首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M-14 human melanoma cells, following severe hyperthermic exposures, synthesized a heat-shock protein of 66 kDa (hsp 66), in addition to the major “classic” heat-shock proteins. This hsp 66 was not expressed following mild hyperthermic exposures sufficient to trigger the synthesis of the other heat-shock proteins. The induction of hsp 66 was observed also in Li human glioma cells treated at 45°C for 20 min. By contrast, hsp 66 was not induced in seven other human cell lines (both melanoma and nonmelanoma) when they were subjected to the same hyperthermic treatment. Immunological recognition experiments showed that hsp 66 cross-reacted with the inducible hsp 72, but not with the constitutive hsp 73. The possibility that hsp 66 is a breakdown product of hsp 72 was ruled out by the fact that Poly(A)+ RNA extracted from cells treated at 45°C for 20 min was able to direct the synthesis of hsp 66 (together with hsp 72) in a message-dependent rabbit reticulocyte lysate, as well as in microinjected Xenopus oocytes. By contrast, only the hsp 72 was expressed using Poly(A)+ RNA extracted from cells heated at 42°C for 1 h. Affinity chromatography experiments on ATP-agarose showed that hsp 66 did not bind ATP in vitro, hsp 66 was localized both in the cytoplasm (cytosol, mitochondria, and microsome fraction) and in the nuclei of cells recovered from a severe heat shock: this intracellular distribution closely corresponded to that of hsp 72. The nuclear-associated hsp 66 was found to be tightly bound to nuclear structures and could not be extracted by incubation in ATP-containing buffer. © 1996 Wiley-Liss, Inc.  相似文献   

2.
We employed whole‐mount in situ hybridization and immunohistochemistry to study the spatial pattern of hsp30 gene expression in normal and heatshocked embryos during Xenopus laevis development. Our findings revealed that hsp30 mRNA accumulation was present constitutively only in the cement gland of early and midtailbud embryos, while hsp30 protein was detected until at least the early tadpole stage. Heat shock‐induced accumulation of hsp30 mRNA and protein was first observed in early and midtailbud embryos with preferential enrichment in the cement gland, somitic region, lens placode, and proctodeum. In contrast, cytoskeletal actin mRNA displayed a more generalized pattern of accumulation which did not change following heat shock. In heat shocked midtailbud embryos the enrichment of hsp30 mRNA in lens placode and somitic region was first detectable after 15 min of a 33°C heatshock. The lowest temperature capable of inducing this pattern was 30°C. Placement of embryos at 22°C following a 1‐h 33°C heat shock resulted in decreased hsp30 mRNA in all regions with time, although enhanced hsp30 mRNA accumulation still persisted in the cement gland after 11 h compared to control. In late tailbud embryos the basic midtailbud pattern of hsp30 mRNA accumulation was enhanced with additional localization to the spinal cord as well as enrichment across the embryo surface. These studies demonstrate that hsp30 gene expression can be detected constitutively in the cement gland of tailbud embryos and that heat shock results in a preferential accumulation of hsp30 mRNA and protein in certain tissues. Dev. Genet. 25:365–374, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

3.
Constitutive expression of human hsp27 resulted in a 100-fold increase in survival to a single lethal heat shock in CHO cells without effecting the development of thermotolerance. A possible mechanism for the thermoprotective function of hsp27 may be increased recovery of protein synthesis and RNA synthesis following a heat shock. A lethal heat shock (44°C, 30 min) results in a 90% reduction in the rate of protein synthesis in non-tolerant cells. Control transfected cells recovered protein synthesis to a pre-heat shock rate 10 h after the heat shock; while cell lines that constitutively express human hsp27 recovered 6 h after the heat shock. Thermotolerant cells had a 50% reduction in protein synthesis, which recovered within 7 h following the heat shock. The same lethal heat shock (44°C, 30 min) reduced RNA synthesis by 60% in the transfected cell lines, with the controls recovering in 7 h; while the hsp27 expressing cell lines recovered within 5 h. Thermotolerant cells had a 40% reduction in RNA synthesis and were able to recover within 4 h. The enhanced ability of hsp27 to facilitate recovery of protein synthesis and RNA synthesis following a heat shock may provide the cell with a survival advantage. J. Cell. Biochem. 66:153–164, 1997. © 1997 Wiley-Liss Inc.  相似文献   

4.
Synchronized regulation of cell division during gastrulation is essential for the regional proliferation of cells and pattern formation of the early CNS. The neural plate and neuroectoderm cells are a rapidly dividing and differentiating population of cells with a unique and rapid heat-shock response. Heat shock and the heat-shock genes were studied during neural plate development in a whole rat embryo culture system at 9.5-11.5 days. A lethal heat shock can cause cell death and severe developmental defects to the forebrain and eye during organogenesis. Heat shock can also result in acquired thermotolerance whereby cell progression is delayed at the G1/S and S/G2 boundaries of the cell cycle. This delay in cell cycle progression caused an overall lengthening of the cell cycle time of at least 2 hr. The heat shock genes may therefore function as cell cycle regulators in neuroectoderm induction and differentiation. The kinetics and expression of the hsp genes were examined in neuroectodermal cells by flow cytometry and Northern analysis. The levels of hsp mRNA 27, 71, 73, and 88 were identified following exposure at 42°C (nonlethal), 43deg;C (lethal) and 42deg;/43deg;C (thermotolerant) heat shock. Examination of hsp gene expression in the neural plate showed tight regulation in the cell cycle phases. Hsp 88 expression was enhanced at Go and hsp71 induction at G2 + M of the cell cycle. Cells exposed to a thermotolerant heat shock of 42deg;C induced hsp71 mRNA expression in all phases of the cell cycle with the mRNA levels of hsp27, 73, and 88 increased but relatively constant. Following a lethal heat shock, dramatic changes in hsp expression were seen especially enhanced hsp71 induction in late S phase. The regulated expression of hsps during the cell cycle at various phases could play a unique and important role in the fate and recovery of neuroectoderm cells during early mammalian embryo development. © 1993Wiley-Liss, Inc.  相似文献   

5.
The effects of thermal stress on survival, development and heat shock protein (hsp) expression of green sturgeon (GS) yolk‐sac larvae, from hatching through yolk depletion were investigated to provide insight into effects of highly altered natural river hydrographs. Hatched GS larvae were reared at constant water temperatures 18°C (control) through 28°C at 2°C increments. Larval survival significantly decreased at 26–28°C, with 28°C being lethal. Significant proportions of deformed larvae were found at sub‐lethal (20–26°C) and lethal 28°C rearing temperatures, with kyphosis (i.e. backward flexion of notochord) accounting for >99% of morphological deformities. Histological analysis of larvae preparations indicate that elevated water temperature affects notochord cell function and physiology. At rearing temperatures 20–28°C, thermal stress elicited a quick (24 h) and long lasting (yolk‐sac absorption) significant over‐expression of measured heat shock proteins (hsps), all of which are known components of intracellular protein repair and stabilization mechanism. Thermal sensitivity, as indicated by the incidence of abnormalities and expression of different hsps, varied significantly between crosses. Thermally tolerant progeny exhibited a short but rapid hsp72 (size in kDa) over‐expression, and more pronounced hsp60 and hsp90 over‐expression, than less tolerant progeny which exhibited a prolonged hsp72 and hsp78 over‐expression. At environmentally relevant water temperatures bent larvae exhibited spiral swimming, which in the wild would compromise the ability of emerging larvae to forage, avoid predators, and migrate downstream, ultimately compromising survival and recruitment. Before larvae hsp content can be used as a thermal‐stress biomarker for GS, field validation studies are needed.  相似文献   

6.
The low molecular weight (LMW) heat shock protein (HSP), HSP16.6, in the unicellular cyanobacterium, Synechocystis sp. PCC 6803, protects cells from elevated temperatures. A 95% reduction in the survival of mutant cells with an inactivated hsp16.6 was observed after exposure for 1 h at 47°C. Wild-type cell survival was reduced to only 41%. HSP16.6 is also involved in the development of thermotolerance. After a sublethal heat shock at 43°C for 1 h and subsequent challenge exposure at 49°C for 40 min, mutant cells did not survive, while 64% of wild-type cells survived. Ultrastructural changes in the integrity of thylakoid membranes of heat-shocked mutant cells also are discussed. These results demonstrate an important protective role for HSP16.6 in the protection of cells and, in particular, thylakoid membrane against thermal stress. Received: 14 October 1999 / Accepted: 16 November 1999  相似文献   

7.
Non‐lethal heat‐shock (HS) treatment has previously been shown to induce thermotolerance in soybean (Glycine max cv. Kaohsiung No.8) seedlings. This acquired thermotolerance correlates with the de novo synthesis of heat‐shock proteins (HSPs). Interestingly, we found that ethanol treatments also elicited HS‐like responses in aetiolated soybean seedlings at their normal growth temperature of 28 °C. Northern blot analyses revealed that the expression of HS genes hsp17.5, hsp70 and hsc 70 was induced by ethanol. Radioactive amino acids were preferentially incorporated into high molecular weight (HMW) HSPs rather than class I low molecular weight (LMW) HSPs during non‐lethal ethanol treatments. Immunoblot analysis confirmed that no accumulation of class I LMW HSPs occurred after non‐lethal ethanol treatment. Pre‐treatment with a non‐lethal dose of ethanol did not provide thermotolerance, as the aetiolated soybean seedlings could not survive a subsequent heat shock of 45 °C for 2 h. In contrast, non‐lethal HS pre‐treatment, 40 °C for 2 h, conferred tolerance on aetiolated soybean seedlings to otherwise lethal treatments of 7·5% ethanol for 8 h or 10% ethanol for 4 h. These results suggest that plant class I LMW HSPs may play important roles in providing both thermotolerance and ethanol tolerance.  相似文献   

8.
The mechanism of yeast cell death induced by heat shock was found to be dependent on the intensity of heat exposure. Moderate (45°C) heat shock strongly increased the generation of reactive oxygen species (ROS) and cell death. Pretreatment with cycloheximide (at 30°C) suppressed cell death, but produced no effect on ROS production. The protective effect was absent if cycloheximide was added immediately before heat exposure and the cells were incubated with the drug during the heat treatment and recovery period. The rate of ROS production and protective effect of cycloheximide on viability were significantly decreased in the case of severe (50°C) heat shock. Treatment with cycloheximide at 39°C inhibited the induction of Hsp104 synthesis and suppressed the development of induced thermotolerance to severe shock (50°C), but it had no effect on induced thermotolerance to moderate (45°C) heat shock. At the same time, Hsp104 effectively protected cells from death independently of the intensity of heat exposure. These data indicate that moderate heat shock induced programmed cell death in the yeast cells, and cycloheximide suppressed this process by inhibiting general synthesis of proteins.  相似文献   

9.
10.
When Saccharomyces cerevisiae cells grown at 23 degrees C were transferred to 36 degrees C, they initiated synthesis of heat shock proteins, acquired thermotolerance to a lethal heat treatment given after the temperature shift, and arrested their growth transiently at the G1 phase of the cell division cycle. The bcy1 mutant which resulted in production of cyclic AMP (cAMP)-independent protein kinase did not synthesize the three heat shock proteins hsp72A, hsp72B, and hsp41 after the temperature shift. The bcy1 cells failed to acquire thermotolerance to the lethal heat treatment and were not arrested at the G1 phase after the temperature shift. In contrast, the cyr1-2 mutant, which produced a low level of cAMP, constitutively produced three heat shock proteins and four other proteins without the temperature shift and was resistant to the lethal heat treatment. The results suggest that a decrease in the level of cAMP-dependent protein phosphorylation results in the heat shock response, including elevated synthesis of three heat shock proteins, acquisition of thermotolerance, and transient arrest of the cell cycle.  相似文献   

11.
Intracellular levels of total glutathione and cytosolic superoxide dismutase activity were assayed in cells from Tetrahymena pyriformis either exposed to sub-lethal (34°C) or to lethal heat shock (39°C). The results showed that glutathione levels decrease to 60% of normal values after a sub-lethal heat shock for 1 hour. This change is part of the heat shock response, since the effect is reversed as soon as cells are brought to their normal growing temperature. Using actinomycin D, which blocks the synthesis of high molecular weight hsp (Galego and Rodrigues-Pousada, 1985), prior to thermal stress, the fall in total glutathione is not observed, suggesting a partial correlation with the synthesis of these stress proteins. Using cells pre-exposed to a sub-lethal heat shock, a subsequent short severe heat shock does not lead to a significant decrease of the glutathione content. Superoxide dismutase (SOD) activity is not significantly induced after either a short period at 34°C or a prolonged treatment at the same temperature.  相似文献   

12.
《Insect Biochemistry》1989,19(7):679-686
The evolutionary conservation of the heat shock response suggests that plasmids containing promoters from Drosophila heat shock protein (hsp) genes will be useful in the development of gene transfer procedures for cell lines representing a variety of insect species. Conditions for induction of endogenous hsp genes and for expression of the chloramphenicol acetyltransferase (CAT) gene regulated by the Drosophila hsp 70 promoter were examined in Aedes albopictus (mosquito) cells. Five hsps, ranging in size from 27,000 to 90,000 D, were induced in A. albopictus cells during incubation at 41°C in medium containing [35S]methionine. Relative synthesis of these proteins at 37 and 41°C indicated that Aedes hsp 66 is homologous to Drosophila hsp 70. Detection of CAT activity in transfected mosquito cells was enhanced 10-fold under heat shock conditions (6 h, 41°C) based on maximal expression of hsp 66, relative to conditions defined for expression of hsp 70 in Drosophila cells. Analysis of the endogenous heat shock response may be essential to the optimal use of plasmids containing the Drosophila hsp 70 promoter with other insect cell types.  相似文献   

13.
The present study was conducted (1) to examine the effect of an acute increase in ambient temperature on the development of porcine day 6 embryos in culture and after transfer to recipient gilts, and (2) to analyze intracellular production of heat shock proteins (hsps). The viability of porcine day 6 embryos following a temporary acute elevation in ambient temperature (at 42°–45.5°C and for 10–180 min) was examined. Synthesis of 70 kDa hsp (hsp 70) and 90 kDa hsp (hsp90) was determined by SDS-PAGE and Western blot analysis in porcine day 6 embryos subjected to heat stresses. Nonheat-stressed embryos were considered as control. Significantly higher numbers of viable nuclei were observed in treatment groups of 42°C-10 min (236.6 ± 71.4; P < 0.05) and 43°C-30 min (276.8 ± 89.4; P < 0.005) compared to control (173.9 ± 53.9). The 42°C-180 min group (158.0 ± 27.1 μm) had a greater increase in diameter after 24 hr in culture following heat stress compared to control (82.5 ± 47.3 μm), while heat stress with 43°C for ≧60 min, 44°–44.5°C for ≧30 min, or 45°-45.5°C for ≧10 min impaired their survival, as assessed by differences in number of viable nuclei. The embryos subjected to heat stresses under the conditions of 42°C-180 min, 43°C-10 min, 43°C-30 min, 44°C-10 min, or 45°C-10 min developed to normal piglets after transfer to recipient gilts. Overall pregnancy rate was 75% (6/8), and farrowing rate 62.5% (5/8). Of heat-stressed embryos transferred, 59% (36/61) developed to normal piglets. Heat-stress conditions of 42°C for 180 min, 43°C for 30 min, 44°C for 10 min, and 45°C for 10 min were determined as critical with respect to the in vitro and in vivo survival of porcine embryos. Porcine day 6 embryos constitutively synthesized hsp70 even without heat stress, while hsp90 was detected only at trace level. Neither hsp70 nor hsp90 levels increased in the embryos subjected to heat stresses. In conclusion, porcine day 6 embryos could continue to develop in vivo or during in vitro culture after exposure to acute and temporary rise in temperature. However, no increase of hsp70 and hsp90 was observed in the heat-stressed porcine embryos, while hsp70 was detected in the nonheat-stressed porcine embryos. The precise mechanism of the thermotolerance was unclear. © 1996 Wiley-Liss, Inc.  相似文献   

14.
15.
Aims: The objective was to study the response of Cronobacter sakazakii ATCC 29544 cells to heat, pulsed electric fields (PEF), ultrasound under pressure (Manosonication, MS) and ultraviolet light (UV‐C) treatments after exposure to different sublethal stresses that may be encountered in food‐processing environments. Methods and Results: Cronobacter sakazakii stationary growth‐phase cells (30°C, 24 h) were exposed to acid (pH 4·5, 1 h), alkaline (pH 9·0, 1 h), osmotic (5% NaCl, 1 h), oxidative (0·5 mmol l?1 H2O2, 1 h), heat (47·5°C, 1 h) and cold (4°C, 4 h) stress conditions and subjected to the subsequent challenges: heat (60°C), PEF (25 kV cm?1, 35°C), MS (117 μm, 200 kPa, 35°C) and UV‐C light (88·55 mW cm?2, 25°C) treatments. The inactivation kinetics of Csakazakii by the different technologies did not change after exposure to any of the stresses. The combinations of sublethal stress and lethal treatment that were protective were: heat shock–heat, heat shock–PEF and acid pH–PEF. Conversely, the alkaline shock sensitized the cells to heat and UV‐C treatments, the osmotic shock to heat treatments and the oxidative shock to UV‐C treatments. The maximum adaptive response was observed when heat‐shocked cells were subjected to a heat treatment, increasing the time to inactivate 99·9% of the population by 1·6 times. Conclusions: Cronobacter sakazakii resistance to thermal and nonthermal preservation technologies can increase or decrease as a consequence of previous exposure to stressing conditions. Significance and Impact of the Study: The results help in understanding the physiology of the resistance of this emerging pathogen to traditional and novel preservation technologies.  相似文献   

16.
17.
18.
Bacterial heat shock proteins (hsps) can have various effects on human cells. We investigated whether bacterial hsp60s can protect epithelial cells from cell death by affecting the mitogen-activated protein kinase (MAPK) signal pathways. Cell protection was studied by adding bacterial hsp60s to skin keratinocyte cultures (HaCaT cell line) before UV radiation. The results show that hsp60 significantly protected against UV radiation-induced cell death. Effects of UV radiation and exogenous hsp60 on phosphorylation of MAPKs and on activation of caspase 3 were examined by Western blot analysis. UV radiation strongly induced phosphorylation of p38 MAPK and formation of active caspase 3. A p38 inhibitor, SB 203580, totally blocked UV radiation-mediated activation of caspase 3. Preincubation with hsp60 strongly induced phosphorylation of ERK1/2 and inhibited UV radiation-mediated activation of caspase 3. PD 98059, a specific inhibitor of the ERK1/2 pathway, blocked this inhibitory effect of exogenous hsp60. Studies on the association between activity of MAPKs or caspase 3 and cell death showed that the ERK1/2 pathway inhibitor reversed protective effect of hsp60 while specific inhibition of p38 and caspase 3 reduced cell death. These results indicate that in HaCaT cells UV radiation mediates cell death through activation of p38 followed by caspase 3 activation. Exogenous hsp60 partially protects against UV radiation-mediated epithelial cell death through activation of ERK1/2, which inhibits caspase 3 activation.  相似文献   

19.
Three heat shock protein (HSP) genes (hsp70, hsc70, hsp90) were partially cloned from the brown planthopper Nilaparvata lugens and the small brown planthopper Laodelphax striatellus (Homoptera: Delphacidae), which are serious pests of the rice plant. Sequence comparisons at the deduced amino acid level showed that the three HSPs of planthoppers were most homologous to corresponding HSPs of dipteran and lepi‐dopteran species. Identities of both heat shock cognate 70 and HSP90 were higher than HSP70 in both species. Identity of the HSP70 between the two planthopper species was only 81%, a value much lower than seen among fly and moth groups. Effects of heat and cold shocks were demonstrated on expression of the three hsp genes in the two planthopper species. Heat shock (40 °C) upregulated the hsp90 level but did not change the hsc70 level in either the nymph and adult stages of either species. On the other hand, the hsp70 level was only upregulated in L. striatellus. This heat shock response was prompt and lasted only for 1 h after treatment. In contrast, cold shock at 4°C did not change the expression levels of any hsp in either species.  相似文献   

20.
Aims: To elucidate the potential use of microelectrode ion flux measurements to evaluate bacterial responses to heat treatment. Methods and Results: Escherichia coli K12 was used as a test bacterium to determine whether various heat treatments (55–70°C for 15 min) affected net ion flux across E. coli cell membranes using the MIFE? system to measure net K+ fluxes. No difference in K+ fluxes was observed before and after heat treatments regardless of the magnitude of the treatment. Applying hyperosmotic stress (3% NaCl w/v) during flux measurement led to a net K+ loss from the heat‐treated E. coli cells below 65°C as well as from nonheated cells. In contrast, with E. coli cells treated at and above 65°C, hyperosmotic stress disrupted the pattern of K+ flux observed at lower temperatures and resulted in large flux noise with random scatter. This phenomenon was particularly apparent above 70°C. Although E. coli cells lost the potential to recover and grow at and above 62°C, K+ flux disruption was not clearly observed until 68°C was reached. Conclusions: No changes in net K+ flux from heat‐stressed E. coli cells were observed directly as a result of thermal treatments. However, regardless of the magnitude of heat treatment above 55°C, loss of viability indicated by enrichment culture correlated with disrupted K+ fluxes when previously heated cells were further challenged by imposing hyperosmotic stress during flux measurement. This two‐stage process enabled evaluation of the lethality of heat‐treated bacterial cells within 2 h and may be an alternative and more rapid method to confirm the lethality of heat treatment. Significance and Impact of the Study: The ability to confirm the lethality of thermal treatments and to specify minimal time/temperature combinations by a nonculture‐dependent test offers an alternative system to culture‐based methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号