首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyruvate Carboxylase Activity in Primary Cultures of Astrocytes and Neurons   总被引:2,自引:17,他引:2  
Abstract: The activity of the pyruvate carboxylase was determined in brains of newborn and adult mice as well as primary cultures of astrocytes, of cerebral cortex neurons, and of cerebellar granule cells. The activity was found to be 0.25 ± 0.14, 1.24 ± 0.07, and 1.75 ± 0.13 nmol · min−1· mg−1 protein in, respectively, neonatal brain, adult brain, and astrocytes. Neither of the two types of neurons showed any detectable enzyme activity (i.e., < 0.05 nmol · min−1· mg−1). It is therefore concluded that pyruvate carboxylase is an astrocytic enzyme.  相似文献   

2.
Inhibition of net uptake of 42K by different concentrations of ouabain was studied in primary cultures of astrocytes and in primary cultures of neurons in order to investigate whether there is a pronounced difference between ouabain sensitivity in the two cell types and to determine the genuine magnitudes of the ouabain-sensitive and the ouabain-resistant potassium uptakes. In morphologically differentiated astrocytes, obtained after treatment with dibutyryl cyclic AMP (dBcAMP), the sensitivity to ouabain was slightly lower than in neurons, but astrocytes which had not been treated with dBcAMP showed sensitivity similar to the neurons (which likewise were not treated). In the presence of elevated potassium concentrations (12 and 24 mM) ouabain sensitivity was decreased, although only by a factor of 2-3. Accordingly, maximum inhibition of the uptake required under all conditions studied, at most, 1.0 mM ouabain. Like total uptake, this ouabain-sensitive uptake was several times less intense in neurons than in astrocytes, where it reached its maximum value at an external potassium concentration of 12 mM. Subtraction of the ouabain-sensitive uptake from the total uptake revealed a considerable ouabain-resistant uptake. This ouabain-resistant uptake was studied in detail in the astrocytes, where it was found to increase with increasing potassium concentration over the whole concentration range 3-24 mM and to exceed substantially the maximum amount that can be accumulated by diffusion.  相似文献   

3.
Abstract: Synthesis, uptake, release, and oxidative metabolism of citrate were investigated in neurons and astrocytes cultured from cerebral cortex or cerebellum. In addition, the possible role of citrate as a donor of the carbon skeleton for biosynthesis of neurotransmitter glutamate was studied. All cell types expressed the enzyme citrate synthase at a high activity, the cerebellar granule neurons containing the enzyme at a higher activity than that found in the astrocytes from the two brain regions or the cortical neurons. Saturable citrate uptake could not be detected in any of the cell types, but the astrocytes, and, in particular, those of cerebellar origin, had a very active de novo synthesis and release of citrate (~70 nmol × h?1× mg of protein?1). The rate of release of citrate from neurons was <5% of this value. Using [14C]citrate it could be shown that citrate was oxidatively metabolized to 14CO2 at a modest rate (~1 nmol × n?1× mg?1 of protein) with slightly higher rates in astrocytes compared with neurons. Experiments designed to investigate the ability of exogenously supplied citrate to serve as a precursor for synthesis of transmitter glutamate in cerebellar granule neurons failed to demonstrate this. Rather than citrate serving this purpose it may be suggested that astrocytically released citrate may regulate the extracellular concentration of Ca2+ and Mg2+ by chelation, thereby modulating neuronal excitability.  相似文献   

4.
The interaction of [3H]flunitrazepam and its modulation by various drugs was studied in intact primary cultured spinal cord neurons. In the intact cells, the [3H]-flunitrazepam binding was rapid and saturable. The benzodiazepine binding sites exhibited high affinity and saturability, with an apparent KD of 6.1 +/- 1.6 nM and Bmax of 822 +/- 194 fmol/mg protein. The association and dissociation of [3H]flunitrazepam binding exhibited monoexponential kinetics. Specifically bound [3H]flunitrazepam was displaced in a concentration-dependent manner by benzodiazepines like flunitrazepam, clonazepam, diazepam, Ro 15-1788, and beta-carbolines like methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3'-carboxylate. Specific [3H]flunitrazepam binding to intact cells was enhanced in a concentration-dependent manner by gamma-aminobutyric acid (GABA) agonists and drugs which facilitate GABAergic transmission like etazolate, (+)-etomidate, and pentobarbital. The enhancing effect of GABA agonists was antagonized by bicuculline and picrotoxinin. These results suggest that the intact cultured spinal cord neurons exhibit the properties of benzodiazepine GABA receptor-ionophore complex. Since these cells can also be studied in parallel for characterizing GABA-induced 36Cl-influx, they provide an ideal in vitro assay preparation to study GABA synaptic pharmacology.  相似文献   

5.
Primary cultures of astrocytes and neurons derived from neonatal and embryonic mouse cerebral cortex, respectively, were incubated with [3-14C]acetoacetate or [2-14C]glucose. The utilization of glucose and acetoacetate, the production of lactate, D-3-hydroxybutyrate, and 14CO2, and the incorporation of 14C and of 3H from 3H2O into lipids and lipid fractions were measured. Both cell types used acetoacetate as an energy substrate and as a lipid precursor; lactate was the major product of glucose metabolism. About 60% of the acetoacetate that was utilized by neurons was oxidized to CO2, whereas this was only approximately 20% in the case of cultured astrocytes. This indicates that the rate at which 14C-labeled Krebs cycle intermediates exchange with pools of unlabeled intermediates is much higher in astrocytes than in neurons. Acetoacetate is a better precursor for the synthesis of fatty acids and cholesterol than glucose, presumably because it can be used directly in the cytosol for these processes; preferential incorporation into cholesterol was not observed in these in vitro systems. We conclude that ketone bodies can be metabolized both by the glial cells and by the neuronal cells of developing mouse brain.  相似文献   

6.
Abstract: Amyloid precursor protein (APP) gives rise by proteolytic processing to the amyloid β peptide (Aβ) found abundantly in cerebral senile plaques of individuals with Alzheimer's disease. APP is highly expressed in the brain. To assess the source of cerebral Aβ, the metabolism of APP was investigated in the major cell types of the newborn rat cerebral cortex by pulse/chase labeling and immunoprecipitation of the APP and APP metabolic fragments. We describe a novel C-terminally truncated APP isoform that appears to be made only in neurons. The synthesis, degradation, and metabolism of APP were quantified by phosphorimaging in neurons, astrocytes, and microglia. The results show that although little APP is metabolized through the amyloidogenic pathways in each of the three cultures, neurons appear to generate more Aβ than astrocytes or microglia.  相似文献   

7.
8.
14CO2 production and incorporation of label into proteins from the labeled branched-chain amino acids, leucine, valine, and isoleucine, were determined in primary cultures of neurons and of undifferentiated and differentiated astrocytes from mouse cerebral cortex in the absence and presence of 3 mM ammonium chloride. Production of 14CO2 from [1-14C]leucine and [1-14C]valine was larger than 14CO2 production from [U-14C]leucine and [U-14C]valine in both astrocytes and neurons. In most cases more 14CO2 was produced in astrocytes than in neurons. Incorporation of labeled branched-chain amino acids into proteins varied with the cell type and with the amino acid. Addition of 3 mM ammonium chloride greatly suppressed 14CO2 production from [1-14C]-labeled branched chain amino acids but had little effect on 14CO2 production from [U-14C]-labeled branched-chain amino acids in astrocytes. Ammonium ion, at this concentration, suppressed the incorporation of label from all three branched-chain amino acids into proteins of astrocytes. In contrast, ammonium ion had very little effect on the metabolism (oxidation and incorporation into proteins) of these amino acids in neurons. The possible implications of these findings are discussed, especially regarding whether they signify variations in metabolic fluxes and/or in magnitudes of precursor pools.  相似文献   

9.
Both ammonia and beta-methylene-DL-aspartate (beta-MA), an irreversible inhibitor of aspartate aminotransferase activity and thus of the malate-aspartate shuttle, were found previously to decrease oxidative metabolism in cerebral cortex slices. In the present work, the possibility that ammonia and beta-MA affect energy metabolism by a common mechanism (i.e., via inhibition of the malate-aspartate shuttle) was investigated using primary cultures of neurons and astrocytes. Incubation of astrocytes for 30 min with 5 mM beta-MA resulted in a decreased production of 14CO2 from [U-14C]glucose, but did not affect 14CO2 production from [2-14C]pyruvate. Conversely, incubation of astrocytes with 3 mM ammonium chloride resulted in decreased 14CO2 production from [2-14C]pyruvate, but 14CO2 production from [U-14C]glucose was not significantly affected. Ammonium chloride had no significant effect on 14CO2 production from either [U-14C]glucose or [2-14]pyruvate by neurons. However, incubation of neurons with beta-MA or beta-MA plus ammonium chloride resulted in a approximately 45% decrease of 14CO2 production from both [U-14C]glucose and [2-14C]pyruvate. A 2-h incubation of astrocytes with beta-MA resulted in no change in ATP levels, but a 35% decrease in phosphocreatine. Similar treatment of neurons resulted in greater than 50% decrease in ATP, but had little effect on phosphocreatine. beta-MA also caused a decrease in glutamate and aspartate content of neurons, but not of astrocytes. The different metabolic responses of neurons and astrocytes towards beta-MA were probably not due to a differential inhibition of aspartate aminotransferase which was inhibited by approximately 45% in astrocytes and by approximately 55% in neurons.  相似文献   

10.
11.
Histamine stimulates cyclic AMP accumulation in astrocyte-enriched and neuronal primary cultures from rat brain in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine. The response in the astrocyte cultures (Emax = 304 +/- 44% over basal, EC50 = 43 +/- 5 microM) was much higher than in neuronal cultures (Emax = 24 +/- 2%, EC50 = 14 +/- 7 microM). The histamine effect in astrocytes was competitively inhibited by the H2 antagonists cimetidine (Ki = 1.1 +/- 0.2 microM) and ranitidine (Ki = 46 +/- 10 nM) but was insensitive to the H1 antagonist mepyramine (1 microM). The two selective H2 agonists impromidine and dimaprit behaved as partial agonists and showed relative potencies (139 and 0.5, respectively) consistent with an interaction with H2 receptors. The more selective H1 agonist 2-thiazolylethylamine (0.01-1 mM) did not potentiate the response to impromidine (10 microM). Thus, in contrast to what is generally observed in intact cell preparations from brain, the histamine-induced cyclic AMP accumulation in astroglial cells is mediated solely by H2 receptors. The small effect shown in neuronal cultures also appears to be mediated by H2 receptors.  相似文献   

12.
Co-cultivation of confluent rat astrocyte cultures with embryonic chick neurons resulted in induction of glutamine synthetase activity in the astrocytes. This induction of glutamine synthetase in astrocytes by neurons was independent of induction by hydrocortisone and forskolin, but was dependent on the length of co-cultivation and the number of neurons present in the co-culture. Cycloheximide and actinomycin D inhibited the induction of glutamine synthetase in astrocytes by neurons, whereas cytosine arabinoside had no apparent effect. Results suggest that this induction of glutamine synthetase in astrocytes is mediated by cell contact with neurons and may represent a specific neuronal and glial interaction.  相似文献   

13.
Irreversible photolabeling by [3H]flunitrazepam of four proteins with apparent molecular weights 51,000 (P51), 53,000 (P53), 55,000 (P55), and 59,000 (P59) was investigated in various rat brain regions by SDS-polyacrylamide gel electrophoresis, fluorography, and quantitative determination of radioactivity bound to proteins. On maximal labeling of these proteins, only 15-25% of [3H]flunitrazepam reversibly bound to membranes becomes irreversibly attached to proteins. Results presented indicate that for every [3H]flunitrazepam molecule irreversibly bound to membranes, three molecules dissociate from reversible benzodiazepine binding sites. This seems to indicate that these proteins are either closely associated or identical with reversible benzodiazepine binding sites, and supports the hypothesis that four benzodiazepine binding sites are associated with one benzodiazepine receptor. When irreversible labeling profiles of proteins P51, P53, P55, and P59 were compared in different brain regions, it was found that labeling of individual proteins varied independently, supporting previous evidence that these proteins are associated with distinct benzodiazepine receptors.  相似文献   

14.
Abstract: Two groups of GABA (γ-aminobutyric acid) analogues, one comprising derivatives of β-proline and the other compounds structurally related to nipecotic acid, were investigated as potential inhibitors of high-affinity GABA transport in neurons and glial cells, as well as displacers of GABA receptor binding. In addition to cis -4-hydroxynipecotic acid, which is known as a potent inhibitor of GABA uptake, homo-β-proline was the only compound which proved to be a potent inhibitor of glial as well as neuronal GABA uptake. IC50 values for GABA uptake into glial cells and brain cortex "prisms" were 20 and 75 μM, respectively, and the IC50 value obtained for GABA uptake into cultured neurons was 10 μM. A kinetic analysis of the action of homo-β-proline on GABA uptake into cultured astrocytes and neurons showed that this compound acts as a competitive inhibitor of GABA uptake in both cell types. From the apparent K m values, K i values for homo-β-proline of 16 and 6 μM could be calculated for glial and neuronal uptake, respectively. This mechanism of action strongly suggests that homo-β-proline interacts with the GABA carriers. Furthermore, homo-β-proline also displaced GABA from its receptor with an IC50 value of 0.3 μM. The cis -4-hydroxynipecotic acid analogues, cis- and trans-4-mercaptonipecotic acid, had no inhibitory effect on glial or neuronal GABA uptake. Other SH reagents, PCMB, NEM and DTNB, were shown to be relatively weak inhibitors of GABA uptake into cultured astrocytes, suggesting that SH groups are not directly involved in the interaction between GABA and its transport carrier.  相似文献   

15.
Abstract: Excessive activation of N-methyl-d -aspartate (NMDA) receptor channels (NRs) is a major cause of neuronal death associated with stroke and ischemia. Cerebellar granule neurons in vivo, but not in culture, are relatively resistant to toxicity, possibly owing to protective effects of glia. To evaluate whether NR-mediated signaling is modulated when developing neurons are cocultured with glia, the neurotoxic responses of rat cerebellar granule cells to applied NMDA or glutamate were compared in astrocyte-rich and astrocyte-poor cultures. In astrocyte-poor cultures, significant neurotoxicity was observed in response to NMDA or glutamate and was inhibited by an NR antagonist. Astrocyte-rich neuronal cultures demonstrated three significant differences, compared with astrocyte-poor cultures: (a) Neuronal viability was increased; (b) glutamate-mediated neurotoxicity was decreased, consistent with the presence of a sodium-coupled glutamate transport system in astrocytes; and (c) NMDA- but not kainate-mediated neurotoxicity was decreased, in a manner that depended on the relative abundance of glia in the culture. Because glia do not express NRs or an NMDA transport system, the mechanism of protection is distinct from that observed in response to glutamate. No differences in NR subunit composition (evaluated using RT-PCR assays for NR1 and NR2 subunit mRNAs), NR sensitivity (evaluated by measuring NR-mediated changes in intracellular Ca2+ levels), or glycine availability as a coagonist (evaluated in the presence and absence of exogenous glycine) were observed between astrocyte-rich and astrocyte-poor cultures, suggesting that glia do not directly modulate NR composition or function. Nordihydroguaiaretic acid, a lipoxygenase inhibitor, blocked NMDA-mediated toxicity in astrocyte-poor cultures, raising the possibility that glia effectively reduce the accumulation of highly diffusible and toxic arachidonic acid metabolites in neurons. Alternatively, glia may alter neuronal development/phenotype in a manner that selectively reduces susceptibility to NR-mediated toxicity.  相似文献   

16.
Abstract: Type A and type B monoamine oxidase (MAO) activities were determined in mouse brain and in primary cultures of mouse astrocytes. Thirty-one-day-old astrocyte cultures exhibited predominantly type A MAO activity. In cultures of the same age, treated with 0.25 mM dibutyryl cyclic AMP under the same culturing conditions, 30% type B MAO was expressed, although dibutyryl cyclic AMP up to 1 mM does not affect MAO activity in vitro. The specific activity of type B MAO increased significantly in older cultures, while type A MAO changed only slightly.  相似文献   

17.
The effects of arachidonic acid on glutamate and gamma-aminobutyric acid (GABA) uptake were studied in primary cultures of astrocytes and neurons prepared from rat cerebral cortex. The uptake rates of glutamate and GABA in astrocytic cultures were 10.4 nmol/mg protein/min and 0.125 nmol/mg protein/min, respectively. The uptake rates of glutamate and GABA in neuronal cultures were 3.37 nmol/mg protein/min and 1.53 nmol/mg protein/min. Arachidonic acid inhibited glutamate uptake in both astrocytes and neurons. The inhibitory effect was observed within 10 min of incubation with arachidonic acid and reached approximately 80% within 120 min in both types of culture. The arachidonic acid effect was not only time-dependent, but also dose-related. Arachidonic acid, at concentrations of 0.015 and 0.03 mumol/mg protein, significantly inhibited glutamate uptake in neurons, whereas 20 times higher concentrations were required for astrocytes. The effects of arachidonic acid were not as deleterious on GABA uptake as on glutamate uptake in both astrocytes and neurons. In astrocytes, GABA uptake was not affected by any of the doses of arachidonic acid studied (0.015-0.6 mumol/mg protein). In neuronal cultures, GABA uptake was inhibited, but not to the same degree observed with glutamate uptake. Lower doses of arachidonic acid (0.03 and 0.015 mumol/mg protein) did not affect neuronal GABA uptake. Other polyunsaturated fatty acids, such as docosahexaenoic acid, affected amino acid uptake in a manner similar to arachidonic acid in both astrocytes and neurons. However, saturated fatty acids, such as palmitic acid, exerted no such effect. The significance of the arachidonic acid-induced inhibition of neurotransmitter uptake in cultured brain cells in various pathological states is discussed.  相似文献   

18.
Rat cortical astrocytes in primary culture were examined for their capacity to transport and metabolize exogenous L-[U-14C]glutamate. After incubation for time periods up to 120 min, cells and incubation media were analyzed for labelled and endogenous glutamate and its metabolic products by HPLC coupled with fluorescence detection and liquid scintillation counting. Glutamine was the major labelled metabolite after 120 min, accounted for 38% of the original glutamate label, and was found primarily in the incubation medium. A further 13.5% of the label was recovered in deaminated metabolites of glutamate, 1.2% was associated with aspartate, 23% remained in glutamate, and 10.2% was found in an acid-precipitated cell fraction. More than 84% of the label was recovered in these fraction. suggesting that the maximum possible formation and loss of 14CO2 was 16%. The rate of total glutamine synthesis was 1.1 nmol X mg protein-1 X min-1 when 9 microM exogenous glutamate was present. The total amount of glutamine synthesized greatly exceeded the consumption of glutamate, indicating that a substantial proportion of glutamine was synthesized from other carbon sources. Almost all of the newly formed glutamine was exported into the medium. These results indicate that astrocytes in primary culture, by accumulating glutamate, producing glutamine, and exporting it, are capable of carrying out the glial component of the glutamine cycle.  相似文献   

19.
Abstract: It has been proposed that hyperammonemia may be associated with valproate therapy. As astrocytes are the primary site of ammonia detoxification in brain, the effects of valproate on glutamate and glutamine metabolism in astrocytes were studied. It is well established that, because of compartmentation of glutamine synthetase, astrocytes are the site of synthesis of glutamine from glutamate and ammonia. The reverse reaction is catalyzed by the ubiquitous enzyme glutaminase, which is present in both neurons and astrocytes. In astrocytes exposed to 1.2 mM valproate, glutaminase activity increased 80% by day 2 and remained elevated at day 4; glutamine synthetase activity was decreased 30%. Direct addition of valproate to assay tubes with enzyme extracts from untreated astrocytes had significant effects only at concentrations of 10 and 20 mM, When astrocytes were exposed for 4 days to 0.3, 0.6, or 1.2 mM valproate and subsequently incubated with l -[U-14C]glutamate, label incorporation into [14C]glutamine was decreased by 11, 25, and 48%, respectively, and is consistent with a reduction in glutamine synthetase activity. Label incorporation from l -[U-14C]glutamate into [14C]aspartate also decreased with increasing concentrations of valproate. Following a 4-day exposure to 0.6 mM valproate, the glutamine levels increased 40% and the glutamate levels 100%. These effects were not directly proportional to valproate concentration, because exposure to 1.2 mM valproate resulted in a 15% decrease in glutamine levels and a 25% increase in glutamate levels compared with control cultures. Intracellular aspartate was inversely proportional to all concentrations of extracellular valproate, decreasing 60% with exposure to 1.2 mM valproate. These results indicate that valproate increases glutaminase activity, decreases glutamine synthetase activity, and alters Krebs-cycle activity in astrocytes, suggesting a possible mechanism for hyperammonemia in brain during valproate therapy.  相似文献   

20.
The binding of [3H]diazepam to cell homogenates of embryonic rat brain neurons grown in culture was examined. Under the conditions used to prepare and maintain these neurons, only a single, saturable, high-affinity binding site was observed. The binding of [3H]diazepam was potently inhibited by the CNS-specific benzodiazepine clonazepam (Ki = 0.56 +/- 0.08 nM) but was not affected by the peripheral-type receptor ligand Ro5-4864. The KD for [3H]diazepam bound specifically to cell homogenates was 2.64 +/- 0.24 nM, and the Bmax was 952 +/- 43 fmol/mg of protein. [3H]Diazepam binding to cell membranes washed three times was stimulated dose-dependently by gamma-aminobutyric acid (GABA), reaching 112 +/- 7.5% above control values at 10(-4) M. The rank order for potency of drug binding to the benzodiazepine receptor site in cultured neurons was clonazepam greater than diazepam greater than beta-carboline-3-carboxylate ethyl ester greater than Ro15-1788 greater than CL218,872 much greater than Ro5-4864. The binding characteristics of this site are very similar to those of the Type II benzodiazepine receptors present in rat brain. These data demonstrate that part, if not all, of the benzodiazepine-GABA-chloride ionophore receptor complex is being expressed by cultured embryonic rat brain neurons in the absence of accompanying glial cells and suggest that these cultures may serve as a model system for the study of Type II benzodiazepine receptor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号