首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
启动子位于转录起始位点上游并能特异性地结合RNA聚合酶,其作为调控序列驱动外源基因在异源植物中表达,从而实现转基因的高效性,具有时空表达特异性的启动子对获得有效转基因植物及产物具有重要意义。为了解种皮特异启动子的表达模式,该研究基于前期报道的序列,通过同源克隆的方法分别从大麦和油菜中克隆获得Gerb和Bntt两个种皮特异性启动子,并对其进行生物信息学分析,构建了Gerb::GUS和Bntt::GUS植物表达载体并转化拟南芥,通过组织化学染色观察了GUS的表达情况。结果表明:两种启动子序列中都含有多拷贝种皮特异表达启动子元件以及多种胁迫诱导响应元件;转基因拟南芥幼苗期,大麦Gerb种皮特异启动子驱动GUS全株表达且子叶和下胚轴较真叶和根中表达量高;油菜Bntt种皮特异启动子表达较弱;成株期,Gerb在不同组织(叶片、茎、花序和角果)中均有表达,未显示组织特异性;Bntt仅在叶片及角果维管束中有微弱表达。在各种非生物胁迫下,Gerb表达模式未发生显著变化,而Bntt仅在盐胁迫下显示很强的角果和种子特异性表达,其他胁迫未见明显表达。以上结果显示,大麦种皮特异性启动子Gerb和油菜种皮特异性启动子Bntt在时间和空间表达模式上存在差异,这对今后选择种皮特异启动子具有参考作用,但其具体机制仍需进一步研究验证。  相似文献   

2.
Genetically transformed root clones of rapeseed (Brassica napus) were obtained afterin vitro infection of excised hypocotyl segments with a wild type strain ofAgrobacterium rhizogenes and two strains ofA. rhizogenes harbouring kanamycin resistance. The ability of hairy root formation was affected by light and was highly dependent on the location of the infection site at the hypocotyl. Inoculation of decapitated hypocotyls with an intact root system gave rise to direct shoot formation from the site of inoculation. Histological sections showed that several meristems were initiated at the inoculation site. Root and shoot clones were isolated and subcultured axenically in hormone-free liquid MS medium. Identification of transformed root and shoot clones was based on opine assays. Further selection was carried out in kanamycin-enriched medium.All opine-positive root clones showed NPT II (neomycin phosphotransferase) activity. Nearly half of the shoot clones expressed a strong NPT II activity while the rest gave a weak or no NPT II response.  相似文献   

3.
The GUS reporter gene was used to test four different putativeseed-specific promoters in developing and mature seeds, leaves and roots fromlinseed flax (Linum usitatissimum). The promoters testedincluded the regulatory regions of the -ketoacyl-CoA synthase gene (KCS)and the napin protein gene from Brassica napus, thepromoter regions of the 'unknown seed protein' (USP), and a legumin proteingene(LeB4) from Vicia faba and the CaMV 35S promoter (positivecontrol). The promoter-GUS constructs were inserted into L.usitatissimum via Agrobacterium mediatedtransformation, and GUS activity evaluated using histochemical andfluorimetrical assays. All the promoters showed some activity, but only CaMV35S, LeB4 and USP exhibited an expression level high enough to be useful inlinseed flax. Plants with USP-GUS showed the earliest GUS activity at 5 to 6days after flowering (daf) and persisting until 40 daf. Expression of GUS underthe control of the LeB4 promoter was measurable 11 daf and was still detectableat 40 daf. The KCS-GUS construct showed a low level of GUS activity between 14daf and 40 daf. Plants transformed with USP-GUS or LeB4-GUS exhibited a lowlevel of GUS activity in leaves and roots of some of the transformants,indicating the need for generating large numbers of primary transformants,followed by careful evaluation and selection for ones with not only the desiredlevel of expression, but also the desired spatial and temporal expression.  相似文献   

4.
5.
Summary Genetic transformation systems have been established for Brassica nigra (cv. IC 257) by using an Agrobacterium binary vector as well as by direct DNA uptake of a plasmid vector. Both the type of vectors carried nptII gene and gus gene. For Agrobacterium mediated transformation, hypocotyl tissue explants were used, and up to 33% of the explants produced calli on selection medium. All of these expressed B-glucuronidase gene on histochemical staining. Protoplasts isolated from hypocotyl tissues of seedlings could be transformed with a plasmid vector by FEG mediated uptake of vector DNA. A number of fertile kanamycin resistant plants were obtained using both the methods, and their transformed nature was confirmed by Southern blot analysis and histochemical staining for GUS. Backcrossed and selfed progenies of these transformed plants showed the presence of npt and gus genes.  相似文献   

6.
Globulins are the most abundant seed storage proteins in cotton and, therefore, their regulatory sequences could potentially provide a good source of seed-specific promoters. We isolated the putative promoter region of cotton -globulin B gene by gene walking using the primers designed from a cotton staged embryo cDNA clone. PCR amplified fragment of 1108 bp upstream sequences was fused to gusA gene in the binary vector pBI101.3 to create the test construct. This was used to study the expression pattern of the putative promoter region in transgenic cotton, Arabidopsis, and tobacco. Histochemical GUS analysis revealed that the promoter began to express during the torpedo stage of seed development in tobacco and Arabidopsis, and during cotyledon expansion stage in cotton. The activity quickly increased until embryo maturation in all three species. Fluorometric GUS analysis showed that the promoter expression started at 12 and 15 dpa in tobacco and cotton, respectively, and increased through seed maturation. The strength of the promoter expression, as reflected by average GUS activity in the seeds from primary transgenic plants, was vastly different amongst the three species tested. In Arabidopsis, the activity was 16.7% and in tobacco it was less than 1% of the levels detected in cotton seeds. In germinating seedlings of tobacco and Arabidopsis, GUS activity diminished until it was completely absent 10 days post imbibition. In addition, absence of detectable level of GUS expression in stem, leaf, root, pollen, and floral bud of transgenic cotton confirmed that the promoter is highly seed-specific. Analysis of GUS activity at individual seed level in cotton showed a gene dose effect reflecting their homozygous or hemizygous status. Our results show that this promoter is highly tissue-specific and it can be used to control transgene expression in dicot seeds.  相似文献   

7.
8.
Summary A sugar beet transformation method was developed using particle bombardment of short-term suspension cultures of a breeding line FC607. Highly embryogenic suspension cultures derived from leaf callus were bombarded with the uidA (gusA) reporter gene under the control of either the osmotin or proteinase inhibitor II gene promoter, and the npt II selectable marker gene. Transient uidA expression was visualized as 500–4000 blue units per 200 mg of bombarded cells 2 d after bombardment. Stably-transformed calluses were recovered on both kanamycin and paromomycin media. The greatest number of GUS (+) calluses was obtained when 50 or 100 mgl−1 of kanamycin was applied 2 d after transformation for 3–5 wk, followed by either no selection or reduced levels of the antibiotic. PCR analyses of the GUS (+) callus lines revealed the expected size fragment for uidA and npt II genes. Stable incorporation of the uidA gene into the genome was confirmed by Southern blot analyses. Several transformed embryos were detected by histochemical β-glucuronidase (GUS) staining.  相似文献   

9.
The aim of our study was to identify the highest expressing rubisco small subunit (RbcS) promoters (pRbcS) from the cotyledons of germinating seedlings of Brassica rapa var. oleifera to drive high-level and preferably stage-specific transgenic protein expression in Brassicaceae plants. We cloned four new pRbcS promoters using several approaches, including the construction of a cDNA library and use of genome walking technique. Real-time PCR analysis of RbcS mRNA expression clearly showed that two of these promoters exhibited the highest activity on the germination stage of plant development. We used gusA expression as a reporter of promoter activity in Brassica napus and Nicotiana tabacum plants that were transformed with the constructs using an Agrobacterium-mediated transformation strategy. The mRNA level of RbcS and of gusA was quantified in transformed plants. The data obtained demonstrate that the promoter most active in seedlings under native conditions was also most active in transgenic constructs at the same stage of plant development. The fine structure of the promoters is discussed herein.  相似文献   

10.
The Brassica napus extensin A gene is highly expressed in root tissue of oilseed rape. In an attempt to identify an effective root-specific promoter for biotechnological applications, we have examined the ability of the –940 extA promoter to drive expression of the gusA reporter gene in the vegetative tissues of apple (Malus pumila Mill cv. Greensleeves). Transgenic apple lines were produced by Agrobacterium tumefaciens-mediated transformation and GUS activity was analysed both quantitatively and qualitatively. The extA promoter was active in all tissues of young plants in all 15 clones examined. However Southern blot data suggested that only a proportion of the population contained the entire promoter and that others had suffered deletions of unknown length. This may have contributed to the variation seen in the quantitative and qualitative expression of GUS. Specific GUS activity was highest in the stems where it approached, and in some clones, exceeded that using the constitutive CaMV 35S promoter. Histochemical analysis confirmed that GUS was localised to tissues involved in structural support of the stem. Staining was particularly intense at nodal junctions where high tensile stress is exerted on the tissues. Maturing phloem tissues showed localisation of expression to the phloem parenchyma cells and phloem fibres. Transverse sections of the root revealed staining of primary procambial tissues including the young endodermis but no staining was seen in the cortex. Although the –940 extA promoter is clearly not root-specific in apple, it is likely to have useful biotechnological applications in tree species.  相似文献   

11.
12.
In this paper we compare five heterologous promoters fused to β-glucuronidase gene in their influence on localization of GUS activity in cauliflower (Brassica oleracea var. botrytis) tissues: roots, leaves, petioles and curds. A constitutive promoter CaMV 35S and four tissue specific promoters were used: extAP from rape, PsMTAP from pea, RBCS3CP from tomato and SRS1P from soybean, and introduced into cauliflower seedling explants using Agrobacterium rhizogenes mediated transformation. Quantitative and histochemical GUS assays confirmed tissue specific gus expression. It was found that extAP promoter was the most active in petioles but also caused a significant gus expression in curds. GUS activity was hardly observed in curd and restricted only to its epidermis when PsMTAP promoter drove the gene. RBCS3CP and SRS1P promoters controlled similar expression of the gus gene throughout the plant except for curd where RBCS3CP was almost inactive.  相似文献   

13.
Agrobacterium rhizogenes A4M70GUS-mediated transformation of Savoy cabbage (Brassica oleracea L. var. sabauda) and two local lines of cabbage (B. oleracea L. var. capitata) was obtained using hypocotyl and cotyledon explants. The percentage of explants which formed roots was very high in all genotypes: 92.3 % in Savoy Gg-1, 64.4 % in cabbage P22I5, and 87.2 % in P34I5. Spontaneous shoot regeneration of excised root cultures grown on the hormone-free medium occurred in all three genotypes. In cabbage lines P22I5 and P34I5 shoot regeneration was higher (9.3 and 2.6 % respectively) than in Savoy cabbage Gg-1 (1.3 %). Transgenic nature of hairy root-derived plants was evaluated by GUS histological test and PCR analysis. All the tested cabbage shoots were GUS positive whilst in a Savoy cabbage GUS expression was registered only in 55 % of tested clones. PCR analysis demonstrated the presence of the GUS gene in regenerated shoot clones and in T1 progeny.  相似文献   

14.
To develop a system forAgrobacterium-mediated transformation of maize (Zea mays L.), we have investigated histochemically the transient expression of -glucuronidase (GUS) activity in maize seedling tissue segments using binary vectors that allow minimal (pKIWI105 and pCNL1) or undetectable (p35S-GUS-INT and pCNL56) levels of GUS activity inA. tumefaciens. Tissue segments from three- to five-day-old sterile seedlings of maize genotype A188 were inoculated withA. tumefaciens. Four days after inoculation, transient expression of GUS activity was found in mesocotyl segments originating from the intercalary meristem region. This GUS activity was specific to the vascular cylinder and was not found in the internal cortical or epidermal layers, nor was it found in mature mesocotyl tissue (segments 5 mm below the coleoptilar node). Transient GUS activity was also detected in leaf and coleoptile tissues of shoot segments, but not in the shoot apexper se or in leaves younger than the first leaf. Maize tissues inoculated withA. tumefaciens strains that harbourgusA-containing binary vectors but no Ti-plasmid did not show GUS activity, supporting evidence from previous work thatvir gene activity was essential for the observed GUS activity.A. tumefaciens strains containing different types of Ti-plasmids were also tested. A strain harbouring an agropine-type Ti-plasmid was the most effective for expressing GUS activity in mesocotyl segments, whereas a strain harboring a nopaline-type Ti-plasmid was most effective for expression of GUS activity in the apical meristem-containing segment. These results indicate that different interactions occurred between the differentA. tumefaciens strains and the susceptible plant tissues. Maize genotype specificity for GUS activity in mesocotyl tissues was observed; variations in the cocultivation medium had a profound effect on the frequency of expression of GUS activity.  相似文献   

15.
Summary Genetically transformed plants of Brassica napus L. (oilseed rape) were obtained from hypocotyl expiants using Agrobacterium tumefaciens vectors. Hypocotyl explants were inoculated with disarmed or oncogenic A. tumefaciens strains, EHA101 and A281, and then cultured on media containing kanamycin. The A. tumefaciens strains harbored a binary vector, which contained a neomycin phosphotransferase II (NPTII) gene driven by the 35S promoter of cauliflower mosaic virus and an engineered napin (seed storage protein) gene with its own promoter (300 nucleotides 5 to the start of translation). Transformation of B. napus plants was confirmed by detection of NPT II enzyme activity, Southern blot analysis and inheritance of the kanamycin-resistance trait (NPT II gene) in the progeny. Expression of the engineered napin gene in embryos but not in leaves of transgenic plants was observed by Northern analysis. These data demonstrate that morphologically normal, fertile transgenic B. napus plants can be obtained using Agrobacterium as a gene vector and that developmentally regulated expression of reintroduced genes can be achieved.  相似文献   

16.
CTP: phosphocholine cytidylyltransferase is a rate-limiting enzyme in biosynthesis of phosphatidylcholine in plant cells. We have isolated four cDNAs for the cytidylyltransferase from a root cDNA library of Brassica napus by complementation in a yeast cct mutant. The deduced amino-acid sequences of the B. napus enzymes resembled rat and yeast enzymes in the central domain. Although all cytidylyltransferases ever cloned from B. napus and other organisms were predicted to be structurally hydrophilic, the yeast cct mutant transformed with one of the B. napus cDNA clones restored the cytidylyltransferase activity in the microsomal fraction as well as in the soluble fraction. These results are consistent with a recent view that yeast cells contained a machinery for targeting the yeast cytidylyltransferase to membranes, and may indicate that the B. napus enzyme was compatible with the machinery.  相似文献   

17.
This paper presents a method of Agrobacterium-mediated transformation for two diploid breeding lines of potato, and gives a detailed analysis of reporter gene expression. In our lab, these lines were also used to obtain tetraploid somatic hybrids. We tested four newly prepared constructs based on the pGreen vector system containing the selection gene nptII or bar under the 35S or nos promoter. All these vectors carried gus under 35S. We also tested the pDM805 vector, with the bar and gus genes respectively under the Ubi1 and Act1 promoters, which are strong for monocots. The selection efficiency (about 17%) was highest in the stem and leaf explants after transformation with pGreen where nptII was under 35S. About half of the selected plants were confirmed via PCR and Southern blot analysis to be transgenic and, depending on the combination, 0 to 100% showed GUS expression. GUS expression was strongest in multi-copy transgenic plants where gus was under Act1. The same potato lines carrying multi-copy bar under Ubi1 were also highly resistant to the herbicide Basta. The suggestion of using Agrobacterium-mediated transformation of diploid lines of potato as a model crop is discussed herein.  相似文献   

18.
Expression patterns of three Arabidopsis thaliana cytokinin oxidase/dehydrogenase promoter::GUS reporter fusions were investigated in tobacco plants. While cytokinin oxidase/dehydrogenase promoter 2 showed no expression in tobacco, the cytokinin oxidase/dehydrogenase promoters 3 and 4 were active in various tissues throughout development of the tobacco. Recently, the 1452 bp promoter region of AtCKX3 was reported as almost inactive in Arabidopsis. In contrast, the 1627 bp DNA fragment preceding the AtCKX3 coding region drove expression of the reporter GUS gene in various tobacco tissues. The promoter was mainly expressed in tobacco leaves and roots during early stages of development but also later in young flower buds as well as in pollen grains. The construct was particularly active before (hypocotyl region) and during (vascular system) lateral root initiation, supporting the idea of an inhibitory role of active cytokinins in the process of root initiation. The cytokinin oxidase/dehydrogenase promoter 4::GUS fusion in tobacco was shown to share some common (but weaker) expression patterns with promoter 3, namely in the leaves and pollen, but also conferred specific expression in tobacco root cap cells and trichomes. In addition, the response of cytokinin oxidase/dehydrogenase promoter::GUS reporter fusions to infection with the leafy gall-forming bacteria Rhodococcus fascians was examined. While an avirulent strain of R. fascians did not induce expression of any of the cytokinin oxidase/dehydrogenase promoters, the cytokinin oxidase/dehydrogenase promoter 3::GUS fusion was specifically induced at the site of infection when plants were challenged with a virulent strain of R. fascians, providing a possible explanation for the lack of significantly elevated cytokinin concentrations in tissues infected with virulent strains of R. fascians.This revised version was published online in August 2005 with some black and white figures replaced by coloured figures.  相似文献   

19.
Thlaspi arvense, a wild species from the Brassicaceae family, was shown to have a higher level of freezing tolerance than either of its close relatives, the model plant Arabidopsis thaliana or the crop Brassica napus (canola). Over 600 clones were sequenced from a subtractive cDNA library generated from cold treated T. arvense tissue, establishing that T. arvense shared significant sequence identity with both A. thaliana and B. napus (90–92%). In light of the strong sequence similarity between T. arvense and A. thaliana and to exploit the available genomics resources for Arabidopsis, the efficacy of using long 70 mer oligonucleotide whole genome Arabidopsis microarrays was tested for T. arvense. Gene expression in T. arvense leaf tissue during the very early stages of cold acclimation (or cold stress) was assayed at three time points and compared to an untreated control. This analysis highlights some of the difficulties and benefits of using cross-species microarray analysis. The data suggested that T. arvense responds in a similar fashion to cold stress as the model plant A. thaliana. However, for a number of genes quantitative differences in the level and timing of expression were identified. One of the most notable differences suggested that sulphur assimilation leading to the increased production of the methyl donor S-adenosyl-methionine was playing a role in the response of T. arvense to cold stress. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号