首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential environmental toxicities of several metal oxide nanoparticles (NPs; CuO, TiO2, NiO, Fe2O3, ZnO, and Co3O4) were evaluated in the context of bioluminescence activity, seed germination, and bacterial gene mutation. The bioassays exhibited different sensitivities, i.e., each kind of NP exhibited a different level of toxicity in each of the bioassays. However, with a few exceptions, CuO and ZnO NPs had most toxic for germination of Lactuca seed (EC50 0.46 mg CuO/l) and bioluminescence (EC50 1.05 mg ZnO/l). Three NPs (Co3O4, TiO2, and Fe2O3) among all tested concentrations (max. 1,000 mg/l) showed no inhibitory effects on the tested organisms, except for Co3O4 NPs on bioluminescence activity (EC50 62.04 mg/l). The sensitivity of Lactuca seeds was greater than that of Raphanus seeds (EC50 0.46 mg CuO/l versus 26.84 mg CuO /l ). The ranking of metal toxicity levels on bioluminescence was in the order of ZnO?>?CuO?>?Co3O4?>?NiO?>?Fe2O3, TiO2, while CuO?>?ZnO?>?NiO?>?Co3O4, Fe2O3, TiO2 on germination. No revertant mutagenic ratio (greater than 2.0) of Salmonella typhimurium TA 98 was observed under any tested condition. These findings demonstrate that several bioassays, as opposed to any single one, are needed for the accurate assessment of NP toxicity on ecosystems.  相似文献   

2.
Antifouling agents with low toxicity are in high demand for sustaining marine industries and the environment. This study aimed to synthesize 15 isothiocyanates derived from β-citronellol and evaluate their antifouling activities and toxicities against cypris larvae of the barnacle Amphibalanus amphitrite. The synthesized isothiocyanates exhibited effective antifouling activities (EC50=0.10–3.33 μg mL−1) with high therapeutic ratios (LC50/EC50 >30). Four isothiocyanates with an amide or isocyano group showed great potential as effective antifouling agents (EC50=0.10–0.32 μg mL−1, LC50/EC50=104–833). The enantiomers of the isothiocyanates only slightly differed in their antifouling activities. These results may serve as a basis for further research and development of β-citronellol-derived isothiocyanates as effective low-toxic antifouling agents. To the best of our knowledge, this study is the first to report the antifouling activities of isothiocyanates derived from accessible natural products.  相似文献   

3.
Herein, we contribute to the development of environmentally friendly antifoulants by synthesizing eighteen isocyanides derived from α,α‐disubstituted amino acids and evaluating their antifouling activity/toxicity against the cypris larvae of the Balanus amphitrite barnacle. Almost all isocyanides showed good antifouling activity without significant toxicity and exhibited EC50 values of 0.07 – 7.30 μg/mL after 120‐h exposure. The lowest EC50 values were observed for valine‐, methionine‐, and phenylalanine‐derived isocyanides, which achieved > 95% cypris larvae settlement inhibition at concentrations of less than 30 μg/mL without exhibiting significant toxicity. Thus, the prepared isocyanides should be useful for further research focused on the development of environmentally friendly antifouling agents.  相似文献   

4.
Twenty novel simple alkyl isocyanides derived from citronellol were synthesized and evaluated for their antifouling activity and toxicity against cypris larvae of the barnacle, Balanus amphitrite. The anti-barnacle activity of the synthesized isocyanides was in the EC50 range of 0.08–1.49 μg ml?1. Simple isocyanides containing a benzoate and chloro group showed the most potent anti-barnacle activity. In addition, none of the synthesized compounds showed significant toxicity and LC50 values were <10 μg ml?1. The LC50/EC50 ratios of almost all of the synthesized compounds were >102. The results indicate that these simple isocyanides are promising low-toxicity antifouling agents.  相似文献   

5.
A methemoglobin (metHb) reduction system is required for aerobic respiration. In humans, Fe(III)-heme-bearing metHb (the oxidized form of hemoglobin), which cannot bind oxygen, is converted to Fe(II)-heme-bearing oxyhemoglobin (oxyHb, the reduced form), which can bind oxygen, in a system comprising NADH, NADH-cytochrome b5 reductase, and cytochrome b5. However, the mechanism of metHb reduction in organisms that inhabit oxygen-deficient environments is unknown. In the coelomic fluid of the larvae of Propsilocerus akamusi, which inhabit a microaerobic environment, we found that metHb was reduced by d-alanine. We purified an FAD-containing enzyme, d-amino acid dehydrogenase (DAD), and component V hemoglobin from the larvae. Using the purified components and spectrophotometric analyses, we showed a novel function of DAD: DAD-mediation of P. akamusi component V metHb reduction with using d-alanine as an electron donor. P. akamusi larvae possess this d-alanine–DAD metHb reduction system in addition to a previously discovered NADH–NADH-cytochrome b5 reductase system. This is the first report of the presence of DAD in a multicellular organism. The molecular mass of DAD was estimated to be 45 kDa. The optimal pH and temperature of the enzyme were 7.4 and 20 °C, respectively, and the optimal substrate was d-alanine. The enzyme activity was inhibited by benzoate and sulfhydryl-binding reagents.  相似文献   

6.
In this study, we screened eight terpenes isolated from the organic extract of Sphaerococcus coronopifolius for their antifouling activity in order to find possible new sources of non-toxic or less toxic bioactive antifoulants. The anti-settlement activity (EC50) and the degree of toxicity (LC50) of S. coronopifolius metabolites was evaluated using larvae of the cirriped crustacean Amphibalanus (Balanus) amphitrite (cyprids and nauplii) as model organism. For five of eight tested metabolites EC50 was lower than 5 mg/L. The most promising results were observed for bromosphaerol (3), which expressed an EC50 value of 0.23 mg/L, in combination with low toxicity levels (LC50 > 100 mg/L). The therapeutic ratio—an index used to estimate whether settlement inhibition is due to toxicity or other mechanisms—is also calculated and discussed.  相似文献   

7.
Ship groundings and ice-breakers can cause pollution of the polar environment with antifouling biocides such as diuron and Irgarol 1051. The present study used pulse amplitude modulated fluorometry to compare single and joint toxicities of diuron and Irgarol 1051 on two freshwater taxa of microalgae (Chlorella and Chlamydomonas) originating from Arctic and temperate regions. 30 min acute toxicity tests using chlorophyll a (Chl a) fluorescence revealed that Arctic strains of microalgae were more sensitive to herbicides than their temperate counterparts. Diuron and Irgarol 1051 had equal toxicities in the Arctic species, while Irgarol 1051 was more toxic (EC50 = 5.55–14.70 μg L−1) than diuron (EC50 = 12.90–>40 μg L−1) in the temperate species. Toxicity assessment of various mixtures of diuron and Irgarol 1051 revealed antagonistic, additive, and synergistic effects. Our data suggest that herbicides can adversely affect photosynthesis in Arctic microalgae at relatively low levels, and their impact can increase under complex mixture conditions.  相似文献   

8.
《Process Biochemistry》2004,39(6):737-748
This study provides a first attempt from a toxicological perspective to put forward, in general terms and explanations, the toxicity series of Cd(II), Cu(II) and Zn(II) to Thiobacillus thiooxidans BC1. Sulphur oxidation and sulphuric acid production are strongly related to microbial growth at pH less than 4. Dose–response analysis on chronic and acute toxicity (e.g. EC20, median effective dose EC50 and slope factor B) of divalent cadmium, copper and zinc cations suggests a toxicity series of Cu>Cd>>Zn to T. thiooxidans BC1. Zn(II) is termed non-toxic and the maximum treatment concentrations of Cd(II) and Cu(II) are approximately 300, 400 mg/l, respectively. This assessment clearly indicates viable operation ranges of metal bioleaching for mine wastewater treatment, suggesting a technological feasibility of biotreatment using acidophilic thiobacilli T. thiooxidans BC1.  相似文献   

9.
Chironomids are a globally distributed family of insects that can serve as biological indicators of environmental pollution. Substituted benzenes are a group of serious environmental pollutants and severely threaten biological and human health. In order to investigate potential stress biomarkers of substituted benzenes, the effects of 4-chlorophenol and p-phenylene diamine on superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), carboxylesterase (CarE), acid phosphatase (ACP) and alkaline phosphatase (ALP) activities of 4th-instar larval Propsilocerus akamusi were investigated. During 48 h exposure to 4-chlorophenol and p-phenylene diamine, the larval CAT, SOD, GST and CarE activities responded to 4-chlorophenol and p-phenylene diamine in a concentration-and time-dependent way. The ACP and ALP activities of larval P. akamusi responded slowly to 4-chlorophenol and p-phenylene diamine, and only the ALP activities were inhibited significantly under the exposure to p-phenylene diamine for 6 and 24 h. These results suggest that CAT, SOD, GST and CarE activities of chironomids can be used as potential stress biomarkers to monitor 4-chlorophenol and p-phenylene diamine pollution.  相似文献   

10.
Tolerance to desiccation was compared among 12 Japanese species of chironomid larvae under the condition of 60% in relative humidity at 25.5?°C. Three parameters were assessed: time to 50% survival (T 50), water loss at 50% survival (WL50) and water loss rate (WLR). T 50, WL50 and WLR were determined as measures of desiccation tolerance, dehydration tolerance, and dehydration resistance, respectively. T 50 was 64.4–142 min for most species, except Propsilocerus akamusi (Tokunaga) which took 872 min. WL50 was 60.6–82.4% for all species. WLR was only 0.0664% per minute for Pr. akamusi, while it was 0.629–1.50% for the other species. These results showed that Pr. akamusi had a high desiccation tolerance due to a high preventive ability of evaporation from body surface. T 50 showed no significant relationships to WL50 or WLR among the 12 species, while there was a significant positive relationship between WL50 and WLR. These results suggest that chironomid species have a trade-off tendency that a species has a high tolerance – low resistance or a high resistance – low tolerance for dehydration.  相似文献   

11.
The single and joint toxicity effects of Cu, Cr(III), and Cr(VI) on the root elongation of pakchoi in solution and soil were investigated. The median effective concentration (EC50) was determined to examine the toxic thresholds of the test elements. The results showed that individual contamination by Cu, Cr(III), or Cr(VI) can inhibit the root elongation of pakchoi. The EC50 values of the test elements were 2.02 mg/L and 195.8 mg/kg, 62.2 mg/L and 1,773 mg/kg, and 6.88 mg/L and 8.08 mg/kg in solution and soil, respectively. Toxic unit (TU) was introduced to determine the outcome in combined tests, and different behaviors were observed in both solution and soil. The coexistence of Cu and Cr(III) in solution exhibited an antagonistic effect (EC50mix = 1.76 TUmix), whereas a synergistic effect was observed in soil (EC50mix = 0.76 TUmix). In contrast, combined Cu–Cr(VI) showed a less than additive toxicity both in solution and soil, with EC50mix values of 3.31 and 1.24 TUmix. In conclusion, the coexistence of toxicity in Cu–Cr(III) and Cu–Cr(VI) differs from the toxicity exhibited individually by Cu, Cr(III), and Cr(VI). Heavy metal interaction also changes depending on the medium.  相似文献   

12.
A series of N2,N4-disubstituted-1,1,3-trioxo-2H,4H-pyrrolo[1,2-b][1,2,4,6]thiatriazine derivatives (PTTDs) was designed and synthesized by a facile route. The biological assay results showed that five most potent compounds displayed inhibitory activity against HIV-1 at low micromolar concentrations (EC50 = 5.1–8.9 μM). Structure–activity relationship analysis indicated that N2-(3-halogenated-benzyl) analogues were more potent than N2-(unsubstituted-benzyl) analogues. The N4-substitutions contributed to the antiviral activity in the following order: 2-/3-cyano substituted benzyl > 2-/3-halogenated benzyl > non-substituted benzyl > 4-halogenated benzyl. Docking studies of the representative compound revealed the binding conformation of these compounds and provided critical insights for the further development of PTTD analogues.  相似文献   

13.
From soil samples of different origin (field, grassland and forest soils) small numbers ofNocardin andPseudomonas spec., able to utilize benzene and phenol could be isolated. Organisms which could only utilize phenol and phenolcarboxylic acids were more numerous and consisted mainly ofArthrobacter spec. It was tested to what extent these organisms could also utilize chlorinated aromatic and cyclohexane derivatives. For the degradation studies the bacteria were precultivated on benzene or p-hydroxybenzoic acid and then the compounds used were added. These compounds were labeled by14C and their degradation rates determined by measuring the14CO2 release.Pseudomonas andNocardia spec. precultivated on benzene could also degrade the chlorinated derivatives of benzene and phenol. The monochlorinated derivates were degraded more easily than the di- and trichlorinated derivates. The chlorinated benzenes, especially in higher concentrations, were less degraded than the chlorinated phenols, but with lower concentrations their degradation rates were about similar. This was due to a higher toxicity of the benzenes. The phenol utilizingArthrobacter spec. were only able to degrade phenol and the chlorinated phenols. Benzoic and m-chlorobenzoic acid were degraded to CO2 by thePseudomonas andNocardia spec. only. The benzene utilizing pseudomonads released more CO2 from γ-pentachlorocyclohexane than from γ-hexachlorocyclohexane, but none from cyclehexane. Upon precultivation of benzene utilizing pseudomonads in glucose, the aromatic compounds were also degraded, but especially the chlorinated derivatives to a lower extent. In comparison with these soil organisms in pure culture, experiments with soil samples showed a degradation of all compounds which were used by the isolated organisms after variable induction periods. Cyclohexane was degraded slowly to CO2 by the mixed soil flora in contrast to the benzene or phenol utilizing pure cultures.  相似文献   

14.
The design and synthesis of dual aromatase inhibitors/selective estrogen receptor modulators (AI/SERMs) is an attractive strategy for the discovery of new breast cancer therapeutic agents. Previous efforts led to the preparation of norendoxifen (4) derivatives with dual aromatase inhibitory activity and estrogen receptor binding activity. In the present study, some of the structural features of the potent AI letrozole were incorporated into the lead compound (norendoxifen) to afford a series of new dual AI/SERM agents based on a symmetrical diphenylmethylene substructure that eliminates the problem of E,Z isomerization encountered with norendoxifen-based AI/SERMs. Compound 12d had good aromatase inhibitory activity (IC50 = 62.2 nM) while also exhibiting good binding activity to both ER-α (EC50 = 72.1 nM) and ER-β (EC50 = 70.8 nM). In addition, a new synthesis was devised for the preparation of norendoxifen and its analogues through a bis-Suzuki coupling strategy.  相似文献   

15.
Abstract: Rocaglamide, a highly substituted benzofuran, was isolated and identified as the main biologically active component in Aglaia elaeagnoidea (syn. A. roxburghiana) for gram pod borer Helicoverpa armigera (Hübner). Addition of rocaglamide to an artificial diet retarded the growth of neonate larvae in a dose‐dependent manner with EC50 values of 0.76 p.p.m. These values compared favourably with azadirachtin (EC50 = 0.23 p.p.m.). However, azadirachtin was apparently more potent than rocaglamide in inducing growth inhibition via oral administration to these first stadium larvae. The candidate compound was found to have LD50 and LD95 values of 0.40 and 1.02 μg per larva, respectively, in topical application against third instar larvae 96 h post‐treatment. However, these values for azadirachtin were 8.16 and 25.8 μg per larva for the same period. This shows that azadirachtin was less effective against third instar H. armigera larvae in inducing acute toxicity via topical treatment in comparison with rocaglamide. However, severe morphological larval deformities were observed in such azadirachtin‐treated larvae during the process of ecdysis. The cytotoxic nature of rocaglamide was established by evaluating dietary utilization and the results did not implicate any antifeedant effect but the toxicity‐mediated effect due to reduced efficiency of conversion of ingested food. It was obvious that feeding deterrence is not the primary mode of action but a centrally mediated effect, which could be due to the induced cytotoxicity at non‐specific cellular levels.  相似文献   

16.
Three oligosporogenic mutants of Bacillus thuringiensis were assayed for toxicity against larvae of the Indian meal moth, Plodia interpunctella, and the almond moth, Ephestia cautella. The results were compared with insecticidal activity obtained from the parent strain (HD-1) and two standard B. thuringiensis formulations (HD-1-S-1971 and HD-1-S-1980) against the same insect species. The toxicity of the sporeless mutant preparations was significantly diminished against the Indian meal moth (10- to 26-fold increase in LC50) but exceeded the toxicity of the standards against the almond moth. The toxicities of the B. thuringiensis preparations toward the Indian meal moth were consistent with the number of spores in the test samples, but spores did not contribute to toxicity to E. cautella larvae. A rationale for basing dosage on soluble protein was demonstrated for use in situations where spores are not a contributing factor in toxicity.  相似文献   

17.
Chagas disease is a neglected pathology responsible for about 12,000 deaths every year across Latin America. Although six million people are infected by the Trypanosoma cruzi, current therapeutic options are limited, highlighting the need for new drugs. Here we report the preliminary structure activity relationships of a small library of 17 novel pyridyl sulfonamide derivatives. Analogues 4 and 15 displayed significant potency against intracellular amastigotes with EC50 of 5.4?µM and 8.6?µM. In cytotoxicity assays using mice fibroblast L929 cell lines, both compounds indicated low toxicity with decent selectivity indices (SI) >36 and?>23 respectively. Hence these compounds represent good starting points for further lead optimization.  相似文献   

18.
The acute toxicities of common organic solvents (e.g., methanol, ethanol, isopropanol, acetone, acetonitrile, and dimethylformamide) were evaluated using a biosensor based on microalgal photosynthesis measurement. The biosensor was air-tight, with no headspace, preventing volatile organic toxicants from escaping into the environment as well as partitioning from the aqueous phase into the headspace until equilibrium was reached. Both the incubating and exposure times were set at 10 min. It was observed that only 2 h was needed to obtain complete dose-related inhibition of photosynthetic activity. The results showed that all the tested organic solvents inhibited algal photosynthesis with EC50 ranging between 589 and 2,570 mM. The inhibition of these solvents was in the order: isopropanol > acetone > acetonitrile > ethanol > dimethylformamide > methanol. The quantitative structure-activity relationship (QSAR) between toxicity data and partition coefficient of the examined compounds could be modeled as follows: ${\text{log}}_{{10}} {\text{EC}}_{{50}} \;{\left( {\mu {\text{M}}} \right)} = - 0.6428\;{\text{log}}\;P + 5.76\;{\left( {{\text{R}}^{2} \approx 0.88} \right)}The acute toxicities of common organic solvents (e.g., methanol, ethanol, isopropanol, acetone, acetonitrile, and dimethylformamide) were evaluated using a biosensor based on microalgal photosynthesis measurement. The biosensor was air-tight, with no headspace, preventing volatile organic toxicants from escaping into the environment as well as partitioning from the aqueous phase into the headspace until equilibrium was reached. Both the incubating and exposure times were set at 10 min. It was observed that only 2 h was needed to obtain complete dose-related inhibition of photosynthetic activity. The results showed that all the tested organic solvents inhibited algal photosynthesis with EC50 ranging between 589 and 2,570 mM. The inhibition of these solvents was in the order: isopropanol > acetone > acetonitrile > ethanol > dimethylformamide > methanol. The quantitative structure-activity relationship (QSAR) between toxicity data and partition coefficient of the examined compounds could be modeled as follows: \textlog10 \textEC50   ( m\textM ) = - 0.6428  \textlog  P + 5.76  ( \textR2 ? 0.88 ){\text{log}}_{{10}} {\text{EC}}_{{50}} \;{\left( {\mu {\text{M}}} \right)} = - 0.6428\;{\text{log}}\;P + 5.76\;{\left( {{\text{R}}^{2} \approx 0.88} \right)}. This indicates that the photosynthetic activity of the microalga Pseudokirchneriella subcapitata is highly dependent on the hydrophobicity of these commonly used organic solvents.  相似文献   

19.
A novel unusual pentacyclic hemiacetal sterol nephthoacetal (1), was isolated from soft coral Nephthea sp. The structure of this sterol was inferred from its two acetyl derivatives (2) and (3), by means of spectroscopic methods, and quantum chemical calculations. Anti-fouling activity of compounds 13 against Bugula neritina larvae was evaluated, sterol (1) exhibited significant inhibitory effect with EC50 value of 2.5 μg/mL, while having low toxicity with LC50 >25.0 μg/mL. The in vitro cytotoxic activity of compounds 13 against HeLa cells was also evaluated, all of them exhibited moderate cytotoxicity with IC50 values of 12.3 (1), 10.1 (2), and 19.6 μg/mL (3), respectively.  相似文献   

20.
We synthesized new tropolone derivatives substituted with cyclic amines: piperidine, piperazine or pyrrolidine. The most active anti-helicase compound (IC50 = 3.4 μM), 3,5,7-tri[(4′-methylpiperazin-1′-yl)methyl]tropolone (2), inhibited RNA replication by 50% at 46.9 μM (EC50) and exhibited the lowest cytotoxicity (CC50) >1 mM resulting in a selectivity index (SI = CC50/EC50) >21. The most efficient replication inhibitor, 3,5,7-tri[(4′-methylpiperidin-1′-yl)methyl]tropolone (6), inhibited RNA replication with an EC50 of 32.0 μM and a SI value of 17.4, whereas 3,5,7-tri[(3′-methylpiperidin-1′-yl)methyl]tropolone (7) exhibited a slightly lower activity with an EC50 of 35.6 μM and a SI of 9.8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号