首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signal transduction mediated by phosphatidylinositol 3-kinase (PI 3-kinase) is regulated by hydrolysis of its products, a function performed by the 145-kDa SH2 domain-containing inositol phosphatase (SHIP). Here, we show that bone marrow macrophages of SHIP(-/-) animals have elevated levels of phosphatidylinositol 3,4,5-trisphosphate [PI (3,4,5)P(3)] and displayed higher and more prolonged chemotactic responses to macrophage colony-stimulating factor (M-CSF) and elevated levels of F-actin relative to wild-type macrophages. We also found that the small GTPase Rac was constitutively active and its upstream activator Vav was constitutively phosphorylated in SHIP(-/-) macrophages. Furthermore, we show that Vav in wild-type macrophages is recruited to the membrane in a PI 3-kinase-dependent manner through the Vav pleckstrin homology domain upon M-CSF stimulation. Dominant inhibitory mutants of both Rac and Vav blocked chemotaxis. We conclude that Vav acts as a PI 3-kinase-dependent activator for Rac activation in macrophages stimulated with M-CSF and that SHIP regulates macrophage M-CSF-triggered chemotaxis by hydrolysis of PI (3,4,5)P(3).  相似文献   

2.
SH2-containing inositol 5'-phosphatase (SHIP) plays a negative regulatory role in hematopoietic cells. We have now cloned the rat SHIP isozyme (SHIP2) cDNA from skeletal muscle, which is one of the most important target tissue of insulin action. Rat SHIP2 cDNA encodes a 1183-amino-acid protein that is 45% identical with rat SHIP. Rat SHIP2 contains an amino-terminal SH2 domain, a central 5'-phosphoinositol phosphatase activity domain, and a phosphotyrosine binding (PTB) consensus sequence and a proline-rich region at the carboxyl tail. Specific antibodies to SHIP2 were raised and the function of SHIP2 was studied by stably overexpressing rat SHIP2 in Rat1 fibroblasts expressing human insulin receptors (HIRc). Endogenous SHIP2 underwent insulin-mediated tyrosine phosphorylation and phosphorylation was markedly increased when SHIP2 was overexpressed. Although overexpression of SHIP2 did not affect insulin-induced tyrosine phosphorylation of the insulin receptor beta-subunit and Shc, subsequent association of Shc with Grb2 was inhibited, possibly by competition between the SH2 domains of SHIP2 and Grb2 for the Shc phosphotyrosine. As a result, insulin-stimulated MAP kinase activation was reduced in SHIP2-overexpressing cells. Insulin-induced tyrosine phosphorylation of IRS-1, IRS-1 association with the p85 subunit of PI3-kinase, and PI3-kinase activation were not affected by overexpression of SHIP2. Interestingly, although both PtdIns-(3,4,5)P3 and PtdIns(3,4)P2 have been implicated in the regulation of Akt activity in vitro, overexpression of SHIP2 inhibited insulin-induced Akt activation, presumably by its 5'-inositol phosphatase activity. Furthermore, insulin-induced thymidine incorporation was decreased by overexpression of SHIP2. These results indicate that SHIP2 plays a negative regulatory role in insulin-induced mitogenesis, and regulation of the Shc. Grb2 complex and of the downstream products of PI3-kinase provides possible mechanisms of SHIP2 action in insulin signaling.  相似文献   

3.
4.
Tyrosine kinase receptors lead to rapid activation of phosphatidylinositol 3-kinase (PI3 kinase) and the subsequent formation of phosphatidylinositides (PtdIns) 3,4-P2 and PtdIns 3,4,5-P3, which are thought to be involved in signaling for glucose transporter GLUT4 translocation, cytoskeletal rearrangement, and DNA synthesis. However, the specific role of each of these PtdIns in insulin and growth factor signaling is still mainly unknown. Therefore, we assessed, in the current study, the effect of SH2-containing inositol phosphatase (SHIP) expression on these biological effects. SHIP is a 5′ phosphatase that decreases the intracellular levels of PtdIns 3,4,5-P3. Expression of SHIP after nuclear microinjection in 3T3-L1 adipocytes inhibited insulin-induced GLUT4 translocation by 100 ± 21% (mean ± the standard error) at submaximal (3 ng/ml) and 64 ± 5% at maximal (10 ng/ml) insulin concentrations (P < 0.05 and P < 0.001, respectively). A catalytically inactive mutant of SHIP had no effect on insulin-induced GLUT4 translocation. Furthermore, SHIP also abolished GLUT4 translocation induced by a membrane-targeted catalytic subunit of PI3 kinase. In addition, insulin-, insulin-like growth factor I (IGF-I)-, and platelet-derived growth factor-induced cytoskeletal rearrangement, i.e., membrane ruffling, was significantly inhibited (78 ± 10, 64 ± 3, and 62 ± 5%, respectively; P < 0.05 for all) in 3T3-L1 adipocytes. In a rat fibroblast cell line overexpressing the human insulin receptor (HIRc-B), SHIP inhibited membrane ruffling induced by insulin and IGF-I by 76 ± 3% (P < 0.001) and 68 ± 5% (P < 0.005), respectively. However, growth factor-induced stress fiber breakdown was not affected by SHIP expression. Finally, SHIP decreased significantly growth factor-induced mitogen-activated protein kinase activation and DNA synthesis. Expression of the catalytically inactive mutant had no effect on these cellular responses. In summary, our results show that expression of SHIP inhibits insulin-induced GLUT4 translocation, growth factor-induced membrane ruffling, and DNA synthesis, indicating that PtdIns 3,4,5-P3 is the key phospholipid product mediating these biological actions.  相似文献   

5.
SH2-containing inositol phosphatase 2 (SHIP2) is a physiologically important negative regulator of insulin signaling by hydrolyzing the phosphatidylinositol (PI) 3-kinase product PI 3,4,5-trisphosphate in the target tissues of insulin. Targeted disruption of the SHIP2 gene in mice resulted in increased insulin sensitivity without affecting biological systems other than insulin signaling. Therefore, we investigated the molecular mechanisms by which SHIP2 specifically regulates insulin-induced metabolic signaling in 3T3-L1 adipocytes. Insulin-induced phosphorylation of Akt, one of the molecules downstream of PI3-kinase, was inhibited by expression of wild-type SHIP2, whereas it was increased by expression of 5'-phosphatase-defective (DeltaIP) SHIP2 in whole cell lysates. The regulatory effect of SHIP2 was mainly seen in the plasma membrane (PM) and low density microsomes but not in the cytosol. In this regard, following insulin stimulation, a proportion of Akt2, and not Akt1, appeared to redistribute from the cytosol to the PM. Thus, insulin-induced phosphorylation of Akt2 at the PM was predominantly regulated by SHIP2, whereas the phosphorylation of Akt1 was only minimally affected. Interestingly, insulin also elicited a subcellular redistribution of both wild-type and DeltaIP-SHIP2 from the cytosol to the PM. The degree of this redistribution was inhibited in part by pretreatment with PI3-kinase inhibitor. Although the expression of a constitutively active form of PI3-kinase myr-p110 also elicited a subcellular redistribution of SHIP2 to the PM, expression of SHIP2 appeared to affect the myr-p110-induced phosphorylation, and not the translocation, of Akt2. Furthermore, insulin-induced phosphorylation of Akt was effectively regulated by SHIP2 in embryonic fibroblasts derived from knockout mice lacking either insulin receptor substrate-1 or insulin receptor substrate-2. These results indicate that insulin specifically stimulates the redistribution of SHIP2 from the cytosol to the PM independent of 5'-phosphatase activity, thereby regulating the insulin-induced translocation and phosphorylation of Akt2 at the PM.  相似文献   

6.
Phosphatidylinositol (PI) 3-kinase plays an important role in various metabolic actions of insulin including glucose uptake and glycogen synthesis. Although PI 3-kinase primarily functions as a lipid kinase which preferentially phosphorylates the D-3 position of phospholipids, the effect of hydrolysis of the key PI 3-kinase product PI 3,4,5-triphosphate [PI(3,4,5)P3] on these biological responses is unknown. We recently cloned rat SH2-containing inositol phosphatase 2 (SHIP2) cDNA which possesses the 5'-phosphatase activity to hydrolyze PI(3,4,5)P3 to PI 3,4-bisphosphate [PI(3,4)P2] and which is mainly expressed in the target tissues of insulin. To study the role of SHIP2 in insulin signaling, wild-type SHIP2 (WT-SHIP2) and 5'-phosphatase-defective SHIP2 (Delta IP-SHIP2) were overexpressed in 3T3-L1 adipocytes by means of adenovirus-mediated gene transfer. Early events of insulin signaling including insulin-induced tyrosine phosphorylation of the insulin receptor beta subunit and IRS-1, IRS-1 association with the p85 subunit, and PI 3-kinase activity were not affected by expression of either WT-SHIP2 or Delta IP-SHIP2. Because WT-SHIP2 possesses the 5'-phosphatase catalytic region, its overexpression marked by decreased insulin-induced PI(3,4,5)P3 production, as expected. In contrast, the amount of PI(3,4,5)P3 was increased by the expression of Delta IP-SHIP2, indicating that Delta IP-SHIP2 functions in a dominant-negative manner in 3T3-L1 adipocytes. Both PI(3,4,5)P3 and PI(3,4)P2 were known to possibly activate downstream targets Akt and protein kinase C lambda in vitro. Importantly, expression of WT-SHIP2 inhibited insulin-induced activation of Akt and protein kinase C lambda, whereas these activations were increased by expression of Delta IP-SHIP2 in vivo. Consistent with the regulation of downstream molecules of PI 3-kinase, insulin-induced 2-deoxyglucose uptake and Glut4 translocation were decreased by expression of WT-SHIP2 and increased by expression of Delta IP-SHIP2. In addition, insulin-induced phosphorylation of GSK-3beta and activation of PP1 followed by activation of glycogen synthase and glycogen synthesis were decreased by expression of WT-SHIP2 and increased by the expression of Delta IP-SHIP2. These results indicate that SHIP2 negatively regulates metabolic signaling of insulin via the 5'-phosphatase activity and that PI(3,4,5)P3 rather than PI(3,4)P2 is important for in vivo regulation of insulin-induced activation of downstream molecules of PI 3-kinase leading to glucose uptake and glycogen synthesis.  相似文献   

7.
SHIP2 (SH2-containing inositol polyphosphate 5-phosphatase 2) is a phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)) 5-phosphatase containing various motifs susceptible to mediate protein-protein interaction. In cell models, SHIP2 negatively regulates insulin signalling through its catalytic PtdIns(3,4,5)P(3) 5-phosphatase activity. We have previously reported that SHIP2 interacts with the c-Cbl associated protein (CAP) and c-Cbl, proteins implicated in the insulin cellular response regulating the small G protein TC10. The first steps of the TC10 pathway are the recruitment and tyrosine phosphorylation by the insulin receptor of the adaptor protein with Pleckstrin Homology and Src Homology 2 domains (APS). Herein, we show that SHIP2 can directly interact with APS in 3T3-L1 adipocytes and in transfected CHO-IR cells (Chinese hamster ovary cells stably transfected with the insulin receptor). Upon insulin stimulation, APS and SHIP2 are recruited to cell membranes as seen by immunofluorescence studies, which is consistent with their interaction. We also observed that SHIP2 negatively regulates APS insulin-induced tyrosine phosphorylation and consequently inhibits APS association with c-Cbl. APS, which specifically interacts with SHIP2, but not PTEN, in turn, increases the PtdIns(3,4,5)P(3) 5-phosphatase activity of SHIP2 in an inositol phosphatase assay. Co-transfection of SHIP2 and APS in CHO-IR cells further increases the inhibitory effect of SHIP2 on Akt insulin-induced phosphorylation. Therefore, the interaction between APS and SHIP2 provides to both proteins potential negative regulatory mechanisms to act on the insulin cascade.  相似文献   

8.
The Tec family of protein-tyrosine kinases (PTKs), that includes Tec, Itk, Btk, Bmx, and Txk, plays an essential role in phospholipase Cgamma (PLCgamma) activation following antigen receptor stimulation. This function requires activation of phosphatidylinositol 3-kinase (PI 3-kinase), which promotes Tec membrane localization through phosphatidylinositol 3,4,5-trisphosphate (PtdIns 3,4,5-P(3)) generation. The mechanism of negative regulation of Tec family PTKs is poorly understood. In this study, we show that the inositol 5' phosphatases SHIP1 and SHIP2 interact preferentially with Tec, compared with other Tec family members. Four lines of evidence suggest that SHIP phosphatases are negative regulators of Tec. First, SHIP1 and SHIP2 are potent inhibitors of Tec activity. Second, inactivation of the Tec SH3 domain, which is necessary and sufficient for SHIP binding, generates a hyperactive form of Tec. Third, SHIP1 inhibits Tec membrane localization. Finally, constitutively targeting Tec to the membrane relieves SHIP1-mediated inhibition. These data suggest that SHIP phosphatases can interact with and functionally inactivate Tec by de-phosphorylation of local PtdIns 3,4,5-P(3) and inhibition of Tec membrane localization.  相似文献   

9.
Many agents that activate hematopoietic cells use phos pha tidyl ino si tol 3,4,5-trisphosphate (PtdIns 3,4,5-P3) to initiate signaling cascades. The SH2 domain-containing inositol 5′ phosphatase, SHIP1, regulates hematopoietic cell function by opposing the action of phos pha tidyl ino si tol 3-kinase and reducing the levels of PtdIns 3,4,5-P3. Activation of the cyclic AMP-de pend ent protein kinase (PKA) also opposes many of the pro-inflammatory responses of hematopoietic cells. We tested to see whether the activity of SHIP1 was regulated via phos pho ryl a tion with PKA. We prepared pure recombinant SHIP1 from HEK-293 cells and found it can be rapidly phos pho ryl a ted by PKA to a stoichiometry of 0.6 mol of PO4/mol of SHIP1. In 32P-labeled HEK-293 cells transfected with SHIP1, stimulation with Sp-adenosine 3′,5′-cyclic monophosphorothioate triethylammonium salt hydrate (Sp-cAMPS) or activation of the β-adrenergic receptor increased the phos pho ryl a tion state of SHIP1. Inhibition of protein phosphatase activity with okadaic acid also increased the phos pho ryl a tion of SHIP1. Phosphorylation of SHIP1 in vitro or in cells by PKA increased the 5′ phosphatase activity of SHIP1 by 2–3-fold. Elevation of Ca2+ in DT40 cells in response to B cell receptor cross-linking, an indicator of PtdIns 3,4,5-P3 levels, was markedly blunted by pretreatment with Sp-cAMPS. This effect was absent in SHIP−/− DT40 cells showing that the effect of Sp-cAMPS in DT40 cells is SHIP1-de pend ent. Sp-cAMPS also blunted the ability of the B cell receptor to increase the phos pho ryl a tion of Akt in DT40 and A20 cells. Overall, activation of G protein-coupled receptors that raise cyclic AMP cause SHIP1 to be phos pho ryl a ted and stimulate its inositol phosphatase activity. These results outline a novel mechanism of SHIP1 regulation.Activation of phosphatidylinositol 3-kinase (PtdIns 3-kinase)2 is central to regulation of multiple cell functions including cell shape changes, cell migration, cell activation, and proliferation (1). PtdIns 3-kinase phosphorylates phosphatidylinositol 4,5-bisphosphate in the inner leaflet of the plasma membrane to generate phosphatidylinositol 3,4,5-trisphosphate (PtdIns 3,4,5-P3) (2). PtdIns 3,4,5-P3 then activates downstream signaling pathways by interacting with pleckstrin homology domain-containing proteins, such as phosphoinositide-dependent kinase 1 and the serine-threonine kinase Akt (3). The finding of abnormal activation of the PtdIns 3-kinase pathway in cancer cells has led to interest in the development of inhibitors for PtdIns 3-kinase (4).The level of PtdIns 3,4,5-P3 is stimulated by multiple members of the PtdIns 3-kinase family (2) and is opposed by two phosphatidylinositol phosphatases: the Src homology 2 (SH2) domain-containing inositol 5′ phosphatase (SHIP) and the 3′ inositol phosphatase, phosphatase and tensin homolog (PTEN) (5). PTEN removes phosphate from the 3′ position in the inositol ring of PtdIns 3,4,5-P3 and converts it to phosphatidylinositol 4,5-bisphosphate (6). PTEN has a C2 domain, a PDZ-binding motif, and a N-terminal phosphatidylinositol 4,5-bisphosphate binding motif essential for translocation to the membrane and interaction with other regulatory proteins (7). There are serine and threonine residues in PTEN that have been found to be phosphorylated, but their role in regulating the activity of the enzyme is not clear (8). Mutations in the PTEN protein have been observed in many tumors, suggesting a role for this enzyme in cancer (9).In contrast, SHIP dephosphorylates the 5′ position on the inositol ring and produces phosphatidylinositol 3,4-bisphosphate (10). There are three isoforms of SHIP: the 145-kDa hematopoietic cell restricted SHIP (also known as SHIP1); the 104-kDa stem cell-restricted SHIP, sSHIP; and the more widely expressed 150-kDa SHIP2 (11). SHIP1 is the major inositol phosphatase regulating PtdIns 3,4,5-P3 in monocytes, macrophages, B cells, and T cells (11). SHIP1 has three known structural features: the N-terminal SH2 domain, the central inositol 5′ phosphatase domain, and two NPXY sequences in the C-terminal region. The currently accepted model for regulation of PtdIns 3,4,5-P3 levels by SHIP1 envisions translocation of SHIP1 from the cytosol to the membrane. Upon stimulation by growth factors, cytokine receptors, or immunoreceptors, SHIP1 is recruited via its N-terminal SH2 domain to phosphorylated tyrosine residues in receptor kinases and degrades the elevated levels of PtdIns 3,4,5-P3 near the activated receptor (12). During this translocation process, SHIP1 is not thought to change its 5′ phosphatase activity (13). Although it is known that SHIP1 can be phosphorylated on tyrosine residues by the lyn cytoplasmic kinase (12) or following the activation of the T cell receptor (14), neither event appears to influence the 5′ phosphatase activity. To date, direct regulation of SHIP1 activity by serine/threonine kinases has not been studied.Activation of G protein-coupled receptors that raise cAMP (i.e. β-adrenergic receptors or adenosine A2a receptors) is known to blunt the pro-inflammatory responses generated by receptors that raise the level of PtdIns 3,4,5-P3 (15). Therefore, we investigated the possibility that phosphorylation of SHIP1 by cyclic AMP-dependent protein kinase (PKA) might regulate the activity of SHIP1. We found that SHIP1 can be phosphorylated by PKA both in vitro and in cells leading to a stimulation of SHIP1 activity. Activation of PKA in DT40 and A20 cells blunted indicators of the PtdIns 3,4,5-P3 response to B cell receptor stimulation. These results indicate that SHIP1 activity can be regulated both in vitro and in cells by activation of the cyclic AMP-dependent protein kinase and highlight a new mode of SHIP regulation by G protein-coupled receptors.  相似文献   

10.
SHIP2, the ubiquitous SH2 domain containing inositol 5-phosphatase, includes a series of protein interacting domains and has the ability to dephosphorylate phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)]in vitro. The present study, which was undertaken to evaluate the impact of SHIP2 on PtdIns(3,4,5)P(3) levels, was performed in a mouse embryonic fibroblast (MEF) model using SHIP2 deficient (-/-) MEF cells derived from knockout mice. PtdIns(3,4,5)P(3) was upregulated in serum stimulated -/- MEF cells as compared to +/+ MEF cells. Although the absence of SHIP2 had no effect on basal PtdIns(3,4,5)P(3) levels, we show here that this lipid was significantly upregulated in SHIP2 -/- cells but only after short-term (i.e. 5-10 min) incubation with serum. The difference in PtdIns(3,4,5)P(3) levels in heterozygous fibroblast cells was intermediate between the +/+ and the -/- cells. In our model, insulin-like growth factor-1 stimulation did not show this upregulation. Serum stimulated phosphoinositide 3-kinase (PI 3-kinase) activity appeared to be comparable between +/+ and -/- cells. Moreover, protein kinase B, but not mitogen activated protein kinase activity, was also potentiated in SHIP2 deficient cells stimulated by serum. The upregulation of protein kinase B activity in serum stimulated cells was totally reversed in the presence of the PI 3-kinase inhibitor LY-294002, in both +/+ and -/- cells. Altogether, these data establish a link between SHIP2 and the acute control of PtdIns(3,4,5)P(3) levels in intact cells.  相似文献   

11.
The SH2 domain containing inositol 5-phosphatase 2 (SHIP2) catalyzes the dephosphorylation of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and participates in the insulin signalling pathway in vivo. In a comparative study of SHIP2 and the phosphatase and tensin homologue deleted on chromosome 10 (PTEN), we found that their lipid phosphatase activity was influenced by the presence of vesicles of phosphatidylserine (PtdSer). SHIP2 PtdIns(3,4,5)P3 5-phosphatase activity was greatly stimulated in the presence of vesicles of PtdSer. This effect appears to be specific for di-C8 and di-C16 fatty acids of PtdIns(3,4,5)P3 as substrate. It was not observed with inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) another in vitro substrate of SHIP2, nor with Type I Ins(1,4,5)P3/Ins(1,3,4,5)P4 5-phosphatase activity, an enzyme which acts on soluble inositol phosphates. Vesicles of phosphatidylcholine (PtdCho) stimulated only twofold PtdIns(3,4,5)P3 5-phosphatase activity of SHIP2. Both a minimal catalytic construct and the full length SHIP2 were sensitive to the stimulation by PtdSer. In contrast, PtdIns(3,4,5)P3 5-phosphatase activity of the Skeletal muscle and Kidney enriched Inositol Phosphatase (SKIP), another member of the mammaliam Type II phosphoinositide 5-phosphatases, was not sensitive to PtdSer. Our enzymatic data establish a specificity in the control of SHIP2 lipid phosphatase activity with PtdIns(3,4,5)P3 as substrate which is depending on the fatty acid composition of the substrate.  相似文献   

12.
Proper neutrophil migration into inflammatory sites ensures host defense without tissue damage. Phosphoinositide 3-kinase (PI(3)K) and its lipid product phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) regulate cell migration, but the role of PtdIns(3,4,5)P(3)-degrading enzymes in this process is poorly understood. Here, we show that Src homology 2 (SH2) domain-containing inositol-5-phosphatase 1 (SHIP1), a PtdIns(3,4,5)P(3) phosphatase, is a key regulator of neutrophil migration. Genetic inactivation of SHIP1 led to severe defects in neutrophil polarization and motility. In contrast, loss of the PtdIns(3,4,5)P(3) phosphatase PTEN had no impact on neutrophil chemotaxis. To study PtdIns(3,4,5)P(3) metabolism in living primary cells, we generated a novel transgenic mouse (AktPH-GFP Tg) expressing a bioprobe for PtdIns(3,4,5)P(3.) Time-lapse footage showed rapid, localized binding of AktPH-GFP to the leading edge membrane of chemotaxing ship1(+/+)AktPH-GFP Tg neutrophils, but only diffuse localization in ship1(-/-)AktPH-GFP Tg neutrophils. By directing where PtdIns(3,4,5)P(3) accumulates, SHIP1 governs the formation of the leading edge and polarization required for chemotaxis.  相似文献   

13.
The SH2 domain containing inositol polyphosphate 5-phosphatase-2: SHIP2   总被引:2,自引:0,他引:2  
Phosphoinositides are membrane-bound signaling molecules that recruit, activate and localize target effectors to intracellular membranes regulating apoptosis, cell proliferation, insulin signaling and membrane trafficking. The SH2 domain containing inositol polyphosphate 5-phosphatase-2 (SHIP2) hydrolyzes phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) generating phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2). Overexpression of SHIP2 inhibits insulin-stimulated phosphoinositide 3-kinase (PI3K) dependent signaling events. Analysis of diabetic human subjects has revealed an association between SHIP2 gene polymorphisms and type 2 diabetes mellitus. Genetic ablation of SHIP2 in mice has generated conflicting results. SHIP2 knockout mice were originally reported to show lethal neonatal hypoglycemia resulting from insulin hypersensitivity, but in addition to inactivating the SHIP2 gene, the Phox2a gene was also inadvertently deleted. Another SHIP2 knockout mouse has now been generated which inactivates the SHIP2 gene but leaves Phox2a intact. These animals show normal insulin and glucose tolerance but are highly resistant to weight gain on high fat diets, exhibiting an obesity-resistant phenotype. Therefore, SHIP2 remains a significant therapeutic target for the treatment of both obesity and type 2 diabetes.  相似文献   

14.
An insulin receptor substrate 1 (IRS-1)-like cDNA was isolated from a Xenopus ovary cDNA library by low-stringency hybridization using rat IRS-1 cDNA as a probe. The deduced amino acid sequence encoded by this cDNA (termed XIRS-L) is 67% identical (77% similar) to that of rat IRS-1. Significantly, all the insulin-induced tyrosine phosphorylation sites identified in rat IRS-1, including those responsible for binding to the Src homology domains of phosphatidylinositol (PI) 3-kinase, Syp and Grb2, are conserved in XIRS-L. Both mRNA and protein corresponding to the cloned XIRS-L can be detected in immature Xenopus oocytes. Recombinant XIRS-L protein produced in insect cells or a bacterial glutathione S-transferase fusion protein containing the putative PI 3-kinase binding site can be phosphorylated in vitro by purified insulin receptor kinase (IRK) domain, and the IRK-catalyzed phosphorylation renders both proteins capable of binding PI 3-kinase in Xenopus oocyte lysates. Another glutathione S-transferase fusion protein containing the C terminus of XIRS-L and including several putative tyrosine phosphorylation sites is also phosphorylated by IRK in vitro, but it failed to bind PI 3-kinase. Insulin stimulation of immature Xenopus oocytes activates PI 3-kinase in vivo [as indicated by an elevation of PI(3,4)P2 and PI(3,4,5)P3] as well as oocyte maturation (as indicated by germinal vesicle breakdown). Pretreatment of these oocytes with wortmannin inhibited insulin-induced activation of PI 3-kinase in vivo. The same treatment also abolished insulin-induced, but not progesterone-induced, germinal vesicle breakdown. These results (i) identify an IRS-1-like molecule in immature Xenopus oocytes, suggesting that the use of IRS-1-like Scr homology 2 domain-docking proteins in signal transduction is conserved in vertebrates, and (ii) strongly implicate PI 3-kinase as an essential effector of insulin-induced oocyte maturation.  相似文献   

15.
Short-term muscle denervation is a reproducible model of tissue-specific insulin resistance. To investigate the molecular basis of insulin resistance in denervated muscle, the downstream signaling molecules of the insulin-signaling pathway were examined in intact and denervated soleus muscle of rats. Short-term denervation induced a significant fall in glucose clearance rates (62% of control, P < 0.05) as detected by euglycemic hyperinsulinemic clamp and was associated with a significant decrease in insulin-stimulated tyrosine phosphorylation of the insulin receptor (IR; 73% of control, P < 0.05), IR substrate 1 (IRS1; 69% of control, P < 0.05), and IRS2 (82% of control, P < 0.05) and serine phosphorylation of Akt (39% of control, P < 0.05). Moreover, denervation reduced insulin-induced association between IRS1/IRS2 and p85/phosphatidylinositol (PI) 3-kinase. Nevertheless, denervation caused an increase in PI 3-kinase activity associated with IRS1 (275%, P < 0.05) and IRS2 (180%, P < 0.05), but the contents of phosphorylated PI detected by HPLC were significantly reduced in lipid fractions. In the face of the apparent discrepancy, we evaluated the expression and activity of the 5-inositol, lipid phosphatase SH2 domain-containing inositol phosphatase (SHIP2), and the serine phosphorylation of p85/PI 3-kinase. No major differences in SHIP2 expression were detected between intact and denervated muscle. However, serine phosphorylation of p85/PI 3-kinase was reduced in denervated muscle, whereas the blockade of SHIP2 expression by antisense oligonucleotide treatment led to partial restoration of phosphorylated PI contents and to improved glucose uptake. Thus modulation of the functional status of SHIP2 may be a major mechanism of insulin resistance induced by denervation.  相似文献   

16.
SH2 domain containing inositol polyphosphate 5-phosphatase (SHIP2) dephosphorylates phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) into phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P(2)). SHIP2 knock-out mice demonstrated that SHIP2 acts as a negative regulator of insulin cascade in vivo. Our two-hybrid study showed that SHIP2 interacts with c-Cbl associated protein (CAP) and c-Cbl, implicated in the insulin signaling. As some proteins implicated in insulin signaling, like insulin receptor, CAP, c-Cbl or TC10, were reported to localize in lipid rafts, we addressed the same question for SHIP2. SHIP2 was detected in the non-raft fraction in CHO-IR, C2C12 myotubes and 3T3-L1 adipocytes except when it is overexpressed in CHO-IR, where we detected SHIP2 in the raft fraction.  相似文献   

17.
Skeletal muscle and kidney enriched inositol phosphatase (SKIP) is an inositol polyphosphate 5-phosphatase that hydrolyzes phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] to downregulate intracellular levels. In this study, we show that SKIP inhibits phosphoinositide 3-kinase signaling in insulin-stimulated CHO cells. Ectopic expression of SKIP did not inhibit insulin-induced PI(3,4,5)P3 generation but did rapidly decrease insulin-induced intracellular PI(3,4,5)P3 levels compared with those in control cells. Further, insulin-induced phosphorylation of some downstream targets such as Akt and p70 S6 kinase was markedly inhibited by the ectopic expression of SKIP, whereas phosphorylation of mitogen-activated protein kinase was not. In contrast, downregulation of intracellular SKIP levels by antisense oligonucleotides dramatically enhanced Akt (protein kinase B) phosphorylation in response to insulin, suggesting that endogenous SKIP downregulates insulin signaling. SKIP also markedly inhibited GLUT4 translocation and membrane ruffle formation. We conclude that SKIP preferentially regulates glucose transport and actin cytoskeletal rearrangement among a variety of PI(3,4,5)P3 downstream events.  相似文献   

18.
SRC homology 2 (SH2)-containing inositol 5′-phosphatase protein (SHIP2) is a potential target for type 2 diabetes. Its ability to dephosphorylate the lipid messenger phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3], important for insulin signaling, makes it an important target against type 2 diabetes. The insulin-induced SHIP2 interaction with Shc is very important for the membrane localization and functioning of SHIP2. There is a bidentate relationship between the two proteins where two domains each from SHIP2 and Shc are involved in mutual binding. However in the present study, the SHIP2-SH2 domain binding with the phosphorylated tyrosine 317 on the collagen-homology (CH) domain of Shc, has been studied due to the indispensability of this interaction in SHIP2 localization. In the absence of the crystal structure of SHIP2-SH2, its structural model was developed followed by tracking its molecular interactions with Shc through molecular docking and dynamics studies. This study revealed much about the structural interactions between the SHIP2-SH2 and Shc-CH. Finally, docking study of a nonpeptide inhibitor into the SHIP2-SH2 domain further confirmed the structural interactions involved in ligand binding and also proposed the inhibitor as a major starting point against SHIP2-SH2 inhibition. The insights gained from the current study should prove useful in the design of more potent inhibitors against type 2 diabetes.  相似文献   

19.
Many tumors present with increased activation of the phosphatidylinositol 3-kinase (PI3K)-PtdIns(3,4,5)P(3)-protein kinase B (PKB/Akt) signaling pathway. It has long been thought that the lipid phosphatases SH2 domain-containing inositol-5'-phosphatase 1 (SHIP1) and SHIP2 act as tumor suppressors by counteracting with the survival signal induced by this pathway through hydrolysis or PtdIns(3,4,5)P(3) to PtdIns(3,4)P(2). However, a growing body of evidence suggests that PtdInd(3,4)P(2) is capable of, and essential for, Akt activation, thus suggesting a potential role for SHIP1/2 enzymes as proto-oncogenes. We recently described a novel SHIP1-selective chemical inhibitor (3α-aminocholestane [3AC]) that is capable of killing malignant hematologic cells. In this study, we further investigate the biochemical consequences of 3AC treatment in multiple myeloma (MM) and demonstrate that SHIP1 inhibition arrests MM cell lines in either G0/G1 or G2/M stages of the cell cycle, leading to caspase activation and apoptosis. In addition, we show that in vivo growth of MM cells is blocked by treatment of mice with the SHIP1 inhibitor 3AC. Furthermore, we identify three novel pan-SHIP1/2 inhibitors that efficiently kill MM cells through G2/M arrest, caspase activation and apoptosis induction. Interestingly, in SHIP2-expressing breast cancer cells that lack SHIP1 expression, pan-SHIP1/2 inhibition also reduces viable cell numbers, which can be rescued by addition of exogenous PtdIns(3,4)P(2). In conclusion, this study shows that inhibition of SHIP1 and SHIP2 may have broad clinical application in the treatment of multiple tumor types.  相似文献   

20.
Interest in phosphopinositide 3-kinase (PI 3-kinase) has been fuelled by its identification as a major phosphotyrosyl protein detected in cells following growth factor stimulation and oncogenic transformation. It is found complexed with activated growth factor receptors and non-receptor tyrosine kinases, thus suggesting that it participates in the signal transduction pathways initiated by the activation of tyrosine kinases. PI 3-kinase phosphorylates the 3-position in the inositol ring of the well known inositol phospholipids in vitro giving phosphatidylinositol 3-phosphate, phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate [PtdIns3P, PtdIns(3,4)P2 and PtdIns(3,4,5)P3], respectively. The cellular levels of PtdIns(3,4)P2 and PtdIns(3,4,5)P3 rapidly increase in circumstances where PI 3-kinase becomes complexed with tyrosine kinases. Accumulation of the same lipids also occurs in platelets and neutrophils following stimulation of G-protein linked -thrombin and chemotactic peptide receptors, respectively, leading to speculation that one or both of these lipids is a new second messenger whose function is not yet known. This review brings together recent information on the isolation, characterization and regulation of PI 3-kinase, the cellular occurrence of 3-phosphorylated inositol phospholipids and possible functions of the PI 3-kinase pathway in cell signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号