首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ischemic preconditioning (IPC) induces distinctive changes in mitochondrial bioenergetics during warm (37 degrees C) ischemia and improves function and tissue viability on reperfusion. We examined whether IPC before 2 h of hypothermic (27 degrees C) ischemia affords additive cardioprotection and improves mitochondrial redox balance assessed by mitochondrial NADH and flavin adenine dinucleotide (FAD) autofluorescence in intact hearts. A mediating role of ATP-sensitive K(+) (K(ATP)) channel opening was investigated. NADH and FAD fluorescence was measured in the left ventricular wall of guinea pig isolated hearts assigned to five groups of eight animals each: hypothermia alone, hypothermia with ischemia, IPC with cold ischemia, 5-hydroxydecanoic acid (5-HD) alone, and 5-HD with IPC and cold ischemia. IPC consisted of two 5-min periods of warm global ischemia spaced 5 min apart and 15 min of reperfusion before 2 h of ischemia at 27 degrees C and 2 h of warm reperfusion. The K(ATP) channel inhibitor 5-HD was perfused from 5 min before until 5 min after IPC. IPC before 2 h of ischemia at 27 degrees C led to better recovery of function and less tissue damage on reperfusion than did 27 degrees C ischemia alone. These improvements were preceded by attenuated increases in NADH and decreases in FAD during cold ischemia and the reverse changes during warm reperfusion. 5-HD blocked each of these changes induced by IPC. This study indicates that IPC induces additive cardioprotection with mild hypothermic ischemia by improving mitochondrial bioenergetics during and after ischemia. Because effects of IPC on subsequent changes in NADH and FAD were inhibited by 5-HD, this suggests that mitochondrial K(ATP) channel opening plays a substantial role in improving mitochondrial bioenergetics throughout mild hypothermic ischemia and reperfusion.  相似文献   

2.
The activity of Na+/K(+)-ATPase and hemoglobin binding in membranes of rat erythrocytes during hypothermia (20 degrees C) was studied. Hypothermia causes an increase in hemoglobin binding and a decrease in Na+/K(+)-ATPase activity. It was found in in vitro experiments that the addition of hemoglobin to the membranes does not affect the Na+/K(+)-ATPase activity in control animals and decreases the activity of the enzyme in hypothermia.  相似文献   

3.
The aging process involves morphological and functional changes in cerebral vasculature and deterioration of mitochondrial number and function. Furthermore, slow oscillations of cerebral blood flow and oxidative metabolism occur in animals under different pathological conditions such as ischemia. The aim of this study was to evaluate the effect of aging on energy-metabolism of the rat brain during anoxia and normoxia and to further investigate the occurrence of oscillations under normoxia in the aging brain. Simultaneous hemodynamical (CBF), biochemical (NADH/NAD ratio) and electrical activity from the cerebral cortex were measured by means of a multiparametric assembly (MPA) system. Exposure of adult rats to anoxia (100% N(2)) resulted in a 36+/-2% elevation of NADH. Furthermore, exposure of the aged group to anoxia caused NADH elevation as low as 9.6+/-4% (P<0.05). The changes in the NADH levels were followed by an increase in CBF. In addition, during the normoxic periods, hemodynamic oscillations were recorded in the old animals. This study suggests that the structural and functional changes that occur in vessels in the aging brain cause disability of cerebromicrovessels to optimally deliver nutrients and oxygen to the brain, affecting the mitochondrial ability to respond to anoxia. Furthermore, this study supports the approach that the hemodynamic oscillations are related to the development of a pathological state and are not a normal cerebral function.  相似文献   

4.
Although hypothermia is known to alter neuronal control of circulation, it has been uncertain whether clinically used hypothermia (moderate hypothermia) affects in situ cardiac sympathetic nerve endings. We examined the effects of moderate hypothermia on cardiac sympathetic nerve ending function in anesthetized cats. By use of a cardiac dialysis technique, we implanted dialysis probes in the midwall of the left ventricle and monitored dialysate norepinephrine (NE) levels as an index of NE output from cardiac sympathetic nerve endings. Hypothermia (27.0+/-0.5 degrees C) induced decreases in dialysate NE levels. Dialysate NE levels did not return to the control level at normothermia after rewarming. Dialysate NE response to inferior vena cava occlusion was attenuated at hypothermia but restored at normothermia after rewarming. Dialysate NE response to high K(+) (100 mM) was attenuated at hypothermia and was not restored at normothermia after rewarming. Hypothermia induced increases in dialysate dihydroxyphenylglycol (DHPG) levels. There were no differences in desipramine (neuronal NE uptake blocker, 10 microM) induced increment in dialysate NE level among control, hypothermia, and normothermia after rewarming. However, hypothermia induced an increase in DHPG/NE ratio. These data suggest that hypothermia impairs vesicle NE mobilization rather than membrane NE uptake. We conclude that moderate hypothermia suppresses exocytotic NE release via central mediated reflex and regional depolarization.  相似文献   

5.
Hypothermia improves resistance to ischemia in the cardioplegia-arrested heart. This adaptive process produces changes in specific signaling pathways for mitochondrial proteins and heat-shock response. To further test for hypothermic modulation of other signaling pathways such as apoptosis, we used various molecular techniques, including cDNA arrays. Isolated rabbit hearts were perfused and exposed to ischemic cardioplegic arrest for 2 h at 34 degrees C [ischemic group (I); n = 13] or at 30 degrees C before and during ischemia [hypothermic group (H); n = 12]. Developed pressure, the maximum first derivative of left ventricular pressure, oxygen consumption, and pressure-rate product (P < 0.05) recovery were superior in H compared with in I during reperfusion. mRNA expression for the mitochondrial proteins, adenine translocase and the beta-subunit of F1-ATPase, was preserved by hypothermia. cDNA arrays revealed that ischemia altered expression of 13 genes. Hypothermia modified this response to ischemia for eight genes, six related to apoptosis. A marked, near fivefold increase in transformation-related protein 53 in I was virtually abrogated in H. Hypothermia also increased expression for the anti-apoptotic Bcl-2 homologue Bcl-x relative to I but decreased expression for the proapoptotic Bcl-2 homologue bak. These data imply that hypothermia modifies signaling pathways for apoptosis and suggest possible mechanisms for hypothermia-induced myocardial protection.  相似文献   

6.
The effects of arterial alphastat regulation on brain intracellular pH (pHi) and several phosphate metabolites were assessed in anesthetized rats during hypothermia (28.6 +/- 0.2 degrees C) and normothermia (36.2 +/- 0.2 degrees C) by using 31P high-field (8.5 T) nuclear magnetic resonance (NMR). There were significant differences in pHi and metabolite ratios at the two temperatures under conditions of equal minute ventilation. During hypothermia, the brain pHi was 0.09 U higher, the phosphocreatine-to-inorganic phosphate (PCR/Pi) ratio 49% larger, and Pi-to-ATP 20% lower than at normothermia. These changes were fully reversible on warming the animal. The change in brain pHi/temperature was -0.011U/degrees C (95% confidence interval -0.007 to -0.016). The brain's ability to regulate its pHi and phosphate metabolism during hypercapnic acid-base stress was studied by using 10% CO2 ventilation. Hypothermic rats showed a larger fall in brain pHi (0.145 +/- 0.01 U, 7.15-7.01) with 10% CO2 than normothermic rats (0.10 +/- 0.02 U, 7.06-6.96). Similarly ventilated rats had a larger fall in arterial pH with 10% CO2 at hypothermia (0.36 +/- 0.04 U) than normothermia (0.24 +/- 0.01 U), so the delta brain pH/delta arterial pH was the same at both temperatures. The brain PCr-to-Pi ratio decreased approximately 20% during 10% CO2 breathing in both hypothermic and normothermic animals. Brain pHi and metabolite ratios returned to base line 30-50 min after CO2 washout in both groups. In summary, lowering body temperature while maintaining constant ventilation leads to changes in brain pHi and metabolites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
Hypothermia before and/or during no-flow ischemia promotes cardiac functional recovery and maintains mRNA expression for stress proteins and mitochondrial membrane proteins (MMP) during reperfusion. Adaptation and protection may occur through cold-induced change in anaerobic metabolism. Accordingly, the principal objective of this study was to test the hypothesis that hypothermia preserves myocardial function during hypoxia and reoxygenation. Hypoxic conditions in these experiments were created by reducing O2 concentration in perfusate, thereby maintaining or elevating coronary flow (CF). Isolated Langendorff-perfused rabbit hearts were subjected to perfusate (Po2 = 38 mmHg) with glucose (11.5 mM) and perfusion pressure (90 mmHg). The control (C) group was at 37 degrees C for 30 min before and 45 min during hypoxia, whereas the hypothermia (H) group was at 29.5 degrees C for 30 min before and 45 min during hypoxia. Reoxygenation occurred at 37 degrees C for 45 min for both groups. CF increased during hypoxia. The H group markedly improved functional recovery during reoxygenation, including left ventricular developed pressure (DP), the product of DP and heart rate, dP/dtmax, and O2 consumption (MVo2) (P < 0.05 vs. control). MVo2 decreased during hypothermia. Lactate and CO2 gradients across the coronary bed were the same in C and H groups during hypoxia, implying similar anaerobic metabolic rates. Hypothermia preserved MMP betaF1-ATPase mRNA levels but did not alter adenine nucleotide translocator-1 or heat shock protein-70 mRNA levels. In conclusion, hypothermia preserves cardiac function after hypoxia in the hypoxic high-CF model. Thus hypothermic protection does not occur exclusively through cold-induced alterations in anaerobic metabolism.  相似文献   

9.
Protective effect of hypothermia during ischemia in neural cell cultures   总被引:5,自引:0,他引:5  
Hypothermia offers protection from the effects of ischemia in small animals. We have recently shown that similar to small animals, hypothermia may also be protective in an astrocytic model of simulated ischemia in cell culture. This study was designed to look at the protective effects of hypothermia in cultures of cerebellar granular (glutamatergic) and cortical (GABAergic) neurons. We used LDH release into the medium as an indicator for neuron damage. Experiments were all done in sister cultures, in groups of six cultures at two temperatures (37 and 32 degrees Celsius). The duration of ischemia was three hours in cerebellar granular neuronal cell cultures and six hours in cortical neurons. LDH release was measured immediately after the insult. Hypothermia protected both granular and cortical neurons. In granular cells, LDH release was 62+/–18 at 32 degrees and 212+/–15 at 37 degrees (p=0.02). Cortical neurons showed LDH release of 15+/–2 at 32 degrees and 32+/–2 at 37 degrees (p=0.005). Our study suggests that similar to astrocytes, the protective effects of hypothermia are evident in neuronal cell cultures from the cerebellum and the cerebral cortex. Cell culture systems should prove useful techniques in understanding mechanisms of hypothermic protection during simulated ischemia in neurons from different sites.  相似文献   

10.
Brain energy disorders and oxidative stress due to chronic hypoperfusion were considered to be the major risk factors in the pathogenesis of dementia. In previous studies, we have demonstrated that acupuncture treatment improved cognitive function of VaD patients and multi-infarct dementia (MID) rats. Acupuncture therapy also increased the activities of glycometabolic enzymes in the brain. But it is not clear whether acupuncture treatment compensates neuronal energy deficit after cerebral ischemic through enhancing the activities of glucose metabolic enzymes and preserving mitochondrial function, and whether acupuncture neuroprotective effect is associated with activations of mitochondrial antioxidative defense system. So, the effect of acupuncture therapy on cognitive function, cerebral blood flow (CBF), mitochondrial respiratory function and oxidative stress in the brain of MID rats was investigated in this study. The results showed that acupuncture treatment significantly improved cognitive abilities and increased regional CBF of MID rats. Acupuncture elevated the activities of total SOD, CuZnSOD and MnSOD, decreased the level of malondialdehyde (MDA) and superoxide anion, regulated the ratio of reduced glutathione (GSH) and oxidized glutathione (GSSG) in mitochondria, and raised the level of the respiratory control index (RCI) and P/O ratio and the activities of mitochondrial respiratory enzymes of MID rats. These results indicated that acupuncture treatment improved cognitive function of MID rats; and this improvement might be due to increased CBF, which ameliorated mitochondrial dysfunction induced by ischemia and endogenous oxidative stress system of brain.  相似文献   

11.
We determined whether cerebral arteriolar dilation to N-methyl-d-aspartate (NMDA), a response dependent on stimulation of cortical neurons and inhibited by anoxic stress, would be preserved by hypothermia during and following ischemia. Pial arteriolar diameters in anesthetized piglets were determined via intravital microscopy. Arteriolar responses to NMDA (10, 50, and 100 micromol/l) were measured before and 1 h after 10 min of global ischemia. Piglets were exposed to either total body or selective brain cooling (33-34 degrees C). Arteriolar dilation to lower doses or to 100 micromol/l NMDA was not affected by hypothermia alone (51 +/- 3 vs. 46 +/- 7%, normothermia vs. hypothermia; n = 7) in nonischemic animals. However, arteriolar responses to 100 micromol/l NMDA were clearly attenuated after ischemia despite body cooling during ischemia (53 +/- 3 vs. 32 +/- 6%; n = 8), hypothermia during ischemia and early reperfusion (49 +/- 10 vs. 20 +/- 3%; n = 8), or selective brain cooling (48 +/- 5 vs. 20 +/- 5%; n = 10). In contrast, pretreatment with indomethacin resulted in complete preservation of NMDA-induced vasodilation after ischemia. Thus, hypothermia fails to protect against neuronal dysfunction during ischemia.  相似文献   

12.
Though mild hypothermia displays an optimistic alleviation of contractive failure in the ischemia/reperfusion myocardium, we still lacked answers to many questions about its potential mechanisms. Our hypothesis is that hypothermia (32°C) induced in ischemia can ease mitochondrial injury resulting in improvement of myocardial contractility even under the condition of a normothermic reperfusion. Fifty newly born 1-2 d Sprague-Dawley rats were executed and the primary cardiomyocytes were obtained and cultivated in vitro. Myocytes were randomized into three groups and then subjected to ischemia either at 32°C or 37°C, both prior to undergoing reperfusion at 37°C. Contractility was presented as frequency and velocity. Ultrastructural alterations of cardiomyocytes and mitochondrion underwent semi-quantitative analysis with transmission electron microscopy and respiratory function of mitochondria was further assessed simultaneously. During cooling ischemia and following reperfusion, cardiomyocytes acquired a more immediate restoration to baseline level and had a significant difference as compared with those in normothermia (P < 0.05). Furthermore, hypothermia preserved the ultrastructure of myocytes and mitochondrion after ischemia. However, measurement on Heart Injury Score and form factor revealed no differences after 2-h reperfusion either in hypothermia or normothermia. On the contrary, the surface area and respiratory function of mitochondrion in reperfusion differed significantly in both groups (P < 0.05) which had an accordance with the variation on contractile performance. Hypothermia only induced in ischemia can bring contractility benefit even under a normothermia reperfusion in cultured cardiomyocytes.  相似文献   

13.
The effect of profound hypothermia (acute or prolonged) on Km for ATP, Vm and strophanthine K affinity to Na,K-ATPase in the rat brain synaptosomal membranes was investigated. The temperature dependence of Na,K-ATPase activity in temperature range 5-40 degrees C was also studied. Hypothermia decreases Km and Vm, and increases affinity of strophanthine K to the enzyme. There are two linear sections in Arrhenius plots ofNa,K-ATPase activity. Hypothermia does not change position of the break point in Arrhenius plots. The mechanisms and biological significance of the changes revealed are discussed.  相似文献   

14.
This study aimed at determining whether glucose-insulin-potassium (GIK) solutions modify the NADH/NAD(+) ratio during postischemic reperfusion and whether their cardioprotective effect can be attributed to this change in part through reduction of the mitochondrial reactive oxygen species (ROS) production. The hearts of 72 rats were perfused with a buffer containing glucose (5.5 mM) and hexanoate (0.5 mM). They were maintained in normoxia for 30 min and then subjected to low-flow ischemia (0.5% of the preischemic coronary flow for 20 min) followed by reperfusion (45 min). From the beginning of ischemia, the perfusate was subjected to various changes: enrichment with GIK solution, enrichment with lactate (2 mM), enrichment with pyruvate (2 mM), enrichment with pyruvate (2 mM) plus ethanol (2 mM), or no change for the control group. Left ventricular developed pressure, heart rate, coronary flow, and oxygen consumption were monitored throughout. The lactate/pyruvate ratio of the coronary effluent, known to reflect the cytosolic NADH/NAD(+) ratio and the fructose-6-phosphate/dihydroxyacetone-phosphate (F6P/DHAP) ratio of the reperfused myocardium, were evaluated. Mitochondrial ROS production was also estimated. The GIK solution improved the recovery of mechanical function during reperfusion. This was associated with an enhanced cytosolic NADH/NAD(+) ratio and reduced mitochondrial ROS production. The cardioprotection was also observed when the hearts were perfused with fluids known to increase the cytosolic NADH/NAD(+) ratio (lactate, pyruvate plus ethanol) compared with the other fluids (control and pyruvate groups). The hearts with a high mechanical recovery also displayed a low F6P/DHAP ratio, suggesting that an accelerated glycolysis rate may be responsible for increased cytosolic NADH production. In conclusion, the cardioprotection induced by GIK solutions could occur through an increase in the cytosolic NADH/NAD(+) ratio, leading to a decrease in mitochondrial ROS production.  相似文献   

15.
Cannabinoids have neuroprotective potentials, and the expression of endocannabinoids as well as cannabinoid receptors is induced after cerebral ischemia. They also induce hypothermia by lowering the hypothalamic set point. We have estimated the significance of such hypothermia in ischemic neuroprotection following systemic administration of WIN 55,212-2, a synthetic cannabinoid receptor agonist. Results showed that WIN 55,212-2 significantly reduced infarct volumes of rats subjected to focal cerebral ischemia (middle cerebral artery occlusion) and significantly decreased ischemic CA1 damage in rats subjected to global cerebral ischemia (two-vessel occlusion). A significant (approximately 50%) part of this neuroprotection was provided by WIN 55,212-2 induced hypothermia (33.7+/-1.1 degrees C/34.9+/-1.6 degrees C), because prevention of hypothermia by maintaining body core temperatures between 37.0 and 38.0 degrees C dissolved the neuroprotective effect into a hypothermic component and an unidentified component. Finally, the ability of WIN 55,212-2 to reduce levels of the proinflammatory cytokine IFNgamma in the infarcted hemisphere of rats subjected to focal cerebral ischemia required hypothermia. For the cannabinoid WIN 55,212-2, we have isolated and directly demonstrated that hypothermia is only part of, although significant, cannabinoid mediated neuroprotection in both global and focal cerebral ischemia. We conclude that cannabinoids are reliable candidates for drug-induced hypothermia and neuroprotection. These neuroprotective effects of cannabinoids could provide the basis for potential therapeutic uses of cannabinoids and/or endocannabinoids in stroke.  相似文献   

16.
17.
Although hypothermia is one of the most powerful modulators that can reduce ischemic injury, the effects of hypothermia on the function of the cardiac autonomic nerves in vivo are not well understood. We examined the effects of hypothermia on the myocardial interstitial norepinephrine (NE) and ACh releases in response to acute myocardial ischemia and to efferent sympathetic or vagal nerve stimulation in anesthetized cats. We induced acute myocardial ischemia by coronary artery occlusion. Compared with normothermia (n = 8), hypothermia at 33 degrees C (n = 6) suppressed the ischemia-induced NE release [63 nM (SD 39) vs. 18 nM (SD 25), P < 0.01] and ACh release [11.6 nM (SD 7.6) vs. 2.4 nM (SD 1.3), P < 0.01] in the ischemic region. Under hypothermia, the coronary occlusion increased the ACh level from 0.67 nM (SD 0.44) to 6.0 nM (SD 6.0) (P < 0.05) and decreased the NE level from 0.63 nM (SD 0.19) to 0.40 nM (SD 0.25) (P < 0.05) in the nonischemic region. Hypothermia attenuated the nerve stimulation-induced NE release from 1.05 nM (SD 0.85) to 0.73 nM (SD 0.73) (P < 0.05, n = 6) and ACh release from 10.2 nM (SD 5.1) to 7.1 nM (SD 3.4) (P < 0.05, n = 5). In conclusion, hypothermia attenuated the ischemia-induced NE and ACh releases in the ischemic region. Moreover, hypothermia also attenuated the nerve stimulation-induced NE and ACh releases. The Bezold-Jarisch reflex evoked by the left anterior descending coronary artery occlusion, however, did not appear to be affected under hypothermia.  相似文献   

18.
Hypothermia decreases the arterial PO(2) at which hemoglobin is 50% saturated (P(50)), increasing hemoglobin O(2)-binding affinity. We used RSR13, a synthetic allosteric modifier of hemoglobin that increases P(50), to study the role of altered hemoglobin O(2)-binding affinity in mild hypothermic neuroprotection. RSR13 (150 mg/kg iv) restored P(50) to normothermic values. Rats underwent 70 min of middle cerebral artery occlusion (MCAO) at 30.0, 34.0, or 37.5 degrees C with hemoglobin saturation held at 98-100%. The 34.0 degrees C group received RSR13 or vehicle before ischemia. After 7 days of recovery, infarct volumes were reduced in all hypothermic groups, without evidence of a detrimental effect on infarct size or neurological score as a result of P(50) correction. To examine for a beneficial effect of P(50) correction, ischemia duration was increased to 120 min in rats maintained at 34.0 degrees C. Correction of P(50) by RSR13 did not alter cerebral infarct sizes or neurological scores. The decrease in P(50), caused by mild hypothermia, could not be associated with infarct size or neurological deficit resulting from ischemic brain hypoxia in rats.  相似文献   

19.
Helmchen F  Fee MS  Tank DW  Denk W 《Neuron》2001,31(6):903-912
Two-photon microscopy has enabled anatomical and functional fluorescence imaging in the intact brain of rats. Here, we extend two-photon imaging from anesthetized, head-stabilized to awake, freely moving animals by using a miniaturized head-mounted microscope. Excitation light is conducted to the microscope in a single-mode optical fiber, and images are scanned using vibrations of the fiber tip. Microscope performance was first characterized in the neocortex of anesthetized rats. We readily obtained images of vasculature filled with fluorescently labeled blood and of layer 2/3 pyramidal neurons filled with a calcium indicator. Capillary blood flow and dendritic calcium transients were measured with high time resolution using line scans. In awake, freely moving rats, stable imaging was possible except during sudden head movements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号