首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The simian virus 40 large T antigen immortalizes growing primary cells in culture. In addition, this viral oncoprotein cooperates with an activated ras protein to produce dense foci on monolayers of rat embryo fibroblasts (REF). The relationship between independent immortalization and cooperative transformation with ras has not been defined. Previously, two regions of T antigen were shown to contain immortalization activities. An N-terminal fragment consisting of amino acids 1 to 147 immortalizes rodent cells (L. Sompayrac and K. J. Danna, Virology 181:412-415, 1991). Loss-of-function analysis indicated that immortalization depended on integrity of the T-antigen segments containing amino acids 351 to 450 and 533 to 626 (T. D. Kierstead and M. J. Tevethia, J. Virol. 67:1817-1829, 1993). The experiments described here were directed toward determining whether these same T-antigen regions were sufficient for cooperation with ras. Initially, constructs that produce T antigens containing amino acids 176 to 708 (T176-708) or 1 to 147 were tested in a ras cooperation assay. Both polypeptides cooperated with ras to produce dense foci on monolayers of primary REF. These results showed that T antigen contains two separate ras cooperation activities. In order to determine the N-terminal limit of the ras cooperation activity contained within the T176-708 polypeptide, a series of constructs designed to produce fusion proteins containing T-antigen segments beginning at residues 251, 301, 337, 351, 371, 401, 451, 501, 551, 601, and 651 was generated. Each of these constructs was tested for the capacity to cooperate with ras to produce dense foci on REF monolayers. The results indicated that a polypeptide containing T-antigen amino acids 251 to 708 (T251-708) was sufficient to cooperate with ras, whereas the more extensively truncated products were not. The abilities of the N-terminally truncated T antigens to bind p53 were examined in p53-deficient cells infected with a recombinant vaccinia virus expressing a phenotypically wild-type mouse p53. The results showed that polypeptides containing T-antigen amino acids 251 to 708, 301 to 708, 337 to 708, or 351 to 708 retained p53-binding capacity. The introduction into the T251-708 polypeptide of deletions that either prevented p53 binding (dl434-444) or did not prevent p53 binding (dl400) abrogated ras cooperation. These results indicated that although p53 binding may be necessary for ras cooperation, an additional, as-yet-undefined activity contained within the T251-708 polypeptide is needed.  相似文献   

2.
Microinjection of purified simian virus 40 large-T-antigen protein or DNA encoding T antigen into serum-starved cells stimulates them to re-enter the cell cycle and progress through G1 into the S phase. Genetic analysis of T antigen indicated that neither its Rb/p107-binding activity nor its p53-binding activity is essential to induce DNA synthesis in CV1P cells. However, T antigens bearing missense mutations that inactivate either activity induced slower progression of the cells into the S phase than did wild-type T antigen. Inactivation of both activities resulted in a T antigen essentially unable to induce DNA synthesis. Missense mutations in either the DNA-binding region of the N terminus also impaired the ability of full-length T antigen to stimulate DNA synthesis in CV1P cells. The wild-type kinetics of cell cycle progression were restored by genetic complementation after coinjection of plasmid DNAs encoding different mutant T antigens or coinjection of purified mutant T-antigen proteins, suggesting that the four mitogenic functions of T antigen are independent. The maximal rate of induction of DNA synthesis in secondary primate cells and established rodent cell lines required the same four functions of T antigen. A model to explain how four independent activities could cooperate to stimulate cell cycle progression is presented.  相似文献   

3.
4.
5.
S D Conzen  C A Snay    C N Cole 《Journal of virology》1997,71(6):4536-4543
The ability of DNA tumor virus proteins to trigger apoptosis in mammalian cells is well established. For example, transgenic expression of a simian virus 40 (SV40) T-antigen N-terminal fragment (N-termTag) is known to induce apoptosis in choroid plexus epithelial cells. SV40 T-antigen-induced apoptosis has generally been considered to be a p53-dependent event because cell death in the brain is greatly diminished in a p53-/- background strain and is abrogated by expression of wild-type (p53-binding) SV40 T antigen. We now show that while N-termTags triggered apoptosis in rat embryo fibroblasts cultured in low serum, expression of full-length T antigens unable to bind p53 [mut(p53-)Tags] protected against apoptosis without causing transformation. One domain essential for blocking apoptosis by T antigen was mapped to amino acids 525 to 541. This domain has >60% homology with a domain of adenovirus type 5 E1B 19K required to prevent E1A-induced apoptosis. In the context of both wild-type T antigen and mut(p53-)Tags, mutation of two conserved amino acids in this region eliminated T antigen's antiapoptotic activity in REF-52 cells. These data suggest that SV40 T antigen contains a novel functional domain involved in preventing apoptosis independently of inactivation of p53.  相似文献   

6.
The tumor (T) antigens encoded by the human adenovirus early transforming region 1A (E1A) are gene regulatory proteins whose functions can immortalize cells. We have recently described the synthesis in Escherichia coli and the purification of the complete T antigens encoded by the adenovirus type 12 (Ad12) E1A 12S mRNA (235-residue [235R] T antigen) and 13S mRNA (266R T antigen). In this study, we show that the Ad12 E1A T antigens are extensively phosphorylated in Ad12-infected mammalian cells but are not phosphorylated in E. coli. Inasmuch as posttranslational phosphorylation at specific amino acid sites may be important for biological activity, we have studied the phosphorylation of the E. coli-produced T antigens in vitro by using a kinase activity isolated from cultured human KB cells. The kinase was purified about 300-fold and appears to be a cyclic AMP-independent, Ca2+-independent protein kinase requiring only ATP and Mg2+ for activity. To determine which amino acids are phosphorylated and whether phosphorylation in vitro occurs at the same amino acid sites that are phosphorylated in vivo, the Ad12 E1A T-antigen species synthesized by infected cells were metabolically labeled with 32Pi and compared with the E. coli-produced E1A T antigens labeled in vitro with [gamma-32P]ATP by using the partially purified kinase. Partial V8 proteolysis analysis gave similar patterns for in vivo- and in vitro-phosphorylated T antigen. Two-dimensional maps of tryptic phosphopeptides and of chymotryptic phosphopeptides suggested that mainly the same amino acid sites are phosphorylated in vitro and in vivo and that phosphorylation occurred at multiple sites distributed throughout the T-antigen molecule. Serine was the only amino acid that was phosphorylated both in vivo and in vitro, and, surprisingly, most serines appeared to be phosphorylated. The feasibility of faithfully phosphorylating T antigens in vitro suggests that the E. coli-produced Ad12 E1A 235R and 266R T antigens may prove useful for molecular studies on T-antigen function.  相似文献   

7.
Stable interactions between simian virus 40 large T antigen and host proteins are believed to play a major role in the ability of the viral protein to transform cells in culture and induce tumors in vivo. Two of these host proteins, the retinoblastoma susceptibility protein (pRB) and p53, are products of tumor suppressor genes, suggesting that T antigen exerts at least a portion of its transforming activity by complexing with and inactivating the function of these proteins. While analyzing T antigen-host protein complexes in mouse cells, we noted a protein of 185 kDa (p185) which specifically coimmunoprecipitates with T antigen. Coimmunoprecipitation results from the formation of stable complexes between T antigen and p185. Complex formation is independent of the interactions of T antigen with pRB, p120, and p53. Furthermore, analysis of T-antigen mutants suggests that T antigen-p185 complex formation may be important in transformation by simian virus 40.  相似文献   

8.
The ability of simian virus 40-encoded large T antigen to disrupt the growth control of a variety of cell types is related to its ability to interfere with certain cellular proteins, such as p53 and the retinoblastoma susceptibility gene product (pRB). We have used wild-type and mutant forms of T antigen in transgenic mice to dissect the roles of pRB, p53, and other cellular proteins in tumorigenesis of different cell types. In this study, using a cell-specific promoter to target expression specifically to brain epithelium (the choroid plexus) and to B and T lymphoid cells, we characterize the tumorigenic capacity of a T-antigen fragment that comprises only the amino-terminal 121 residues. This fragment (dl1137) retains the ability to interact with pRB and p107 but lacks the p53-binding domain. While loss of the p53-binding region results in loss of the capacity to induce lymphoid abnormalities, dl1137 retains the ability to induce choroid plexus tumors that are histologically indistinguishable from those induced by wild-type T antigen. Tumors induced by dl1137 develop much more slowly, however, reaching an end point at around 8 months of age rather than at 1 to 2 months. Analysis of tumor progression indicates that tumor induction by dl1137 does not require secondary genetic or epigenetic events. Rather, the tumor growth rate is significantly slowed, indicating that the T-antigen C-terminal region contributes to tumor progression in this cell type. In contrast, the pRB-binding region appears essential for tumorigenesis as mutation of residue 107, known to disrupt pRB and p107 binding to wild-type T antigen, abolishes the ability of the dl1137 protein to induce growth abnormalities in the brain.  相似文献   

9.
We used a heteroduplex deletion loop mutagenesis procedure for directing sodium bisulfite-induced mutations to specific sites on viral or plasmid DNA to generate a series of SV40 large T-antigen point mutants. The mutations were directed to a region of the T-antigen gene, 0.5 map units, that is thought to be important for interaction of the protein with the viral origin of DNA replication. Of the 16 mutants reported here, 10 had lost the ability to replicate their DNA, and 3 others showed a reduced level of replication compared to wild type. All of the mutants tested were capable of transforming rat cells in culture by the dense focus assay. We conclude that the sequences of the early region around 0.5 map units are critical for the replication of viral DNA but not for the transformation function of T antigen.  相似文献   

10.
The 289-residue (289R) and 243R early region 1A (E1A) proteins of human adenovirus type 5 induce cell transformation in cooperation with either E1B or activated ras. Here we report that Ser-132 in both E1A products is a site of phosphorylation in vivo and is the only site phosphorylated in vitro by purified casein kinase II. Ser-132 is located in conserved region 2 near the primary binding site for the pRB tumor suppressor and, in 289R, just upstream of the conserved region 3 transactivation domain involved in regulation of early viral gene expression. Mutants containing alanine or glycine in place of Ser-132 interacted with pRB-related proteins at somewhat reduced efficiency; however, all Ser-132 mutants transformed primary rat cells in cooperation with E1B as well as or better than the wild type when both major E1A proteins were expressed. Such was not the case with mutants expressing only 289R. In cooperation with E1B, the Asp-132 and Gly-132 mutants yielded reduced numbers of smaller transformed foci. With activated ras, all Ser-132 mutants were significantly defective for transformation and the rare foci produced were small and contained extensive areas populated by low densities of flat cells. In the absence of E1B, all Ser-132 mutants induced p53-independent cell death more readily than virus expressing wild-type 289R. These results suggested that phosphorylation at Ser-132 may enhance the binding of pRB and related proteins and also reduce the toxicity of E1A 289R, thus increasing transforming activity.  相似文献   

11.
Simian virus 40 large T antigen (T) can transform cultured cells, but the mechanisms by which it functions are not entirely understood. Several lines of evidence have suggested that the amino-terminal approximately 130 residues of T may be sufficient to confer the transforming capability. Oligonucleotide-directed mutagenesis was used to generate a series of deletion and substitution mutants within the amino-terminal 82 residues of T, the segment which is shared with simian virus 40 small t antigen (t). Results of stability and transformation assays of these mutants strongly suggest that the 1-to-82 region of T contains sequences which govern T transforming activity and affect in vivo stability. Instability and a defect in transforming activity could be separated from one another genetically. Thus, the 1-to-82 region appears to contain a specific region that contributes to the transforming function of the protein. This segment operates by means other than the simple binding of pRb and/or p107.  相似文献   

12.
p53 and transformation by SV40   总被引:1,自引:0,他引:1  
The large T antigen of SV40 is able to immortalize and transform primary and established cells in culture, and can, at least in certain cases, confer a tumorigenic phenotype on the infected cell. T antigen has been shown to induce cellular DNA synthesis in the infected cell and this activity is likely to be instrumental in T antigen mediated oncogenesis. A property of T antigen which may be of paramount importance to its oncogenic and mitogenic activities is its ability to specifically bind and stabilize the cellular protein p53. p53 has been implicated in the control of the passage of the cell from G0 arrest to G1 and S phase. Furthermore, altered p53 expression is strongly associated with various phenotypes of the transformed state, and p53 has been identified as an immortalizing oncogene. Thus it is possible that p53-fixation by T antigen is responsible for its transforming potential. In this article, the transforming activities of T antigen and p53 are reviewed, and the possible relevance of p53-binding to T antigen-induced transformation is discussed.  相似文献   

13.
The transforming activity of the human fyn protein, p59fyn, which is a kinase of the src family, was investigated by testing the effect of recombinant avian retrovirus (Fyn virus) expressing p59fyn on chickens or cultured chicken embryo fibroblast (CEF) cells. The Fyn virus did not induce transformed foci. After several passages of the virus stock on CEF cells, however, a few foci were detected in the presence of dimethyl sulfoxide. Chickens inoculated with Fyn virus at the stage of 12-day-old embryos developed fibrosarcomas 3 to 6 weeks after hatching. The viruses obtained from these foci and from one of the tumor tissues showed high transforming activity in the presence of dimethyl sulfoxide, suggesting that these viruses carry spontaneous mutations of the fyn gene. Four fyn genes from CEF DNAs infected with transforming viruses were molecularly cloned, and their products were confirmed to possess transforming activity. DNA sequence analysis of the fyn genes showed that two of the four mutants have Thr instead of Ile at position 338 in the kinase domain. The other two mutants carry deletions of 78 and 108 base pairs, respectively, which result in complete loss of region C of SH2. The overall level of proteins containing phosphotyrosine was significantly higher in transformed cells than in normal CEF cells. Our data indicate that when expressed at high levels in a retrovirus, normal p59fyn cannot cause cellular transformation, but that mutant p59fyn with either a single amino acid substitution in the kinase domain or a deletion including region C produces a transforming protein, perhaps due to enhanced tyrosine kinase activity. This is the first observation that deletion of region C can unmask the potential transforming activity of a src family kinase.  相似文献   

14.
Among the various biological activities expressed by the products of the adenovirus E1A gene are the abilities to induce cellular DNA synthesis and proliferation in quiescent primary baby rat kidney cells. The functional sites for these activities lie principally within two regions of the E1A proteins: an N-terminal region and a small second region of approximately 20 amino acids further downstream. To study the biological functions of the first domain, we constructed an in-frame deletion of amino acid positions 23 through 107 of the E1A products. This deletion did not impede the ability of the E1A products to transactivate the adenovirus early region 3 promoter in a transient-expression assay in HeLa cells. The ability to induce DNA synthesis in quiescent baby rat kidney cells was, however, lost in the absence of these sequences. Deletion of the small second region induced a form of S phase in which DNA synthesis occurred in the apparent absence of controls required for the cessation of DNA synthesis and progression through the remainder of the cell cycle. These cells did not appear to accumulate in or before G2, and many appeared to have a DNA content greater than that in G2. The functions of both domains are required for production of transformed foci in a ras cooperation assay. Focus formation occurred, however, even when the two domains were introduced on two separate plasmids. This complementation effect appeared to require expression of both of the mutant proteins and did not appear to result merely from recombination at the DNA level.  相似文献   

15.
Expression of adenovirus type 5 E1A 12S is sufficient to immortalize primary baby rat kidney cells, but another viral or cellular oncogene, such as E1B or T24ras, is necessary for complete transformation. The regions of 12S sufficient for T24ras cotransformation have been well characterized and are located in the first exon. The second exon is dispensable for ras cotransformation, although it contains a region which appears to modulate the transforming phenotype. The same 12S first exon regions important in ras transformation are also necessary for E1B transformation. Analysis of an extensive series of second exon deletion and amino acid point mutations demonstrated that mutations affecting either the efficient nuclear localization and/or the immortalizing ability of the 12S protein also prevented cooperation with E1B. In general, the entire C-terminal half of 12S, including the nuclear localization signal, was necessary for efficient cotransformation with E1B. In addition to the differences between T24ras and E1B regarding 12S regions necessary for cotransformation, the characteristics of E1B-cotransformed foci differed from those of T24ras. The E1B foci took longer to appear and had a much slower growth rate. No hypertransformed foci were produced with E1B cotransfections, and established E1A-E1B lines exhibited minimal growth in soft agar compared with that of E1A-T24ras lines.  相似文献   

16.
Rat embryo cell lines containing the adenovirus 2 E1a region together with normal or mutant forms of the N-terminal half of the E1b region (HindIII G fragment) were generated by using a dominant selection marker, neo. Biochemically transformed cells containing a nonmutated HindIII G fragment proliferated more rapidly in Ca2+-deficient media, whereas cells containing a specific deletion within the E1b-encoded, 175-amino-acid (175R) (19-kilodalton) T-antigen gene and nontransformed cells grew at a slower rate. Furthermore, transformed cells that did not express the 175R T antigen and untransformed cells could not replicate their DNA efficiently in low-Ca2+ medium. Our results suggest that Ca2+ ions may provide an important stimulus for cell proliferation in adenovirus-transformed cells through a mechanism that involves the functions of the 175R T antigen.  相似文献   

17.
Analysis of a protein-binding domain of p53.   总被引:11,自引:4,他引:7       下载免费PDF全文
The tumor suppressor protein p53 was first isolated as a simian virus 40 large T antigen-associated protein and subsequently was found to function in cell proliferation control. Tumor-derived mutations in p53 occur predominantly in four evolutionarily conserved regions spanning approximately 50% of the polypeptide. Previously, three of these regions were identified as essential for T-antigen binding. We have examined the interaction between p53 and T antigen by using Escherichia coli-expressed human p53. By a combination of deletion analysis and antibody inhibition studies, a region of p53 that is both necessary and sufficient for binding to T antigen has been localized. This function is contained within residues 94 to 293, which include the four conserved regions affected by mutation in tumors. Residues 94 to 293 of p53 were expressed in both wild-type and mutant forms. T-antigen binding was unaffected by tumor-derived mutations which have been associated with the wild-type conformation of p53 but was greatly reduced by mutations which were previously shown to alter p53 conformation. Our results show that, like T-antigen binding to the Rb tumor suppressor protein, T antigen appears to interact with the domain of p53 that is commonly mutated in human tumors.  相似文献   

18.
19.
20.
We have previously shown that the early region of the bovine papillomavirus type 1 genome contains two nonoverlapping segments that can independently induce the morphological transformation of cultured cells. The transforming gene from the 5' end of the early region is encoded by the E6 open reading frame. The second transforming segment was previously localized to a 2.3-kilobase fragment (2.3T) from the 3' end of the early region. To determine which of the four open reading frames (E2, E3, E4, and E5) located within 2.3T encodes a transforming gene, we have now introduced a series of insertion and deletion mutations into a clone (pHLB1) in which 2.3T is activated by the Harvey viral long terminal repeat, and we tested the mutants for their ability to induce focal transformation. Our results indicate that the E5 open reading frame, which could encode a low-molecular-weight hydrophobic peptide, is required for pHLB1-induced transformation of NIH 3T3 cells, but that the E2, E3, and E4 open reading frames are not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号