首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Streptococcus pneumoniae, alterations in penicillin-binding protein 2b (PBP 2b) that reduce the affinity for penicillin binding are observed during development of beta-lactam resistance. The development of resistance was now studied in three independently obtained piperacillin-resistant laboratory mutants isolated after several selection steps on increasing concentrations of the antibiotic. The mutants differed from the clinical isolates in major aspects: first-level resistance could not be correlated with alterations in the known PBP genes, and the first PBP altered was PBP 2b. The point mutations occurring in the PBP 2b genes were characterized. Each mutant contained one single point mutation in the PBP 2b gene. In one mutant, this resulted in a mutation of Gly-617 to Ala within one of the homology boxes common to all PBPs, and in the other two cases, the same Gly-to-Asp substitution at the end of the penicillin-binding domain had occurred. The sites affected were homologous to those determined previously in the S. pneumoniae PBP 2x of mutants resistant to cefotaxime, indicating that, in both PBPs, similar sites are important for interaction with the respective beta-lactams.  相似文献   

2.
Development of penicillin resistance in Streptococcus pneumoniae is due to successive mutations in penicillin-binding proteins (PBPs) which reduce their affinity for beta-lactam antibiotics. PBP2x is one of the high-Mr PBPs which appears to be altered both in resistant clinical isolates, and in cefotaxime-resistant laboratory mutants. In this study, we have sequenced a 2564 base-pair chromosomal fragment from the penicillin-sensitive S. pneumoniae strain R6, which contains the PBP2x gene. Within this fragment, a 2250 base-pair open reading frame was found which coded for a protein having an Mr of 82.35kD, a value which is in good agreement with the Mr of 80-85 kD measured by SDS-gel electrophoresis of the PBP2x protein itself. The N-terminal region resembled an unprocessed signal peptide and was followed by a hydrophobic sequence that may be responsible for membrane attachment of PBP2x. The corresponding nucleotide sequence of the PBP2x gene from C504, a cefotaxime-resistant laboratory mutant obtained after five selection steps, contained three nucleotide substitutions, causing three amino acid alterations within the beta-lactam binding domain of the PBP2x protein. Alterations affecting similar regions of Escherichia coli PBP3 and Neisseria gonorrhoeae PBP2 from beta-lactam-resistant strains are known. The penicillin-binding domain of PBP2x shows highest homology with these two PBPs and S. pneumoniae PBP2b. In contrast, the N-terminal extension of PBP2x has the highest homology with E. coli PBP2 and methicillin-resistant Staphylococcus aureus PBP2'. No significant homology was detected with PBP1a or PBP1b of Escherichia coli, or with the low-Mr PBPs.  相似文献   

3.
Penicillin-binding proteins (PBPs) are bacterial cytoplasmic membrane proteins that catalyze the final steps of the peptidoglycan synthesis. Resistance to beta-lactams in Streptococcus pneumoniae is caused by low-affinity PBPs. S. pneumoniae PBP 2a belongs to the class A high-molecular-mass PBPs having both glycosyltransferase (GT) and transpeptide (TP) activities. Structural and functional studies of both domains are required to unravel the mechanisms of resistance, a prerequisite for the development of novel antibiotics. The extracellular region of S. pneumoniae PBP 2a has been expressed (PBP 2a*) in Escherichia coli as a glutathione S-transferase fusion protein. The acylation kinetic parameters of PBP 2a* for beta-lactams were determined by stopped-flow fluorometry. The acylation efficiency toward benzylpenicillin was much lower than that toward cefotaxime, a result suggesting that PBP 2a participates in resistance to cefotaxime and other beta-lactams, but not in resistance to benzylpenicillin. The TP domain was purified following limited proteolysis. PBP 2a* required detergents for solubility and interacted with lipid vesicles, while the TP domain was water soluble. We propose that PBP 2a* interacts with the cytoplasmic membrane in a region distinct from its transmembrane anchor region, which is located between Lys 78 and Ser 156 of the GT domain.  相似文献   

4.
Streptococcus pneumoniae is a major human pathogen whose infections have been treated with beta-lactam antibiotics for over 60 years, but the proliferation of strains that are highly resistant to such drugs is a problem of worldwide concern. Beta-lactams target penicillin-binding proteins (PBPs), membrane-associated enzymes that play essential roles in the peptidoglycan biosynthetic process. Bifunctional PBPs catalyze both the polymerization of glycan chains (glycosyltransfer) and the cross-linking of adjacent pentapeptides (transpeptidation), while monofunctional enzymes catalyze only the latter reaction. Although S. pneumoniae has six PBPs, only three (PBP1a, PBP2x, PBP2b) are major resistance determinants, with PBP1a being the only bifunctional enzyme. PBP1a plays a key role in septum formation during the cell division cycle and its modification is essential for the development of high-level resistance to penicillins and cephalosporins. The crystal structure of a soluble form of pneumococcal PBP1a (PBP1a*) has been solved to 2.6A and reveals that it folds into three domains. The N terminus contains a peptide from the glycosyltransfer domain bound to an interdomain linker region, followed by a central, transpeptidase domain, and a small C-terminal unit. An analysis of PBP1a sequences from drug-resistant clinical strains in light of the structure reveals the existence of a mutational hotspot at the entrance of the catalytic cleft that leads to the modification of the polarity and accessibility of the mutated PBP1a active site. The presence of this hotspot in all variants sequenced to date is of key relevance for the development of novel antibiotherapies for the treatment of beta-lactam-resistant pneumococcal strains.  相似文献   

5.
Peptidoglycan polymerization complexes contain multimodular penicillin-binding proteins (PBP) of classes A and B that associate a conserved C-terminal transpeptidase module to an N-terminal glycosyltransferase or morphogenesis module, respectively. In Enterococcus faecalis, class B PBP5 mediates intrinsic resistance to the cephalosporin class of beta-lactam antibiotics, such as ceftriaxone. To identify the glycosyltransferase partner(s) of PBP5, combinations of deletions were introduced in all three class A PBP genes of E. faecalis JH2-2 (ponA, pbpF, and pbpZ). Among mutants with single or double deletions, only JH2-2 DeltaponA DeltapbpF was susceptible to ceftriaxone. Ceftriaxone resistance was restored by heterologous expression of pbpF from Enterococcus faecium but not by mgt encoding the monofunctional glycosyltransferase of Staphylococcus aureus. Thus, PBP5 partners essential for peptidoglycan polymerization in the presence of beta-lactams formed a subset of the class A PBPs of E. faecalis, and heterospecific complementation was observed with an ortholog from E. faecium. Site-directed mutagenesis of pbpF confirmed that the catalytic serine residue of the transpeptidase module was not required for resistance. None of the three class A PBP genes was essential for viability, although deletion of the three genes led to an increase in the generation time and to a decrease in peptidoglycan cross-linking. As the E. faecalis chromosome does not contain any additional glycosyltransferase-related genes, these observations indicate that glycan chain polymerization in the triple mutant is performed by a novel type of glycosyltransferase. The latter enzyme was not inhibited by moenomycin, since deletion of the three class A PBP genes led to high-level resistance to this glycosyltransferase inhibitor.  相似文献   

6.
The bacterial peptidoglycan, the main component of the cell wall, is synthesized by the penicillin-binding proteins (PBPs). We used immunofluorescence microscopy to determine the cellular localization of all the high molecular weight PBPs of the human pathogen Streptococcus pneumoniae, for a wild type and for several PBP-deficient strains. Progression through the cell cycle was investigated by the simultaneous labelling of DNA and the FtsZ protein. Our main findings are: (i) the temporal dissociation of cell wall synthesis, inferred by the localization of PBP2x and PBP1a, from the constriction of the FtsZ-ring; (ii) the localization of PBP2b and PBP2a at duplicated equatorial sites indicating the existence of peripheral peptidoglycan synthesis, which implies a similarity between the mechanism of cell division in bacilli and streptococci; (iii) the abnormal localization of some class A PBPs in PBP-defective mutants which may explain the apparent redundancy of these proteins in S. pneumoniae.  相似文献   

7.
The widespread use of antibiotics has encouraged the development of drug resistance in pathogenic bacteria. In order to overcome this problem, the modification of existing antibiotics and/or the identification of targets for the design of new antibiotics is currently being undertaken. Bifunctional penicillin-binding proteins (PBPs) are membrane-associated molecules whose transpeptidase (TP) activity is irreversibly inhibited by beta-lactam antibiotics and whose glycosyltransferase (GT) activity represents a potential target in the antibacterial fight. In this work, we describe the expression and the biochemical characterization of the soluble extracellular region of Streptococcus pneumoniae PBP1b (PBP1b*). The acylation efficiency for benzylpenicillin and cefotaxime was characterized by stopped-flow fluorometry and a 40-kDa stable TP domain was generated after limited proteolysis. In order to analyze the GT activity of PBP1b*, we developed an electrophoretic assay which monitors the fluorescence signal from PBP1b*-bound dansylated lipid II. This binding was inhibited by the antibiotic moenomycin and was specific for the GT domain, since no signal was observed in the presence of the purified functional TP domain. Binding studies performed with truncated forms of PBP1b* demonstrated that the first conserved motif of the GT domain is not required for the recognition of lipid II, whereas the second motif is necessary for such interaction.  相似文献   

8.
MreC and MreD, along with the actin homologue MreB, are required to maintain the shape of rod-shaped bacteria. The depletion of MreCD in rod-shaped bacteria leads to the formation of spherical cells and the accumulation of suppressor mutations. Ovococcus bacteria, such as Streptococcus pneumoniae, lack MreB homologues, and the functions of the S. pneumoniae MreCD (MreCD(Spn)) proteins are unknown. mreCD are located upstream from the pcsB cell division gene in most Streptococcus species, but we found that mreCD and pcsB are transcribed independently. Similarly to rod-shaped bacteria, we show that mreCD are essential in the virulent serotype 2 D39 strain of S. pneumoniae, and the depletion of MreCD results in cell rounding and lysis. In contrast, laboratory strain R6 contains suppressors that allow the growth of ΔmreCD mutants, and bypass suppressors accumulate in D39 ΔmreCD mutants. One class of suppressors eliminates the function of class A penicillin binding protein 1a (PBP1a). Unencapsulated Δpbp1a D39 mutants have smaller diameters than their pbp1a(+) parent or Δpbp2a and Δpbp1b mutants, which lack other class A PBPs and do not show the suppression of ΔmreCD mutations. Suppressed ΔmreCD Δpbp1a double mutants form aberrantly shaped cells, some with misplaced peptidoglycan (PG) biosynthesis compared to that of single Δpbp1a mutants. Quantitative Western blotting showed that MreC(Spn) is abundant (≈8,500 dimers per cell), and immunofluorescent microscopy (IFM) located MreCD(Spn) to the equators and septa of dividing cells, similarly to the PBPs and PG pentapeptides indicative of PG synthesis. These combined results are consistent with a model in which MreCD(Spn) direct peripheral PG synthesis and control PBP1a localization or activity.  相似文献   

9.
In response to the widespread use of β-lactam antibiotics bacteria have evolved drug resistance mechanisms that include the production of resistant Penicillin Binding Proteins (PBPs). Boronic acids are potent β-lactamase inhibitors and have been shown to display some specificity for soluble transpeptidases and PBPs, but their potential as inhibitors of the latter enzymes is yet to be widely explored. Recently, a (2,6-dimethoxybenzamido)methylboronic acid was identified as being a potent inhibitor of Actinomadura sp. R39 transpeptidase (IC(50): 1.3 μM). In this work, we synthesized and studied the potential of a number of acylaminomethylboronic acids as inhibitors of PBPs from different classes. Several derivatives inhibited PBPs of classes A, B and C from penicillin sensitive strains. The (2-nitrobenzamido)methylboronic acid was identified as a good inhibitor of a class A PBP (PBP1b from Streptococcus pneumoniae, IC(50) = 26 μM), a class B PBP (PBP2xR6 from Streptococcus pneumoniae, IC(50) = 138 μM) and a class C PBP (R39 from Actinomadura sp., IC(50) = 0.6 μM). This work opens new avenues towards the development of molecules that inhibit PBPs, and eventually display bactericidal effects, on distinct bacterial species.  相似文献   

10.
The peptidoglycan glycosyltransferase (GT) module of class A penicillin-binding proteins (PBPs) and monofunctional GTs catalyze glycan chain elongation of the bacterial cell wall. These enzymes belong to the GT51 family, are characterized by five conserved motifs, and have some fold similarity with the phage lambda lysozyme. In this work, we have systematically modified all the conserved amino acid residues of the GT module of Escherichia coli class A PBP1b by site-directed mutagenesis and determined their importance for the in vivo and in vitro activity and the thermostability of the protein. To get an insight into the GT active site of this paradigm enzyme, a model of PBP1b GT domain was constructed based on the available crystal structures (PDB codes 2OLV and 2OLU). The data show that in addition to the essential glutamate residues Glu233 of motif 1 and Glu290 of motif 3, the residues Phe237 and His240 of motif 1 and Gly264, Thr267, Gln271, and Lys274 of motif 2, all located in the catalytic cavity of the GT domain, are essential for the in vitro enzymatic activity of the PBP1b and for its in vivo functioning. Thus, the first three conserved motifs contain most of the residues that are required for the GT activity of the PBP1b. The residues Asp234, Phe237, His240, Thr267, and Gln271 are proposed to maintain the structure of the active site and the positioning of the catalytic Glu233.  相似文献   

11.
Bacillus subtilis mutants with altered penicillin-binding proteins (PBPs), or altered expression of PBPs, were isolated by screening for changes in susceptibility to beta-lactam antibiotics. Mutations affecting only PBPs 2a, 2b and 3 were isolated. Cell shape and peptidoglycan metabolism were examined in representative mutants. Cells of a PBP 2a mutant (UB8521) were usually twisted whereas PBP 2b (UB8524) and 3 (UB8525) mutants produced helices, particularly after growth at 41 degrees C. The PBP 2a mutant (UB8521) had a higher peptidoglycan synthetic activity than its parent strain whereas the opposite applied to the PBP 2b mutant UB8524. The PBP 3 mutant (UB8525) had a similar peptidoglycan synthetic activity to that of the parent strain when grown at 37 degrees C, but 40% higher activity after growth at 41 degrees C. The PBP 2a mutant (UB8521) exhibited the same wall thickening activity as the parent, but the PBP 2b and 3 mutants (UB8524 and UB8525) were partially defective in this respect. The changes in the susceptibility of PBP 2a, 2b and 3 mutants to beta-lactam antibiotics imply that these PBPs are killing targets, consistent with the fact that these PBPs are also important for shape determination and peptidoglycan synthesis.  相似文献   

12.
Multimodular penicillin-binding proteins (PBPs) are essential enzymes responsible for bacterial cell wall peptidoglycan (PG) assembly. Their glycosyltransferase activity catalyzes glycan chain elongation from lipid II substrate (undecaprenyl-pyrophosphoryl-N-acetylglucosamine-N-acetylmuramic acid-pentapeptide), and their transpeptidase activity catalyzes cross-linking between peptides carried by two adjacent glycan chains. Listeria monocytogenes is a food-borne pathogen which exerts its virulence through secreted and cell wall PG-associated virulence factors. This bacterium has five PBPs, including two bifunctional glycosyltransferase/transpeptidase class A PBPs, namely, PBP1 and PBP4. We have expressed and purified the latter and have shown that it binds penicillin and catalyzes in vitro glycan chain polymerization with an efficiency of 1,400 M(-1) s(-1) from Escherichia coli lipid II substrate. PBP4 also catalyzes the aminolysis (d-Ala as acceptor) and hydrolysis of the thiolester donor substrate benzoyl-Gly-thioglycolate, indicating that PBP4 possesses both transpeptidase and carboxypeptidase activities. Disruption of the gene lmo2229 encoding PBP4 in L. monocytogenes EGD did not have any significant effect on growth rate, peptidoglycan composition, cell morphology, or sensitivity to beta-lactam antibiotics but did increase the resistance of the mutant to moenomycin.  相似文献   

13.
Resistance to β-lactam antibiotics in Streptococcus pneumoniae is due to alteration of penicillin-binding proteins (PBPs). S. pneumoniae PBP 1a belongs to the class A high-molecular-mass PBPs, which harbor transpeptidase (TP) and glycosyltransferase (GT) activities. The GT active site represents a new potential target for the generation of novel nonpenicillin antibiotics. The 683-amino-acid extracellular region of PBP 1a (PBP 1a*) was expressed in Escherichia coli as a GST fusion protein. The GST-PBP 1a* soluble protein was purified, and its domain organization was revealed by limited proteolysis. A protease-resistant fragment spanning Ser 264 to Arg 653 exhibited a reactivity profile against both β-lactams and substrate analogues similar to that of the parent protein. This protein fragment represents the TP domain. The GT domain (Ser 37 to Lys 263) was expressed as a recombinant GST fusion protein. Protection by moenomycin of the GT domain against trypsin degradation was interpreted as an interaction between the GT domain and the moenomycin.The synthesis of the bacterial cell wall requires cytoplasmic and periplasmic enzymes. The final steps of peptidoglycan biosynthesis occur outside the cytoplasmic membrane, and they are catalyzed by membrane-bound penicillin-binding proteins (PBPs). PBPs play essential roles in cell division and morphology (6, 20, 31). Based upon their molecular sizes and amino acid sequence similarities, PBPs can be classified into two groups (6): low-molecular-weight (low-Mr) PBPs, which act as d,d-carboxypeptidases, and high-molecular-weight (high-Mr) PBPs, which carry transpeptidase (TP) and glycosyltransferase (GT) activities. The high-Mr group can be further divided into bifunctional enzymes with TP and GT activities (class A) and monofunctional TP enzymes (class B).β-Lactam antibiotics bind with high affinity specifically to d,d-carboxypeptidase and TP domains because of their structural similarity to the natural substrates, the stem peptides. This binding results in the formation of a covalent acyl-PBP enzyme complex, leading to the inactivation of PBPs.High-Mr PBPs are multidomain proteins (6). The three-dimensional structure of Streptococcus pneumoniae PBP 2x (class B high-Mr PBP) illustrates this domain organization (25). The only non-penicillin-binding domain of known function is the GT domain, corresponding to the N-terminal region of class A PBPs. This GT activity, clearly identified in Escherichia coli PBP 1b, is difficult to measure (23, 29, 3135). It is insensitive to penicillin but sensitive to moenomycin, an antibiotic which is not used for human therapy (23, 29, 32, 33).S. pneumoniae is one of the major human pathogens of the upper respiratory tract, causing pneumonia, meningitis, and ear infections. Six PBPs have been identified in S. pneumoniae: high-Mr PBPs 1a, 1b, 2a, 2x, and 2b and low-Mr PBP 3 (8). PBPs 1a, 1b, and 2a belong to class A, while PBPs 2x and 2b are monofunctional class B proteins. Deletion of pbp2x and pbp2b in S. pneumoniae is lethal for the bacteria, while the deletion of pbp1a is tolerated (11), probably due to compensation by PBP 1b. This has been observed for E. coli class A PBP 1a, whose deletion can be compensated for by PBP 1b (36). In clinical isolates of resistant pneumococci, pbp1a, pbp2x, and pbp2b genes were shown to present a mosaic organization, encoding PBPs with reduced affinity for β-lactam antibiotics (2, 5, 15, 18). The specific resistance to ceftriaxone and cefotaxime of S. pneumoniae from the hospital environment is mediated by modification of PBP 2x and PBP 1a (22). Furthermore, gene transfer of pbp1a, pbp2x, and pbp2b from resistant strains conferred penicillin resistance on sensitive S. pneumoniae strains under laboratory conditions (24, 14, 15, 27, 30).The effort to overcome resistance to antibiotics in S. pneumoniae might therefore benefit from a detailed understanding of the molecular basis of TP and GT activities. The GT domain represents a new potential target for novel nonpenicillin antibiotics. Here, we delineate the GT and TP domains of S. pneumoniae PBP 1a* (a water-soluble form of PBP 1a) by limited proteolytic digestion and expression of recombinant domains. The TP activity of PBP 1a* and that of the isolated TP domain were compared. We also present evidence for an interaction between the isolated GT domain and moenomycin.  相似文献   

14.
A soluble derivative of the Enterococcus faecalis JH2-2 class A PBP1 (*PBP1) was overproduced and purified. It exhibited a glycosyltransferase activity on the Escherichia coli 14C-labeled lipid II precursor. As a DD- peptidase, it could hydrolyze thiolester substrates with efficiencies similar to those of other class A penicillin-binding proteins (PBPs) and bind beta-lactams, but with k2/K (a parameter accounting for the acylation step efficiency) values characteristic of penicillin-resistant PBPs.  相似文献   

15.
The penicillin-binding proteins (PBPs) of 209 cell division (or growth) temperature-sensitive mutants of Streptococcus faecium were analyzed in this study. A total of nine strains showed either constitutive or temperature-sensitive conditional damage in the PBPs. Analysis of these nine strains yielded the following results: one carried a PBP 1 constitutively showing a lower molecular weight; one constitutively lacked PBP 2; two lacked PBP 3 at 42 degrees C, but not at 30 degrees C; one was normal at 30 degrees C but at 42 degrees C lacked PBP 3 and overproduced PBP 5; two were normal at 42 degrees C and lacked PBP 5 at 30 degrees C; one constitutively lacked PBP 5; and one carried a PBP 6 constitutively split in two bands. The mutant lacking PBP 3 and overproducing PBP 5 continued to grow at 42 degrees C for 150 min and then lysed. Revertants selected for growth capability at 42 degrees C from the mutants altered in PBPs 5 and 6 maintained the same PBP alterations, while those isolated from the strains with altered PBP 1 or lacking PBP 2 or PBP 3 showed a normal PBP pattern. Penicillin-resistant derivatives were isolated at 30 degrees C from the mutants lacking PBP 2 and from that lacking PBP 3. All these derivatives continued to show the same PBP damage as the parents, but overproduced PBP 5 and grew at 42 degrees C. These findings indicate that high-molecular-weight, but not low-molecular-weight, PBPs are essential for cell growth in S. faecium. This is in complete agreement with previous findings obtained with a different experimental system. On the basis of both previous and present data it is suggested that PBPs 1, 2, and 3 appear necessary for cell growth at optimal temperature (and at maximal rate), but not for cell growth at a submaximal one (or at a reduced rate), and an overproduced PBP 5 is capable of taking over the function of PBPs 1, 2, and 3.  相似文献   

16.
Alterations in the target enzymes for β-lactam antibiotics, the penicillin-binding proteins (PBPs), have been recognized as a major resistance mechanism in Streptococcus pneumoniae. Mutations in PBPs that confer a reduced affinity to β-lactams have been identified in laboratory mutants and clinical isolates, and document an astounding variability of sites involved in this phenotype. Whereas point mutations are selected in the laboratory, clinical isolates display a mosaic structure of the affected PBP genes, the result of interspecies gene transfer and recombination events. Depending on the selective β-lactam, different combinations of PBP genes and mutations within are involved in conferring resistance, and astoundingly in non-PBP genes as well.  相似文献   

17.
Penicillin-binding proteins (PBPs) are enzymes responsible for the polymerization of the glycan strand and the cross-linking between glycan chains as well as the target proteins for β-lactam antibiotics. Mutational alterations in PBPs can confer resistance either by reducing binding of the antibiotic to the active site or by evolving a β-lactamase activity that degrades the antibiotic. As no systematic studies have been performed to examine the potential of all PBPs present in one bacterial species to evolve increased resistance against β-lactam antibiotics, we explored the ability of fifteen different defined or putative PBPs in Salmonella enterica to acquire increased resistance against penicillin G. We could after mutagenesis and selection in presence of penicillin G isolate mutants with amino-acid substitutions in the PBPs, FtsI, DacB and DacC (corresponding to PBP3, PBP4 and PBP6) with increased resistance against β-lactam antibiotics. Our results suggest that: (i) most evolved PBPs became ‘generalists” with increased resistance against several different classes of β-lactam antibiotics, (ii) synergistic interactions between mutations conferring antibiotic resistance are common and (iii) the mechanism of resistance of these mutants could be to make the active site more accessible for water allowing hydrolysis or less binding to β-lactam antibiotics.  相似文献   

18.
Penicillin-binding proteins (PBPs) catalyze the final, essential reactions of peptidoglycan synthesis. Three classes of PBPs catalyze either trans-, endo-, or carboxypeptidase activities on the peptidoglycan peptide side chains. Only the class A high-molecular-weight PBPs have clearly demonstrated glycosyltransferase activities that polymerize the glycan strands, and in some species these proteins have been shown to be essential. The Bacillus subtilis genome sequence contains four genes encoding class A PBPs and no other genes with similarity to their glycosyltransferase domain. A strain lacking all four class A PBPs has been constructed and produces a peptidoglycan wall with only small structural differences from that of the wild type. The growth rate of the quadruple mutant is much lower than those of strains lacking only three of the class A PBPs, and increases in cell length and frequencies of wall abnormalities were noticeable. The viability and wall production of the quadruple-mutant strain indicate that a novel enzyme can perform the glycosyltransferase activity required for peptidoglycan synthesis. This activity was demonstrated in vitro and shown to be sensitive to the glycosyltransferase inhibitor moenomycin. In contrast, the quadruple-mutant strain was resistant to moenomycin in vivo. Exposure of the wild-type strain to moenomycin resulted in production of a phenotype similar to that of the quadruple mutant.  相似文献   

19.
Barrett DS  Chen L  Litterman NK  Walker S 《Biochemistry》2004,43(38):12375-12381
The enzymes involved in the biosynthesis of peptidoglycan are targets for the development of new antibiotics. The bifunctional high molecular weight (HMW) penicillin-binding proteins (PBPs), which contain both glycosyltransferase (GTase) and transpeptidase (TPase) activities, are particularly attractive targets because of their extracellular location. However, there is limited mechanistic or structural information about the GTase modules of these enzymes. In this paper, we describe the overexpression and characterization of the GTase module of Escherichia coli PBP1b, a paradigm of the HMW PBPs. We define the C-terminal boundary of the GTase module and show that the isolated module can be overexpressed at significantly higher levels than the full-length protein. The catalytic efficiency and other characteristics of the isolated module are comparable in most respects to the full-length enzyme. This work lays the groundwork for mechanistic and structural analysis of GTase modules.  相似文献   

20.
Beta-lactam antibiotics, including penicillins and cephalosporins, inhibit penicillin-binding proteins (PBPs), which are essential for bacterial cell wall biogenesis. Pathogenic bacteria have evolved efficient antibiotic resistance mechanisms that, in Gram-positive bacteria, include mutations to PBPs that enable them to avoid beta-lactam inhibition. Lactivicin (LTV; 1) contains separate cycloserine and gamma-lactone rings and is the only known natural PBP inhibitor that does not contain a beta-lactam. Here we show that LTV and a more potent analog, phenoxyacetyl-LTV (PLTV; 2), are active against clinically isolated, penicillin-resistant Streptococcus pneumoniae strains. Crystallographic analyses of S. pneumoniae PBP1b reveal that LTV and PLTV inhibition involves opening of both monocyclic cycloserine and gamma-lactone rings. In PBP1b complexes, the ring-derived atoms from LTV and PLTV show a notable structural convergence with those derived from a complexed cephalosporin (cefotaxime; 3). The structures imply that derivatives of LTV will be useful in the search for new antibiotics with activity against beta-lactam-resistant bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号