共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Nikki Cecil M. Magdaong Dariusz M. Niedzwiedzki Rafael G. Saer Carrie Goodson Robert E. Blankenship 《BBA》2018,1859(10):1180-1190
A series of spectroscopic measurements were performed on membrane fractions and detergent-solubilized complexes from the green sulfur bacterium (GSB) Chlorobaculum (Cba.) tepidum. The excitation migration through the entire GSB photosynthetic apparatus cannot be observed upon excitation of membranes in the chlorosome region at 77?K. In order to observe energy transfer from the Fenna-Matthews-Olson (FMO) protein to the reaction center (RC), FMO was directly excited at ~800?nm in transient absorption experiments. However, interpretation of the results is complicated by the spectral overlap between FMO and the RC. The availability of the Y16F FMO mutant, whose absorption spectrum is drastically different from that of the WT, has enabled the selection of spectral regions where either only FMO or the RC contributes. The application of a directed kinetic modeling approach, or target analysis, revealed the various decay and energy transfer pathways within the pigment-protein complexes. The calculated FMO-to-RC excitation energy transfer efficiencies are approximately 25% and 48% for the Y16F and WT samples, respectively. 相似文献
3.
Matthieu de Rivoyre 《BBA》2010,1797(11):1780-1794
Photosynthetic membranes accommodate densely packed light-harvesting complexes which absorb light and convey excitation to the reaction center (RC). The relationship between the fluorescence yield (φ) and the fraction (x) of closed RCs is informative about the probability for an excitation reaching a closed RC to be redirected to another RC. In this work, we have examined in this respect membranes from various bacteria and searched for a correlation with the arrangement of the light-harvesting complexes as known from atomic force or electron microscopies. A first part of the paper is devoted to a theoretical study analyzing the φ(x) relationship in various models: monomeric or dimeric RC-LH1 core complexes, with or without the peripheral LH2 complexes. We show that the simple “homogeneous” kinetic treatment used here agrees well with more detailed master equation calculations. We also discuss the agreement between information derived from the present technique and from singlet annihilation experiments. The experimental results show that the enhancement of the cross section of open RCs due to excitation transfer from closed units varies from 1.5 to 3 depending on species. The ratio of the core to core transfer rate (including the indirect pathway via LH2) to the rate of trapping in open units is in the range of 0.5 to 4. It is about 1 in Rhodobacter sphaeroides and does not increase significantly in mutants lacking LH2—despite the more numerous contacts between the dimeric core complexes expected in this case. The connectivity in this bacterium is due in good part to the fast transfer between the two partners of the dimeric (RC-LH1-PufX)2 complex. The connectivity is however increased in the carotenoidless and LH2-less strain R26, which we ascribe to an anomalous LH1. A relatively high connectivity was found in Rhodospirillum photometricum, although not as high as predicted in the calculations of Fassioli et al. (2010). This illustrates a more general discrepancy between the measured efficiency of core to core excitation transfer and theoretical estimates. We argue that the limited core to core connectivity found in purple bacteria may reflect a trade-off between light-harvesting efficiency and the hindrance to quinone diffusion that would result from too tightly packed LH complexes. 相似文献
4.
Psencík J Ma YZ Arellano JB Garcia-Gil J Holzwarth AR Gillbro T 《Photosynthesis research》2002,71(1-2):5-18
The role of carotenoids in chlorosomes of the green sulfur bacterium Chlorobium phaeobacteroides, containing bacteriochlorophyll (BChl) e and the carotenoid (Car) isorenieratene as main pigments, was studied by steady-state fluorescence excitation, picosecond single-photon timing and femtosecond transient absorption (TA) spectroscopy. In order to obtain information about energy transfer from Cars in this photosynthetic light-harvesting antenna with high spectral overlap between Cars and BChls, Car-depleted chlorosomes, obtained by inhibition of Car biosynthesis by 2-hydroxybiphenyl, were employed in a comparative study with control chlorosomes. Excitation spectra measured at room temperature give an efficiency of 60–70% for the excitation energy transfer from Cars to BChls in control chlorosomes. Femtosecond TA measurements enabled an identification of the excited state absorption band of Cars and the lifetime of their S1 state was determined to be 10 ps. Based on this lifetime, we concluded that the involvement of this state in energy transfer is unlikely. Furthermore, evidence was obtained for the presence of an ultrafast (>100 fs) energy transfer process from the S2 state of Cars to BChls in control chlorosomes. Using two time-resolved techniques, we further found that the absence of Cars leads to overall slower decay kinetics probed within the Qy band of BChl e aggregates, and that two time constants are generally required to describe energy transfer from aggregated BChl e to baseplate BChl a.This revised version was published online in October 2005 with corrections to the Cover Date. 相似文献
5.
Resonance Raman experiments were performed on different green bacteria. With blue excitation, i.e. under Soret resonance or preresonance conditions, resonance Raman contributions were essentially arising from the chlorosome pigments. By comparing these spectra and those of isolated chlorosomes, it is possible to evaluate how the latter retain their native structure during the isolation procedures. The structure of bacteriochlorophyll oligomers in chlorosomes was interspecifically compared, in bacteriochlorophyllc- and bacteriochlorophylle- synthesising bacteria. It appears that interactions assumed by the 9-keto carbonyl group are identical inChlorobium limicola, Chlorobium tepidum, andChlorobium phaeobacteroides. In the latter strain, the 3-formyl carbonyl group of bacteriochlorophylle is kept free from intermolecular interactions. By contrast, resonance Raman spectra unambiguously indicate that the structure of bacteriochlorophyll oligomers is slightly different in chlorosomes fromChloroflexus auranticus, either isolated or in the whole bacteria. 相似文献
6.
- The cellular content of galactolipids in Chlorobium and Chloroflexus is not related to bacteriochlorophyll content nor to the total amount of chlorosome material in the cells.
- Chlorosomes of both bacteria were agglutinated by Ricinus lectin and the agglutination was increased after treatment of the chlorosomes with trypsin.
- When cell free preparations of both bacteria were treated with trypsin prior to centrifugation on sucrose gradients, the resulting chlorosome fractions were less contaminated with material derived from the cytoplasmic membrane than when trypsin was not employed.
7.
Jakub P >sen >cík Martin Vácha Franti >sek Adamec Milan Ambro >z Juraj Dian Jan Bo >cek Jan Hála 《Photosynthesis research》1994,42(1):1-8
Results of low temperature fluorescence and spectral hole burning experiments with whole cells and isolated chlorosomes of the green sulfur bacterium Chlorobium limicola containing BChl c are reported. At least two spectral forms of BChl c (short-wavelength and long-wavelength absorbing BChl c) were identified in the second derivative fluorescence spectra. The widths of persistent holes burned in the fluorescence spectrum of BChl c are determined by excited state lifetimes due to fast energy transfer. Different excited state lifetimes for both BChl c forms were observed. A site distribution function of the lowest excited state of chlorosomal BChl c was revealed. The excited state lifetimes are strongly influenced by redox conditions of the solution. At anaerobic conditions the lifetime of 5.3 ps corresponds to the rate of energy transfer between BChl c clusters. This time shortens to 2.6 ps at aerobic conditions. The shortening may be caused by introducing a quencher. Spectral bands observed in the fluorescence of isolated chlorosomes were attributed to monomeric and lower state aggregates of BChl c. These forms are not functionally connected with the chlorosome.Abbreviations BChl
bacteriochlorophyll
- EET
electronic energy transfer
- FWHM
full width at half maximum
- SDF
site distribution function
- RC
reaction centre 相似文献
8.
Paula I. van Noort Christof Francke Nicole Schoumans Stephan C. M. Otte Thijs J. Aartsma Jan Amesz 《Photosynthesis research》1994,41(1):193-203
The pigment composition and energy transfer pathways in isolated chlorosomes ofChlorobium phaeovibrioides andChlorobium vibrioforme were studied by means of high performance liquid chromatography (HPLC) and picosecond absorbance difference spectroscopy. Analysis of pigment extracts of the chlorosomes revealed that they contain small amounts of bacteriochlorophyll (BChl)a esterified with phytol, whereas the BChlsc, d ande are predominantly esterified with farnesol. The chlorosomal BChla content inC. phaeovibrioides andC. vibrioforme was found to be 1.5% and 0.9%, respectively. The time resolved absorbance difference spectra showed a bleaching shifted to longer wavelengths as compared to the Qy absorption maxima and in chlorosomes ofC. vibrioforme also an absorbance increase at shorter wavelengths was observed. These spectral features were ascribed to excitation of oligomers of BChle and BChlc/d, respectively. One-color and two-color pump-probe kinetics ofC. phaeovibrioides showed rapid energy transfer to long-wavelength absorbing BChle oligomers, followed by trapping of excitations by BChla with a time constant of about 60 ps. Time resolved anisotropy measurements inC. vibrioforme showed randomization of excitations among BChla molecules with a time constant of about 20 ps, indicating that BChla in the baseplate is organized in clusters. One-color and two-color pump-probe measurements inC. vibrioforme showed rapid energy transfer from short-wavelength to long-wavelength absorbing oligomers with a time constant of about 11 ps. Trapping of excitations by BChla in this species could not be resolved unambiguously due to annihilation processes in the BChla clusters, but may occur with time constants of 15, 70 and 200 ps. 相似文献
9.
Steensgaard DB van Walree CA Permentier H Bañeras L Borrego CM Garcia-Gil J Aartsma TJ Amesz J Holzwarth AR 《Biochimica et biophysica acta》2000,1457(1-2):71-80
We have studied energy transfer in chlorosomes of Chlorobium limicola UdG6040 containing a mixture of about 50% bacteriochlorophyll (BChl) c and BChl d each. BChl d-depleted chlorosomes were obtained by acid treatment. The energy transfer between the different pigment pools was studied using both steady-state and time-resolved fluorescence spectroscopy at room temperature and low temperature. The steady-state emission of the intact chlorosome originated mainly from BChl c, as judged by comparison of fluorescence emission spectra of intact and BChl d-depleted chlorosomes. This indicated that efficient energy transfer from BChl d to BChl c takes place. At room temperature BChl c/d to BChl a excitation energy transfer (EET) was characterized by two components of 27 and 74 ps. At low temperature we could also observe EET from BChl d to BChl c with a time constant of approximately 4 ps. Kinetic modeling of the low temperature data indicated heterogeneous fluorescence kinetics and suggested the presence of an additional BChl c pool, E790, which is more or less decoupled from the baseplate BChl a. This E790 pool is either a low-lying exciton state of BChl c which acts as a trap at low temperature or alternatively represents the red edge of a broad inhomogeneous absorption band of BChl c. We present a refined model for the organization of the spatially separated pigment pools in chlorosomes of Cb. limicola UdG6040 in which BChl d is situated distal and BChl c proximal with respect to the baseplate. 相似文献
10.
K Csatorday J W Hammans J C Goedheer 《Biochemical and biophysical research communications》1978,81(2):571-575
Several natural acyclic sesquiterpenes with capacity for insect growth regulation have been shown to uncouple oxidative phosphorylation in mouse-liver mitochondria. These agents stimulate succinate oxidation, reverse oligomycin-inhibited state 3 respiration, activate ATP-hydrolysis, induce loss of respiratory control and abolish ratio. Permeability of the inner membrane to potassium, sodium, ammonium and chloride ions as well as to protons is also enhanced. Since the structure of these agents precludes protonophoric activity, the possible mechanism of uncoupling by these juvenile hormones is discussed. 相似文献
11.
Kuznetsov VY Blair E Farmer PJ Poulos TL Pifferitti A Sevrioukova IF 《The Journal of biological chemistry》2005,280(16):16135-16142
Interaction and electron transfer between putidaredoxin reductase (Pdr) and putidaredoxin (Pdx) from Pseudomonas putida was studied by molecular modeling, mutagenesis, and stopped flow techniques. Based on the crystal structures of Pdr and Pdx, a complex between the proteins was generated using computer graphics methods. In the model, Pdx is docked above the isoalloxazine ring of FAD of Pdr with the distance between the flavin and [2Fe-2S] of 14.6 A. This mode of interaction allows Pdx to easily adjust and optimize orientation of its cofactor relative to Pdr. The key residues of Pdx located at the center, Asp(38) and Trp(106), and at the edge of the protein-protein interface, Tyr(33) and Arg(66), were mutated to test the Pdr-Pdx computer model. The Y33F, Y33A, D38N, D38A, R66A, R66E, W106F, W106A, and Delta106 mutations did not affect assembly of the [2Fe-2S] cluster and resulted in a marginal change in the redox potential of Pdx. The electron-accepting ability of Delta106 Pdx was similar to that of the wild-type protein, whereas electron transfer rates from Pdr to other mutants were diminished to various degrees with the smallest and largest effects on the kinetic parameters of the Pdr-to-Pdx electron transfer reaction caused by the Trp(106) and Tyr(33)/Arg(66) substitutions, respectively. Compared with wild-type Pdx, the binding affinity of all studied mutants to Pdr was significantly higher. Experimental results were in agreement with theoretical predictions and suggest that: (i) Pdr-Pdx complex formation is mainly driven by steric complementarity, (ii) bulky side chains of Tyr(33), Arg(66), and Trp(106) prevent tight binding of oxidized Pdx and facilitate dissociation of the reduced iron-sulfur protein from Pdr, and (iii) transfer of an electron from FAD to [2Fe-2S] can occur with various orientations between the cofactors through multiple electron transfer pathways that do not involve Trp(106) but are likely to include Asp(38) and Cys(39). 相似文献
12.
The limit of sensitivity of the chemiluminescent assay for detection of bacteria by hemeprotein catalysis of luminol oxidation was determined, both experimentally and theoretically, to be no lower than 10(5) to 10(6) viable bacterial per ml. 相似文献
13.
Mamoru Mimuro Masamitsu Hirota Yoshinobu Nishimura Takeshi Moriyama Iwao Yamazaki Keizo Shimada Katsumi Matsuura 《Photosynthesis research》1994,41(1):181-191
Examination was made of changes in fluorescence polarization plane by energy transfer in the chlorosomes of the green photosynthetic bacterium,Chloroflexus aurantiacus. Fluorescence anisotropy in the picosecond (ps) time region was analyzed using chlorosomes suspended in solution as well as those oriented in a polyacrylamide gel. When the main component of BChlc was preferentially excited, the decay of fluorescence anisotropy was found to depend on wavelength. In the chlorosome suspension, the anisotropy ratio of BChlc changed from 0.31 to 0.24 within 100 ps following excitation. In the baseplate BChla region, this ratio decreased to a negative value (–0.09) from the initial 0.14. In oriented samples, the degree of polarization remained at 0.68 for BChlc, and changed from 0.25 to –0.40 for the baseplate BChla by excitation light whose electric vector was parallel to the longest axis of chlorosomes. In the latter case, there was a shift from 0.30 to –0.55 by excitation perpendicular to the longest axis. Time-resolved fluorescence polarization spectra clearly indicated extensive changes in polarization plane accompanied by energy transfer. The directions of polarization plane of emission from oriented samples were mostly dependent on chlorosome orientation in the gel but not on that of the polarization plane of excitation light. Orientations of the dipole moment of fluorescence components was consistent with that of absorption components as determined by the linear dichroism (Matsuura et al. (1993) Photochem. Photobiol. 57: 92–97). A model for molecular organization of BChlc anda in chlorosomes is proposed based on anisotropic optical properties. 相似文献
14.
Frigaard Niels-Ulrik Matsuura Katsumi Hirota Masamitsu Miller Mette Cox Raymond P. 《Photosynthesis research》1998,58(1):81-90
The chlorosome antenna of the green sulfur bacterium Chlorobium tepidum essentially consists of aggregated bacteriochlorophyll (BChl) c enveloped in a glycolipid monolayer. Small amounts of protein and the isoprenoid quinones chlorobiumquinone (CK) and menaquinone-7 (MK-7) are also present. Treatment of isolated chlorosomes from Cb. tepidum with sodium dodecyl sulfate (SDS) did not affect the quinones, demonstrating that these are located in a site which is inaccessible to SDS, probably in the interior of the chlorosomes. About half of the quinones were removed by Triton X-100. The non-ionic character of Triton probably allowed it to extract components from within the chlorosomes. MK-10 in chlorosomes from the green filamentous bacterium Chloroflexus aurantiacus was likewise found to be located in the chlorosome interior. The excitation transfer in isolated chlorosomes from Cb. tepidum is redox-regulated. We found a ratio of BChl c fluorescenceintensity under reducing conditions (Fred) to that under oxidizing conditions (Fox) of approximately 40. The chlorosomal BChl a fluorescence was also redox-regulated. When the chlorosomal BChl c–BChl c interactions were disrupted by 1-hexanol, the BChl c Fred/Fox ratiodecreased to approximately 3. When CK and MK-7 were extracted from isolated chlorosomes with hexane, the BChl c Fred/Fox ratio also decreased to approximately 3. A BChl c Fred/Fox ratio of 3–5 was furthermore observed in aggregates of pure BChl c and in chlorosomes from Cfx. aurantiacus which do not contain CK. We therefore suggest that BChl c aggregates inherently exhibit a small redox-dependent fluorescence (Fred/Fox 3) and that the large redox-dependent fluorescence observed in chlorobial chlorosomes (Fred/Fox 40) is CK-dependent. 相似文献
15.
A new bacteriochlorophyll a-protein complex associated with chlorosomes of green sulfur bacteria 总被引:1,自引:0,他引:1
Chlorosomes were prepared from Chlorobium limicola f. thiosulfatophilum by sucrose density gradient centrifugation. Cells broken in the presence of 2 M NaSCN yielded three chlorosome fractions in the gradient: low density (no sucrose), medium density (approx. 18% sucrose), and high density (approx. 26% sucrose). All fractions were stable at any chlorosome concentration. Cells broken in the absence of 2 M NaSCN also yielded three fractions, but only the high-density fraction contained stable chlorosomes. The medium-density chlorosomes were stable only when highly concentrated. Upon dilution, bacteriochlorophyll (BChl) c was degraded to bacteriopheophytin c and concomitantly a band at 794 nm (BChl a) was revealed. Two 794-nm fractions were observed with the same densities as low- and medium-density chlorosomes. The protein composition of the 794-nm fractions was similar to that of the stable chlorosome fractions. All showed a 4-5 kDa (Mr) protein as a major component, but no trace of the 40-kDa protein characteristic of the water-soluble BChl a-protein of green sulfur bacteria. BChl a was present in all types of chlorosomes, in stable chlorosomes the BChl c/BChl a ratio was approx. 90. A special BChl a-protein (794 nm) inside the chlorosome is postulated to mediate energy transfer from BChl c to the water-soluble BChl a-protein in the baseplate. 相似文献
16.
Exciton calculations on tubular pigment aggregates similar to recently proposed models for BChl c/d/e antennae in light-harvesting chlorosomes from green photosynthetic bacteria yield electronic absorption spectra that are super-impositions of linear J-aggregate spectra. While the electronic spectroscopy of such antennae differs considerably from that of linear J-aggregates, tubular exciton models (which may be viewed as cross-coupled J-aggregates) may be constructed to yield spectra that resemble that of the BChl c antenna in the green bacterium Chloroflexus aurantiacus. Highly symmetric tubular models yield absorption spectra with dipole strength distributions essentially identical to that of a J-aggregate; strong symmetry-breaking is needed to simulate the absorption spectrum of the BChl c antenna.Abbreviations BChl
bacteriochlorophyll
- [E,M] BChl c
S
bacteriochlorophyll c with ethyl and methyl substituents in the 8- and 12-positions, and with stearol as the esterifying alcohol 相似文献
17.
Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria
下载免费PDF全文

Psencík J Ikonen TP Laurinmäki P Merckel MC Butcher SJ Serimaa RE Tuma R 《Biophysical journal》2004,87(2):1165-1172
Chlorosomes of green photosynthetic bacteria constitute the most efficient light harvesting complexes found in nature. In addition, the chlorosome is the only known photosynthetic system where the majority of pigments (BChl) is not organized in pigment-protein complexes but instead is assembled into aggregates. Because of the unusual organization, the chlorosome structure has not been resolved and only models, in which BChl pigments were organized into large rods, were proposed on the basis of freeze-fracture electron microscopy and spectroscopic constraints. We have obtained the first high-resolution images of chlorosomes from the green sulfur bacterium Chlorobium tepidum by cryoelectron microscopy. Cryoelectron microscopy images revealed dense striations approximately 20 A apart. X-ray scattering from chlorosomes exhibited a feature with the same approximately 20 A spacing. No evidence for the rod models was obtained. The observed spacing and tilt-series cryoelectron microscopy projections are compatible with a lamellar model, in which BChl molecules aggregate into semicrystalline lateral arrays. The diffraction data further indicate that arrays are built from BChl dimers. The arrays form undulating lamellae, which, in turn, are held together by interdigitated esterifying alcohol tails, carotenoids, and lipids. The lamellar model is consistent with earlier spectroscopic data and provides insight into chlorosome self-assembly. 相似文献
18.
The “light-harvesting chlorophyll a/b · protein” described by Thornber has been prepared electrophoretically from spinach chloroplasts. The optical properties relevant to energy transfer have been measured in the red region (i.e. 600–700 nm). Measurements of the absorption spectrum, fluorescence excitation spectrum and excitation dependence of the fluorescence emission spectrum of this protein confirm that energy transfer from chlorophyll b to chlorophyll a is highly efficient, as is the case in concentrated chlorophyll solutions and in vivo. The excitation dependence of the fluorescence polarization shows a minimum polarization of 1.9 % at 650 nm which is the absorption maximum of chlorophyll b in the protein and rises steadily to a maximum value of 13.8 % at 695 nm, the red edge of the chlorophyll a absorption band. Analysis of these measurements shows that at least two unresolved components must be responsible for the chlorophyll a absorption maximum. Comparison of polarization measurements with those observed in vivo shows that most of the depolarization observed in vivo can take place within a single protein. Circular dichroism measurements show a doublet structure in the chlorophyll b absorption band which suggests an exciton splitting not resolved in absorption. Analysis of these data yields information about the relative orientation of the S0→S1 transition moments of the chlorophyll molecules within the protein. 相似文献
19.
Mamoru Mimuro Yoshinobu Nishimura Iwao Yamazaki Masayuki Kobayashi Zheng Yu Wang Tsunenori Nozawa Keizo Shimada Katsumi Matsuura 《Photosynthesis research》1996,48(1-2):263-270
The effect of 1-hexanol on spectral properties and the processes of energy transfer of the green gliding photosynthetic bacterium Chloroflexus aurantiacus was investigated with reference to the baseplate region. On addition of 1-hexanol to a cell suspension in a concentration of one-fourth saturation, a specific change in the baseplate region was induced: that is, a bleach of the 793-nm component, and an increase in absorption of the 813-nm component. This result was also confirmed by fluorescence spectra of whole cells and isolated chlorosomes. The processes of energy transfer were affected in the overall transfer efficiency but not kinetically, indicating that 1-hexanol suppressed the flux of energy flow from the baseplate to the B806-866 complexes in the cytoplasmic membranes. The fluorescence excitation spectrum suggests a specific site of interaction between bacteriochlorophyll (BChl) c with a maximum at 771 nm in the rod elements and BChl a with a maximum at 793 nm in the baseplate, which is a funnel for a fast transfer of energy to the B806-866 complexes in the membranes. The absorption spectrum of chlorosomes was resolved to components consistently on the basis, including circular dichroism and magnetic circular dichroism spectra; besides two major BChl c forms, bands corresponding to tetramer, dimer, and monomer were also discernible, which are supposed to be intermediary components for a higher order structure. A tentative model for the antenna system of C. aurantiacus is proposed.Abbreviations A670
a component whose absorption maximum is located at 670 nm
- (B)Chl
(bacterio)chlorophyll
- CD
circular dichroism
- F675
a component whose emission maximum is located at 675 nm
- FMO protein
Fenna-Mathews-Olson protein
- LD
linear dichroism
- LH
light-harvesting
- McD
magnetic circular dichroism
- PS
photosystem
- RC
reaction center 相似文献
20.
How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria
下载免费PDF全文

A simple electrostatic method for the calculation of optical transition energies of pigments in protein environments is presented and applied to the Fenna-Matthews-Olson (FMO) complex of Prosthecochloris aestuarii and Chlorobium tepidum. The method, for the first time, allows us to reach agreement between experimental optical spectra and calculations based on transition energies of pigments that are calculated in large part independently, rather than fitted to the spectra. In this way it becomes possible to understand the molecular mechanism allowing the protein to trigger excitation energy transfer reactions. The relative shift in excitation energies of the seven bacteriochlorophyll-a pigments of the FMO complex of P. aestuarii and C. tepidum are obtained from calculations of electrochromic shifts due to charged amino acids, assuming a standard protonation pattern of the protein, and by taking into account the three different ligand types of the pigments. The calculations provide an explanation of some of the earlier results for the transition energies obtained from fits of optical spectra. In addition, those earlier fits are verified here by using a more advanced theory of optical spectra, a genetic algorithm, and excitonic couplings obtained from electrostatic calculations that take into account the influence of the dielectric protein environment. The two independent calculations of site energies strongly favor one of the two possible orientations of the FMO trimer relative to the photosynthetic membrane, which were identified by electron microscopic studies and linear dichroism experiments. Efficient transfer of excitation energy to the reaction center requires bacteriochlorophylls 3 and 4 to be the linker pigments. The temporal and spatial transfer of excitation energy through the FMO complex is calculated to proceed along two branches, with transfer times that differ by an order of magnitude. 相似文献