首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functionalized beads and particles in the size range of tens to hundreds of nanometers (nano- to meso-scale) are finding increased applications in the bioanalytical field. We show here that conjugates of streptavidin and the temperature-responsive polymer poly(N-isopropylacrylamide) (PNIPAAm), synthesized with low polydispersities by reversible addition--fragmentation chain transfer (RAFT) polymerization, rapidly formed mesoscale polymer--protein particles above the lower critical solution temperature (LCST). The average hydrodynamic diameters of these particles could be controlled between 250 nm to 900 nm by the choice of conjugate concentration and polymer molecular weight, and/or through control of the rate of temperature change. Once formed, the biohybrid particles were found to be stable for >16 h at the controlled size, unlike the free PNIPAAm which continued to aggregate and grow over time into very large and polydisperse aggregates. The reversibility between the smart polymer--protein particles and the free polymer--protein conjugates opens potential uses in traditional diagnostic formats and in microfluidic formats where the differential diffusive and physical properties might be exploited for separations, analyte concentration, and signal generation.  相似文献   

2.
Block copolymers containing stimuli-responsive segments provide important new opportunities for controlling the activity and aggregation properties of protein-polymer conjugates. We have prepared a RAFT block copolymer of a biotin-terminated poly(N-isopropylacrylamide) (PNIPAAm)-b-poly(acrylic acid) (PAA). The number-average molecular weight (M(n)) of the (PNIPAAm)-b-(PAA) copolymer was determined to be 17.4 kDa (M(w)/M(n) = 1.09). The PNIPAAm block had an M(n) of 9.5 kDa and the poly(acrylic acid) (PAA) block had an M(n) of 7.9 kDa. We conjugated this block copolymer to streptavidin (SA) via the terminal biotin on the PNIPAAm block. We found that the usual aggregation and phase separation of PNIPAAm-SA conjugates that follow the thermally induced collapse and dehydration of PNIPAAm (the lower critical solution temperature (LCST) of PNIPAAm is 32 degrees C in water) is prevented through the shielding action of the PAA block. In addition, we show that the cloud point and aggregation properties (as measured by loss in light transmission) of the [(PNIPAAm)-b-(PAA)]-SA conjugate also depended on pH. At pH 7.0 and at temperatures above the LCST, the block copolymer alone was found to form particles of ca. 60 nm in diameter, while the bioconjugate exhibited very little aggregation. At pH 5.5 and 20 degrees C, the copolymer alone was found to form large aggregates (ca. 218 nm), presumably driven by hydrogen bonding between the -COOH groups of PAA with other -COOH groups and also with the -CONH- groups of PNIPAAm. In comparison, the conjugate formed much smaller particles (ca. 27 nm) at these conditions. At pH 4.0, however, large particles were formed from the conjugate both above and below the LCST (ca. 700 and 540 nm, respectively). These results demonstrate that the aggregation properties of the block copolymer-SA conjugate are very different from those of the free block copolymer, and that the outer-oriented hydrophilic block of PAA shields the intermolecular aggregation of the block copolymer-SA bioconjugate at pH values where the -COOH groups of PAA are significantly ionized.  相似文献   

3.
To clarify the effects of humanizing a murine antibody on its specificity and affinity for its target, we examined the interaction between hen egg white lysozyme (HEL) and its antibody, HyHEL-10 variable domain fragment (Fv). We selected a human antibody framework sequence with high homology, grafted sequences of six complementarity-determining regions of murine HyHEL-10 onto the framework, and investigated the interactions between the mutant Fvs and HEL. Isothermal titration calorimetry indicated that the humanization led to 10-fold reduced affinity of the antibody for its target, due to an unfavorable entropy change. Two mutations together into the interface of the variable domains, however, led to complete recovery of antibody affinity and specificity for the target, due to reduction of the unfavorable entropy change. X-ray crystallography of the complex of humanized antibodies, including two mutants, with HEL demonstrated that the complexes had almost identical structures and also paratope and epitope residues were almost conserved, except for complementary association of variable domains. We conclude that adjustment of the interfacial structures of variable domains can contribute to the reversal of losses of affinity or specificity caused by humanization of murine antibodies, suggesting that appropriate association of variable domains is critical for humanization of murine antibodies without loss of function.  相似文献   

4.
Renard M  Bedouelle H 《Biochemistry》2004,43(49):15453-15462
The variable fragment (Fv) of an antibody can be transformed into a reagentless fluorescent biosensor by mutating a residue into a cysteine in the neighborhood of the paratope (antigen-binding site) and then coupling an environment-sensitive fluorophore, e.g., N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole (IANBD ester), to the mutant cysteine. For some residues, named operational, the formation of the conjugate does not affect the affinity of the Fv fragment for the antigen, and the binding of the antigen generates a measurable variation in the fluorescence intensity of the conjugate. We tested if this signal variation could be increased by coupling several molecules of fluorophores to the same molecule of Fv. Seven operational residues have been previously identified in the single-chain Fv (scFv) of monoclonal antibody D1.3 (mAbD1.3), directed against lysozyme. Ten double mutants of scFvD1.3, involving these residues, were constructed and coupled to the IANBD ester. The fluorescence of the double conjugates revealed a transfer of resonance energy between the two identical fluorescent groups. This homotranfer could be more important in the free state of the conjugate than in its antigen-bound state and increase its sensitivity for the detection of the antigen by up to 2.9-fold. A poorly sensitive conjugate could be improved by coupling a second molecule of fluorophore to residues located far from the paratope. Mutations altering the affinity of scFvD1.3 for lysozyme were introduced into one of its fluorescent conjugates. Using a mixture of three mutant derivatives of this unique conjugate, we could titrate lysozyme with precision in a concentration range encompassing 3 orders of magnitude.  相似文献   

5.
The lectin receptors concanavalin A (ConA) and wheat germ lectin (WGL) were successfully conjugated to a thermo-responsive hydrogel polymer (poly-N-isopropylacrylamide) (PNIPAAm) as an affinity ligand. The coupling efficiencies of the ConA and WGL to PNIPAAm were 5.1% and 44%, respectively. These lectin receptor-polymer conjugates were then tested for their efficiency in purification of various polysaccharides or polysaccharide-containing compounds such as beta-glucan. Results indicated that these conjugates separated various polysaccharides from a complex mixture. The use of a thermo-responsive polymer in low-temperature purification of potentially heat-labile glycoproteins is advantageous. Additionally, other affinity ligands could be coupled to the polymer for separation of the respective bioactive molecules.  相似文献   

6.
Many affinity separation and diagnostic applications rely upon both capture and release steps. There is thus a need for methods to enhance the reversibility of biomolecular interactions. We have previously demonstrated that stimuli-responsive polymers can be used to gate biomolecular reactions when conjugated near the active site of proteins. Here we have used a new smart polymer, N,N-dimethyl acrylamide-co-4-phenylazophenylacrylate that has allowed a mechanistic investigation of the smart polymer switches. This polymer was conjugated via a vinyl sulfone terminus to cysteine residues of genetically engineered streptavidin mutant E116C, where the polymer is conjugated close to the biotin-binding site, and streptavidin mutant S139C, where the conjugation site is distant. The biotin binding switching activity was strongly dependent on conjugation position, as the E116C conjugate displayed a large thermal response while the S139C conjugate displayed only small effects. Kinetic measurements of biotin release demonstrated that the off-rate of biotin was unperturbed and that the thermally triggered release of biotin with the E116C conjugate was due to the blocking the reassociation of biotin. The addition of free polymer to purified E116C conjugates was also shown to increase the blocking and release properties of the switch. This effect was site dependent, suggesting that the conjugated polymers were directing a physical aggregation near the binding site that effectively enhanced the switching activity. These investigations provide mechanistic insight that can be utilized to design better molecular switches for a variety of stimuli-responsive polymer-protein conjugates.  相似文献   

7.
A novel renewable immunosensor was created comprising a temperature-controlled surface composed of poly(n-isopropylacrylamide) (PNIPAAm)-antibody conjugates that could reversibly bind the antigen. Bovine serum albumin (BSA) and the corresponding antibody (anti-BSA) were chosen as a model antibody-antigen system to demonstrate the concept. The thermally responsive PNIPAAm conjugated to anti-BSA displayed a controllable conformation change between an expanded and a collapsed form, below and above its characteristic phase transition temperature, i.e. low critical solution temperature (LCST). This showed a remarkable change in the bioaffinity of the conjugate for BSA. Thus, a renewable anti-BSA surface was generated for re-binding of the target antigen at the thermally controllable PNIPAAm-anti-BSA conjugated surface. The temperature-controlling strategy resulted in the regeneration of immunosensors on which immobilized anti-BSA antibodies retained their activity and specificity for more than 30 reproducible assays. The level of dissociation reached 89%, which is comparable with established recovery methods, while offering easer handing. The controlled binding and dissociation were monitored by quartz crystal microbalance (QCM), confocal fluorescence, native electrophoresis, laser-induced fluorescence, and electrochemical impedance methods.  相似文献   

8.
Several formats of solid-phase separation techniques for the measurement of steroids and urinary steroid conjugates using chemiluminescence as an end point are described. These formats include: (1) immunoadsorption of second antibodies directed against the first antibody on solid support; (2) specific immunoadsorbents consisting of primary antibodies covalently coupled to polymer beads; (3) second antibody coupled to a polymer containing magnetic particles. In these assays a steroid-chemiluminescent marker conjugate serves as the labelled ligand, and highly specific homologous monoclonal antibodies are used to provide optimal specificity and rigorous standardization. These techniques enabled the direct measurement of steroid glucuronides in diluted urine and of steroids in plasma.  相似文献   

9.
The antigen binding fragment (Fab) of a monoclonal antibody (HyHEL-10) consists of variable domains (Fv) and constant domains (CL-CH1). Normal modes have been calculated from the three-dimensional structures of hen egg lysozyme (HEL) with Fab, those of HEL with Fv, and so on. Only a small structural change was found between HEL-Fab and HEL-Fv complexes. However, HEL-Fv had a one order of magnitude lower dissociation constant than HEL-Fab. The Calpha fluctuations of HEL-Fab differed from those of HEL-Fv with normal mode calculation, and the dynamics can be thought to be related to the protein-protein interactions. CL-CH1 may have influence not only around local interfaces between CL-CH1 and Fv, but also around the interacting regions between HEL and Fv, which are longitudinally distant. Eighteen water molecules were found in HEL-Fv around the interface between HEL and Fv compared with one water molecule in HEL-Fab. These solvent molecules may occupy the holes and channels, which may occur due to imperfect complementarity of the complex. Therefore, the suppression of atomic vibration around the interface between Fv and HEL can be thought to be related to favorable and compact interface formation by complete desolvation. It is suggested that the ability to control the antigen-antibody affinity is obtained from modifying the CL-CH1. The second upper loop in the constant domain of the light chain (UL2-CL), which is a conserved gene in several light chains, showed the most remarkable fluctuation changes. UL2-CL could play an important role and could be attractive for modification in protein engineering.  相似文献   

10.
The many laboratory and diagnostic applications utilizing streptavidin as a molecular adaptor rely on its high affinity and essentially irreversible interaction with biotin. However, there are many situations where recovery of the biotinylated molecules is desirable. We have previously shown that poly(N-isopropylacrylamide) (PNIPAAm), a temperature-sensitive polymer, can reversibly block biotin association as the polymer's conformation changes at its lower critical solution temperature (LCST). Here, we have constructed a streptavidin-PNIPAAm conjugate which is able to bind biotin at room temperature or lower and release bound biotin at 37 degrees C. The conjugate can repeatedly bind and release biotin as temperature is cycled through the LCST. A genetically engineered streptavidin mutant, E116C, which has only one cysteine residue, was conjugated site specifically via the sulfhydryl groups with a PNIPAAm that has pendent sulfhydryl-reactive vinyl sulfone groups. The conjugation site is near the tryptophan 120 residue, which forms a van der Waals contact with biotin that is important in generating the large binding free energy. The temperature-induced conformational change of the polymer at position 116 may lead to structural changes in the region of tryptophan 120 that are responsible for the reversible binding between biotin and the conjugated streptavidin.  相似文献   

11.
Tyrosine is an important amino acid in protein-protein interaction hot spots. In particular, many Tyr residues are located in the antigen-binding sites of antibodies and endow high affinity and high specificity to these antibodies. To investigate the role of interfacial Tyr residues in protein-protein interactions, we performed crystallographic studies and thermodynamic analyses of the interaction between hen egg lysozyme (HEL) and the anti-HEL antibody HyHEL-10 Fv fragment. HyHEL-10 has six Tyr residues in its antigen-binding site, which were systematically mutated to Phe and Ala using site-directed mutagenesis. The crystal structures revealed several critical roles for these Tyr residues in the interaction between HEL and HyHEL-10 as follows: 1) the aromatic ring of Tyr-50 in the light chain (LTyr-50) was important for the correct ternary structure of variable regions of the immunoglobulin light chain and heavy chain and of HEL; 2) deletion of the hydroxyl group of Tyr-50 in the heavy chain (HTyr-50) resulted in structural changes in the antigen-antibody interface; and 3) the side chains of HTyr-33 and HTyr-53 may help induce fitting of the antibody to the antigen. Hot spot Tyr residues may contribute to the high affinity and high specificity of the antigen-antibody interaction through a diverse set of structural and thermodynamic interactions.  相似文献   

12.
Antisense technology provides an effective strategy to inhibit synthesis of the gene product. We prepared a novel antisense reagent comprised of oligodeoxynucleotides (ODN) and a thermo responsive polymer, poly(N-isopropylacrylamide) (PNIPAAm). The conjugate inhibited gene expression in a dose-dependent manner. The ODN-PNIPAAm conjugate demonstrated excellent resistance to S1 nuclease. In particular, PNIPAAm-modified antisense ODN at the 3',5'-ends of the ODN provided complete resistance against nuclease at 37 degrees C, which is above the phase transition temperature of the PNIPAAm side chain. These characteristics of the conjugate suggest it may have potential for use in a new gene delivery system as part of an antisense strategy.  相似文献   

13.
In order to address the recognition mechanism of the fragments of antibody variable regions, termed Fv, toward their target antigen, an x-ray crystal structure of an anti-hen egg white lysozyme antibody (HyHEL-10) Fv fragment complexed with its cognate antigen, hen egg white lysozyme (HEL), was solved at 2.3 A. The overall structure of the complex is similar to that reported in a previous article dealing with the Fab fragment-HEL complex (PDB ID code,). However, the areas of Fv covered by HEL upon complex formation increased by about 100 A(2) in comparison with the Fab-HEL complex, and two local structural differences were observed in the heavy chain of the variable region (VH). In addition, small but significant local structural changes were observed in the antigen, HEL. The x-ray data permitted the identification of two water molecules between the VH and HEL and six water molecules retained in the interface between the antigen and the light chain complementarity determining regions (CDRs) 2 and 3 (CDR-L2 and CDR-L3). These water molecules bridge the antigen-antibody interface through hydrogen bond formation in the VL-HEL interface. Eleven water molecules were found to complete the imperfect VH-VL interface, suggesting that solvent molecules mediate the stabilization of interaction between variable regions. These results suggest that the unfavorable effect of deletion of constant regions on the antigen-antibody interaction is compensated by an increase in favorable interactions, including structural changes in the antigen-antibody interface and solvent-mediated hydrogen bond formation upon complex formation, which may lead to a minimum decreased affinity of the antibody Fv fragment toward its antigen.  相似文献   

14.
A system has been developed for reversibly binding and thermoprecipitating biotinylated macromolecules. A high off-rate Ser45Ala (S45A) streptavidin mutant has been covalently conjugated to poly(N-isopropylacrylamide) (PNIPAAm), a temperature-responsive polymer. The resulting conjugate is shown to coprecipitate biotinylated immunoglobulin G (IgG) and a biotinylated oligonucleotide in response to a thermal stimulus. Thermally precipitated biotinylated macromolecules can be released from the S45A-PNIPAAm conjugate by simple treatment with excess free biotin. This release step has been shown to be unique to the mutant streptavidin conjugate-a conjugate of wild type (WT) streptavidin and PNIPAAm does not release bound biotinylated molecules upon treatment with excess free biotin. The capture efficiency (fraction of target molecule precipitated from solution) of the S45A-PNIPAAm conjugate is similar to that of the WT-PNIPAAm conjugate for the biotinylated IgG target molecule (near 100%), but significantly smaller for the biotinylated oligonucleotide target (approximately 60% for the S45A-PNIPAAm conjugate compared to 80% for the WT-PNIPAAm conjugate). The release efficiency (fraction of originally precipitated target molecule released after treatment with free biotin) of the S45A-PNIPAAm conjugate is 70-80% for the biotinylated IgG target and nears 100% for the biotinylated oligonucleotide target. This system demonstrates the use of a high off-rate streptavidin mutant to add reversibility to a system based on smart-polymer-streptavidin conjugates.  相似文献   

15.
Enhanced protein renaturation by temperature-responsive polymers   总被引:6,自引:0,他引:6  
The application of temperature-sensitive polymer (PNIPAAm) for the renaturation of beta-lactamase from inclusion bodies was investigated. It was observed that PNIPAAm was more effective than PEG in enhancing protein renaturation. At a concentration of 0.1%, PNIPAAm improved the yield of beta-lactamase activity by 41% from 46. 5 to 65.4 IU/mL, compared to 26% with PEG from 46.5 to 58.7 IU/mL. Kinetic study indicated that PNIPAAm did not significantly affect the initial rate of protein renaturation but did increase final activity yield. In the presence of PEG and PNIPAAm, the activity yields increased with temperature, indicating that hydrophobic interactions between denatured protein and polymer molecules contributed to the enhanced protein renaturation with polymers. The sequential addition approach, aiming at enhancing protein renaturation by reducing local protein concentration during renaturation, was also shown effective in enhancing protein renaturation, especially in the presence of polymers. With the sequential addition approach, the activity yield was increased by 60. 5% from 46.5 to 74.6 IU/mL with PNIPAAm. Similar behavior was also observed with PEG. PNIPAAm exhibited similar behavior as PEG on the renaturation of beta-lactamase in terms of temperature effect and concentration effect, indicating that the mechanism for enhanced protein renaturation for the two polymers might be similar. PNIPAAm exhibits a lower critical solution temperature (LCST) of 32 degrees C and can be effectively separated from aqueous solution and recycled. A protein renaturation process employing PNIPAAm, which offers the advantages of enhanced renaturation efficiency, minimum loss of protein aggregates, and ease of polymers recycling, was proposed.  相似文献   

16.
Immunoaffinity chromatography is a powerful method for purification of proteins because of the high selectivity and avidity of antibodies. Due to the strength of antigen–antibody binding, however, elution of proteins bound to antibodies that are covalently immobilized on the column is performed by temporary denaturation of the antibody. Therefore, the development of milder elution conditions could improve the recovery of the antibodies and prolong the life of the immunoaffinity column. We describe the design and construction of an antibody that changes its affinity in response to external stimuli. The heavy chain and light chain of a single chain Fv of the D1.3 antibody against hen egg-white lysozyme (HEL) were fused at the N- and C-termini, respectively, of the calmodulin-M13 fusion protein. The affinity of this fusion protein for HEL could be modulated by changing the Ca2+ concentration.  相似文献   

17.
The preparations and conjugations of 2,3,5,6-tetrafluorophenyl 5-[125I/131I]iodo-4-pentenoate (7a) and 2,3,5,6-tetrafluorophenyl 3,3-dimethyl-5-[125I/131I]iodo-4-pentenoate (7b) to monoclonal antibodies are reported. Reagents 7a and 7b were prepared in high radiochemical yield by iododestannylation of their corresponding 5-tri-n-butylstannyl precursors. Radioiodinated antibody conjugates were prepared by reaction of 7a or 7b with the protein at basic pH. Evaluation of these conjugates by several in vitro procedures demonstrated that the radiolabel was attached to the antibody in a stable manner and that the conjugates maintained immunoreactivity. Comparative dual-isotope biodistribution studies of a monoclonal antibody Fab fragment conjugate of 7a and 7b with the same Fab fragment labeled with N-succinimidyl p-[131I]iodobenzoate (PIB, p-iodobenzoate, 2) or directly radioiodinated have been carried out in tumor-bearing nude mice. Coinjection of the Fab conjugate of 7a with the Fab conjugate of 2 demonstrated that the biodistributions were similar in most organs, except the neck tissue (thyroid-containing) and the stomach, which contained substantially increased levels of the 7a label. Coinjection of the Fab conjugate of 7a with the Fab fragment radioiodinated by using the chloramine-T method demonstrated that the biodistributions were remarkably similar, suggesting roughly equivalent in vivo deiodination of these labeled antibody fragments. Coinjection of the Fab conjugate of 7a with the Fab conjugate of 7b indicated that there was approximately a 2-fold reduction in the amount of in vivo deiodination of the 7b conjugate as compared to the 7a conjugate.  相似文献   

18.
Antibodies with high affinity for the surface of a solid material would be advantageous in biomaterial science as a protein device. A human antibody fragment that binds to poly(hydroxybutyrate) (PHB), a biodegradable polymer matter, was generated by a phage display system. Clone PH7-3d3 was isolated after several rounds of selection and prepared as a fragment of immunoglobulin variable regions (Fv). The quartz crystal microbalance technique showed that PH7-3d3 Fv completely inhibited PHB enzymatic degradation by competing with PHB depolymerase. Kinetic analysis based on surface plasmon resonance demonstrated that PH7-3d3 Fv bound to the PHB film with an equilibrium dissociation constant of 14 nM. The three-dimensional structure of PH7-3d3 Fv was resolved to 1.7 A, revealing that the complementarity determining regions (CDRs) in the Fv fragment form a relatively flat surface on which uncharged polar and aromatic amino acids are distributed in clusters. The structure of PH7-3d3 Fv was similar to that of PHB depolymerase in the orientation of aromatic residues in the binding sites. Alanine scanning mutagenesis demonstrated that these aromatic residues, especially tryptophan residues in CDRs, were critical in the interaction between PH7-3d3 Fv and PHB. Our results suggest the possible selection of an antibody fragment that binds a material surface in a manner similar to protein-ligand interaction.  相似文献   

19.
Many germ line antibodies have asparagine residues at specific sites to achieve specific antigen recognition. To study the role of asparagine residues in the stabilization of antigen-antibody complexes, we examined the interaction between hen egg white lysozyme (HEL) and the corresponding HyHEL-10 variable domain fragment (Fv). We introduced Ala and Asp substitutions into the Fv side chains of l-Asn-31, l-Asn-32, and l-Asn-92, which interact directly with residues in HEL via hydrogen bonding in the wild-type Fv-HEL complex, and we investigated the interactions between these mutant antibodies and HEL. Isothermal titration calorimetric analysis showed that all the mutations decreased the negative enthalpy change and decreased the association constants of the interaction. Structural analyses showed that the effects of the mutations on the structure of the complex could be compensated for by conformational changes and/or by gains in other interactions. Consequently, the contribution of two hydrogen bonds was minor, and their abolition by mutation resulted in only a slight decrease in the affinity of the antibody for its antigen. By comparison, the other two hydrogen bonds buried at the interfacial area had large enthalpic advantage, despite entropic loss that was perhaps due to stiffening of the interface by the bonds, and were crucial to the strength of the interaction. Deletion of these strong hydrogen bonds could not be compensated for by other structural changes. Our results suggest that asparagine can provide the two functional groups for strong hydrogen bond formation, and their contribution to the antigen-antibody interaction can be attributed to their limited flexibility and accessibility at the complex interface.  相似文献   

20.
The formation of conjugates between cloned anti-H-2Kb and Dd cytotoxic T lymphocytes (CTL) and splenic target cells has been studied by dual parameter flow cytometry. By varying effector-target combinations and by blocking with anti-MHC class I monoclonal antibodies, we found that the specificity of conjugate formation, in general, paralleled that expected from cytotoxicity studies; however, a significant number of "nonspecific" conjugates was always observed. As expected from previous studies, conjugate formation did not occur below 10 degrees C and was inhibited by cytochalasin B, EDTA, and anti-Lyt-2 antibodies. Conjugate formation followed first-order kinetics. The rate of formation of conjugates increased with temperature from 24 degrees to 37 degrees C; at 37 degrees C, the half-time was 1.4 min. After a 6-min lag period, lysis of target cells could be detected at 37 degrees C but not at 30 degrees C or below. Because target cell lysis proceeded during a period of time when the number of conjugates remained constant, considerable effector cell recycling must have occurred. Comparisons of the fluorescence emissions from conjugated effector or target cells with those from unconjugated cells demonstrated that nearly all conjugates contained one effector cell and one target cell, independent of the ratio of the two cell types in the original mix. Once formed, anti-H-2Kb conjugates were stable when diluted into medium alone, but rapidly disaggregated in medium containing either anti-Lyt-2 or anti-Kb monoclonal antibodies, both of which blocked conjugate formation. This finding suggests that conjugates are normally stabilized by intercellular bonds that are constantly breaking and reforming at the cell:cell interface, and that the antibodies disrupt the conjugates by preventing the reformation of broken bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号