetylethylenediamine (TAED) and H2O2 was also investigated. The results reveal unequivocally that the environmentally sound technology brought about by current development is by far the best. The new development involves a single-stage process for full purification/preparation of cotton textiles. The new development at its optimal comprises treatment of the fabric with an aqueous formulation consisting of alkaline pectinase enzyme (2 g/L), TAED (15 g/L), H2O2 (5 g/L), nonionic wetting agent (0.5 g/L) and sodium silicate (2 g/L). The treatment is carried out at 60 °C for 60 min. Beside the advantages of the new development with respect to major technical fabric properties, it is eco-friendly and reproducible. This advocates the new development for mill trials.  相似文献   

18.
The ability of ozone gas to reduce food spoilage is relatively well documented, but the developmental effects of the gas on food spoilage fungi are not well known. In this study two model aspergilli, Aspergillus nidulans and Aspergillus ochraceus were used to study the effects of ozone on spore germination, sporulation and biomass production. These effects were examined under three levels of ozone; two high level ozone exposures (200 and 300 μmol mol−1) and one low level exposure (0.2 μmol mol−1). The two species behaved noticeably different to each other. Ozone was more effective in reducing growth from spore inocula than mycelia. No spore production could be detected in A. nidulans exposed to continuous low level O3, whereas the same treatment reduced spores produced in A. ochraceus by 94%. Overall the work suggests that ozone exposure is an effective method to prevent spread of fungal spores in a food storage situation.  相似文献   

19.
A gene encoding a pyranose 2-oxidase (POx; pyranose/oxygen 2-oxidoreductase; glucose 2-oxidase; EC 1.1.3.10) was identified in the genome of the ascomycete Aspergillus nidulans. Attempts to isolate POx directly from A. nidulans cultures or to homologously overexpress the native POx (under control of the constitutive gpdA promoter) in A. nidulans were unsuccessful. cDNA encoding POx was synthesized from mRNA and expressed in Escherichia coli, and the enzyme was subsequently purified and characterized. A putative pyranose 2-oxidase-encoding gene was also identified in the genome of Aspergillus oryzae. The coding sequence was synthetically produced and was also expressed in E. coli. Both purified enzymes were shown to be flavoproteins consisting of subunits of 65 kDa. The A. nidulans enzyme was biochemically similar to POx reported in literature. From all substrates, the highest catalytic efficiency was found with D-glucose. In addition, the enzyme catalyzes the two-electron reduction of 1,4-benzoquinone, several substituted benzoquinones and 2,6-dichloroindophenol. As judged by the catalytic efficiencies (k cat/k m), some of these quinone electron acceptors are better substrates for pyranose oxidase than oxygen. The enzyme from A. oryzae was physically similar but showed lower kinetic constants compared to the enzyme from A. nidulans. Distinct differences in the stability of the two enzymes may be attributed to a deletion and an insertion in the sequence, respectively.  相似文献   

20.
Summary A locally isolated strain of Aspergillus foetidus MTCC 4898 was studied for xylanase (EC 3.2.1.8) production using lignocellulosic substrates under solid state fermentation. Corncobs were found as the best substrates for high yield of xylanases with poor cellulase production. The influence of various parameters such as temperature, pH, moistening agents, moisture level, nitrogen sources and pretreatment of substrates were evaluated with respect to xylanase yield, specific activity and cellulase production. Influence of nitrogen sources on protease secretion was also examined. Maximum xylanase production (3065 U/g) was obtained on untreated corncobs moistened with modified Mandels and Strenberg medium, pH 5.0 at 1 5 moisture levels at 30 °C in 4 days of cultivation. Submerged fermentation under the same conditions gave higher yield (3300 U/g) in 5 days of cultivation, but productivity was less. Ammonium sulphate fractionation yielded 3.56-fold purified xylanase with 76% recovery. Optimum pH and temperature for xylanase activity were found to be 5.3 and 50 °C respectively. Kinetic parameters like Km and Vmax were found to be 3.58 mg/ml and 570 μmol/mg/min. Activity of the enzyme was found to be enhanced by cystiene hydrochloride, CoCl2, xylose and Tween 80, while significantly inhibited by Hg++, Cu++ and glucose. The enzyme was found to be stable at 40 °C. The half life at 50 °C was 57.53 min. However thermostability was enhanced by glycerol, trehalose and Ca++. The crude enzyme was stable during lyophilization and could be stored at less than 0 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号