首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Behavior of fascicles and tendinous structures of human gastrocnemius medialis (MG) was determined by use of ultrasonography in vivo during jumping. Eight male subjects jumped vertically without countermovement (squat jump, SQJ). Simultaneously, kinematics, kinetics, and electromyography from lower leg muscles were recorded during SQJ. During phase I (-350 to -100 ms before toe-off), muscle-tendon complex (MTC) length was almost constant. Fascicles, however, shortened by 26%, and tendinous structures were stretched by 6%, storing elastic energy of 4.9 J during phase I. During phase II (-100 ms to toe-off), although fascicles generated force quasi-isometrically, MTC shortened rapidly by 5.3%, releasing prestored elastic energy with a higher peak positive power than that of fascicles. Also, the compliance of tendinous structures in vivo was somewhat higher than that of external tendon used in the simulation studies. The results demonstrate that the compliance of tendinous structures, together with no yielding of muscle fibers, allows MTC to effectively generate relatively large power at a high joint angular velocity region during the last part of push-off.  相似文献   

2.
Behavior of fascicles and tendinous structures of the m. gastrocnemius medialis (MG) was quantitatively examined during human jumping in vivo. Eight male subjects performed maximal-effort counter movement jumping (CMJ) motions. Kinematic and kinetic data were obtained using a high-speed camera and a force platform. Behavior of fascicles and tendinous structures was determined using ultrasonography and electromyography. Although the muscle-tendon complex (MTC) shortened by only 1.6% during the downward phase of the counter movement, fascicles shortened as much as 10.4%. This shortening of fascicles caused elongation of tendinous structures by 2.2%. Although the MTC remained at almost constant length during the upward-I phase (-250 to -100 ms before toe-off), fascicles shortened by 19.2% of the initial length with an elongation of tendinous structures by 4.4%. The MTC shortened rapidly by 5.3% of the initial length during the upward-II phase (-100 to 0 ms), whereas fascicles shortened slightly during the first half of this phase and contracted in a quasi-isometric manner during the latter half of this phase. These findings implied that elastic energy was stored in tendinous structures throughout the latter half of the downward phase (1.0 J) and upward-I phase (5.6 J), which was thereafter rapidly released during the upward-II phase (3.8 J). It was found that muscle fibers of the MG were not stretched during counter movement; therefore, stretch reflex and potentiation of the contractile component of the MG might not contribute to the work enhancement in CMJ. It was suggested that the interaction between fascicles and tendinous structures was essential in a generation of higher joint power during the late push-off phase. This behavior of the MTC of the MG in CMJ was quite similar to what was observed in squat jumping performed without counter movement.  相似文献   

3.
Characteristics of the entire series elastic component and of tendinous structures separately (tendon and aponeurosis) were compared for rat EDL muscle-tendon complex during isometric contractions, to study the contribution of tendinous structures to series elastic component characteristics. Compliance of series elastic component was measured using quick length decreases during the force plateau of isometric contractions. Lengths of tendinous structures were measured using macro-photographs during passive and active muscle conditions. Length data obtained from aponeurosis showed inconsistency with respect to elastic behaviour in two ways: the difference of aponeurosis length in active muscle at short length and at optimum length exceeded the extension of series elastic component for the same force range. Furthermore, aponeurosis in passive muscle at optimum length was considerably longer than in active muscle at short length, despite the fact that muscle force in the former condition is smaller than in the latter. It is concluded that aponeurosis length does not depend exclusively on force but is also muscle length-dependent. This muscle length dependence was not found for tendon of EDL. Additional experiments showed that series elastic component compliance does not depend on muscle length. It is concluded that muscle length-dependent changes of aponeurosis length-force characteristics involve shifts of its force length curve to other aponeurosis lengths.  相似文献   

4.
Muscle fascicle lengths of vastus lateralis (VL) muscle were measured in five healthy men during slow pedaling to investigate the interaction between muscle fibers and tendon. Subjects cycled at a pedaling rate of 40 rpm (98 W). During exercise, fascicle lengths changed from 91 +/- 7 (SE) to 127 +/- 5 mm. It was suggested that fascicles were on the descending limb of their force-length relationship. The average shortening velocity of fascicle was greater than that of muscle-tendon complex in the first half of the knee extension phase and was less in the second half. The maximum shortening velocity of fascicle in the knee extension phase was less than that of muscle-tendon complex by 22 +/- 9%. These discrepancies in velocities were mainly caused by the elongation of the tendinous tissue. It was suggested that the elasticity of VL tendinous tissue enabled VL fascicles to develop force at closer length to their optimal length and kept the maximum shortening velocity of VL fascicles low during slow pedaling.  相似文献   

5.
Isokinetic plantar flexion: experimental results and model calculations   总被引:1,自引:0,他引:1  
In isokinetic experiments on human subjects, conducted to determine moments that can be exerted about a joint at different angular velocities, joint rotation starts as soon as the moment increases above the resting level. This contraction history differs from the one in experiments on isolated muscle, where the force is allowed to increase to an isometric level before shortening is initiated. The purpose of the present study was to determine the influence of contraction history on plantar flexing moments found during maximal voluntary plantar flexion on an isokinetic dynamometer. In ten subjects, plantar flexing moments were measured as a function of ankle angle at different angular velocities. They were also calculated using a model of the muscle-tendon complex of the human triceps surae. The model incorporates elastic tendinous tissue in series with muscle fibers. The input of the model consists of time histories of active state (the force generating capacity of contractile elements) and shortening velocity of the muscle-tendon complex. Different time courses of active state were offered at fixed length of the muscle-tendon complex. The time course yielding a close match between the calculated rise of plantar flexing moment and the rise measured during fixed angle contractions was used to calculate moment-angle curves for isokinetic plantar flexion. The active state value reached when a peak occurred in calculated moment-angle curves was found to be lower if the angular velocity was made higher. Comparing measured and calculated results, it was concluded that moment-angular velocity diagrams determined in studies of isokinetic plantar flexion in human subjects reflect not only the influence of shortening velocity of contractile elements on the force which can be produced by plantar flexors.  相似文献   

6.
To determine the shortening velocities of fascicles of the vastus lateralis muscle (VL) during isokinetic knee extension, six male subjects were requested to extend the knee with maximal effort at angular velocities of 30 and 150 degrees /s. By using an ultrasonic apparatus, longitudinal images of the VL were produced every 30 ms during knee extension, and the fascicle length and angle of pennation were obtained from these images. The shortening fascicle length with extension of the knee (from 98 to 13 degrees of knee angle; full extension = 0 degrees ) was greater (43 mm) at 30 degrees /s than at 150 degrees /s (35 mm). Even when the angular velocity remained constant during the isokinetic range of motion, the fascicle velocity was found to change from 39 to 77 mm/s at 150 degrees /s and from 6 to 19 mm/s at 30 degrees /s. The force exerted by a fascicle changed with the length of the fascicle at changing angular velocities. The peak values of fascicle force and velocity were observed at approximately 90 mm of fascicle length. In conclusion, even if the angular velocity of knee extension is kept constant, the shortening velocity of a fascicle is dependent on the force applied to the muscle-tendon complex, and the phenomenon is considered to be caused mainly by the elongation of the elastic element (tendinous tissue).  相似文献   

7.
The contribution of muscle in-series compliance on maximum performance of the muscle tendon complex was investigated using a forward dynamic computer simulation. The model of the human body contains 8 Hill-type muscles of the lower extremities. Muscle activation is optimized as a function of time, so that maximum drop jump height is achieved by the model. It is shown that the muscle series elastic energy stored in the downward phase provides a considerable contribution (32%) to the total muscle energy in the push-off phase. Furthermore, by the return of stored elastic energy all muscle contractile elements can reduce their shortening velocity up to 63% during push-off to develop a higher force due to their force velocity properties. The additional stretch taken up by the muscle series elastic element allows only m. rectus femoris to work closer to its optimal length, due to its force length properties. Therefore the contribution of the series elastic element to muscle performance in maximum height drop jumping is to store and return energy, and at the same time to increase the force producing ability of the contractile elements during push-off.  相似文献   

8.
In this study we investigated the time course of length and velocity of muscle fascicles and tendinous tissues (TT) during isometric twitch contraction, and examined how their interaction relates to the time course of external torque and muscle fascicle force generation. From seven males, supra-maximal twitch contractions (singlet) of the tibialis anterior muscle were induced at 30 degrees , 10 degrees and -10 degrees plantar flexed positions. The length and velocity of fascicles and TT were determined from a series of their transverse ultrasound images. The maximal external torque appeared when the shortening velocity of fascicles was zero. The fascicle and TT length, and external torque showed a 10-30 ms delay of each onset, with a significant difference in half relaxation times at -10 degrees . The time course of TT elongation, and fascicle and tendinous velocities did not differ between joint angles. Curvilinear length-force properties, whose slope of quasi-linear part was ranged from -15.0 to -5.9 N/mm for fascicles and 5.4 to 14.3N/mm for TT, and a loop-like pattern of velocity-force properties, in which the mean power was ranged from 0.14 to 0.80 W for fascicles, and 0.14 to 0.81 W for TT were also observed. These results were attributed to the muscle-tendon interaction, depending on the slack and non-linearity of length-force relationship of compliant TT. We conclude that the mechanical interaction between fascicles and TT, are significant determinants of twitch force and time characteristics.  相似文献   

9.
Control of bipedal standing is typically analyzed in the context of a single-segment inverted pendulum model. The stiffness K (SE) of the series elastic element that transmits the force generated by the contractile elements of the ankle plantarflexors to the skeletal system has been reported to be smaller in magnitude than the destabilizing gravitational stiffness K ( g ). In this study, we assess, in case K (SE) + K ( g ) < 0, if bipedal standing can be locally stable under direct feedback of contractile element length, contractile element velocity (both sensed by muscle spindles) and muscle force (sensed by Golgi tendon organs) to alpha-motoneuron activity. A theoretical analysis reveals that even though positive feedback of force may increase the stiffness of the muscle-tendon complex to values well over the destabilizing gravitational stiffness, dynamic instability makes it impossible to obtain locally stable standing under the conditions assumed.  相似文献   

10.
The interaction between fascicle and tendinous tissues (TT) in short-contact drop jumps (DJ) with three different drop heights [low (Low), optimal (OP), and high (High)] was examined with 11 subjects. The ground reaction force (F(z)) and ankle and knee joint angles were measured together with real-time ultrasonography (fascicle length) and electromyographic activities of the medial gastrocnemius (MG) and vastus lateralis (VL) muscles during the movement. With increasing drop height, the braking force and flight time increased from Low to OP (P < 0.05). In High, the braking force increased but the flight time decreased compared with OP (P < 0.05). During contact of Low and OP conditions, the length of muscle-tendon unit and TT underwent lengthening before shortening in both MG and VL muscles. However, the two muscles differed in the fascicle behaviors. The MG fascicles behaved isometrically or shortened, and the VL fascicles underwent lengthening before shortening during contact. In High, the TT lengthening in both muscles decreased compared with OP (P < 0.05). The rapid stretch occurred in the MG fascicles but not in VL fascicles during the braking phase. The elastic recoil ratio decreased in both muscles with increasing the intensity during DJ. These findings demonstrated that TT underwent lengthening before shortening during DJ. However, the efficacy of elastic recoil decreased with increasing the drop intensity. The effective catapult action in TT can be limited by the drop intensity. In addition, the measured muscles behaved differently during DJ, providing evidence that each muscle may have a specific means of fascicle-TT interaction.  相似文献   

11.
The purposes of this study were: (a) to quantify the influence of passive ankle and knee joint angular displacement on the estimated mechanical and architectural properties of the gastrocnemius medialis (GM) muscle-tendon unit, and (b) to determine the strain distribution of separate structures (tendon, aponeurosis and fascicle) during passive lengthening of the GM muscle-tendon unit at rest. Ten male subjects participated in the study. The passive ankle and knee joint movements were performed on an isokinetic dynamometer. The kinematics of the left leg were recorded using the Vicon 624 system with 8 cameras. Two ultrasound probes were used to examine the elongation of the tendon, the aponeurosis, the fascicles and the angle of pennation of the GM. To calculate the elongation of the GM muscle-tendon unit the Achilles tendon path was reconstructed using a series of small reflective markers. The results show that the passive ankle joint angular displacement has a considerable influence on the elongation of the tendinous and architectural structures of the GM muscle-tendon unit. In contrast, the influence of knee joint angular displacement on the GM fascicle length and pennation angle becomes relevant only at knee angles greater than 144 degrees . The contribution of the tendon to the elongation of the GM muscle-tendon unit at rest is relevant because of its greater resting length in comparison to the resting length of the GM fascicles. The results indicate the existence of slackness in the inactive GM muscle-tendon unit between 121 degrees and 107 degrees ankle angle and between 65 degrees and 144 degrees knee angle.  相似文献   

12.
Ultrasound imaging has recently been used to distinguish the length changes of muscle fascicles from those of the whole muscle tendon complex during real life movements. The complicated three-dimensional architecture of pennate muscles can however cause heterogeneity in the length changes along the length of a muscle. Here we use ultrasonography to examine muscle fascicle length and pennation angle changes at proximal, distal and midbelly sites of the human gastrocnemius medialis (GM) muscle during walking (4.5 km/h) and running (7.5 km/h) on a treadmill. The results of this study have shown that muscle fascicles perform the same actions along the length of the human GM muscle during locomotion. However the distal fascicles tend to shorten more and act at greater pennation angles than the more proximal fascicles. Muscle fascicles acted relatively isometrically during the stance phase during walking, however during running the fascicles shortened throughout the stance phase, which corresponded to an increase in the strain of the series elastic elements (SEEs) (consisting of the Achilles tendon and aponeurosis). Measurement of the fascicle length changes at the midbelly level provided a good approximation of the average fascicle length changes across the length of the muscle. The compliance of the SEE allows the muscle fascicles to shorten at a much slower speed, more concomitant with their optimal speed for maximal power output and efficiency, with high velocity shortening during take off in both walking and running achieved by recoil of the SEE.  相似文献   

13.
The present study was designed to explore how the interaction between the fascicles and tendinous tissues is involved in storage and utilization of elastic energy during human walking. Eight male subjects walked with a natural cadence (1.4 +/- 0.1 m/s) on a 10-m-long force plate system. In vivo techniques were employed to record the Achilles tendon force and to scan real-time fascicle lengths for two muscles (medial gastrocnemius and soleus). The results showed that tendinous tissues of both medial gastrocnemius and soleus muscles lengthened slowly throughout the single-stance phase and then recoiled rapidly close to the end of the ground contact. However, the fascicle length changes demonstrated different patterns and amplitudes between two muscles. The medial gastrocnemius fascicles were stretched during the early single-stance phase and then remained isometrically during the late-stance phase. In contrast, the soleus fascicles were lengthened until the end of the single-stance phase. These findings suggest that the elastic recoil takes place not as a spring-like bouncing but as a catapult action in natural human walking. The interaction between the muscle fascicles and tendinous tissues plays an important role in the process of release of elastic energy, although the leg muscles, which are commonly accepted as synergists, do not have similar mechanical behavior of fascicles in this catapult action.  相似文献   

14.
In typical muscle models, it is often assumed that the contractile element (fascicle) length depends exclusively on the instantaneous muscle-tendon length and the instantaneous muscle force. In order to test whether the instantaneous fascicle length during dynamic contractions can be predicted from muscle-tendon length and force, fascicle lengths, muscle-tendon lengths, and muscle forces were directly measured in cat medial gastrocnemii during isometric and dynamic contractions. Two theoretical muscle models were developed: model A was based on force-time data obtained during the activation phase and model D on force-time data obtained during the deactivation phase of isometric contractions. To test the models, instantaneous fascicle lengths were predicted from muscle-tendon lengths and forces during dynamic contractions that simulated cat locomotion for speeds ranging from 0.4 to 1.6m/s. The theoretically predicted fascicle lengths were compared with the experimentally measured fascicle lengths. It was found that fascicle lengths were not uniquely associated with muscle-tendon lengths and forces; that is, for a given muscle-tendon length and force, fascicle lengths varied depending on the contractile history. Consequently, models A and D differed in fascicle length predictions; model D (maximum average error=8.5%) was considerably better than model A (maximum average error=22.3%). We conclude from this study that it is not possible to predict the exact fascicle lengths from muscle-tendon lengths and forces alone, however, adequate predictions seem possible based on such a model. The relationship between fascicle length and muscle force and muscle-tendon length is complex and highly non-linear, thus, it appears unlikely that accurate fascicle length predictions can be made without some reference contractions in which fascicle length, muscle-tendon length, and force are measured simultaneously.  相似文献   

15.
The aim of the present study was to investigate the behavior of human muscle fascicles during dynamic contractions. Eight subjects performed maximal isometric dorsiflexion contractions at six ankle joint angles and maximal isokinetic concentric and eccentric contractions at five angular velocities. Tibialis anterior muscle architecture was measured in vivo by use of B-mode ultrasonography. During maximal isometric contraction, fascicle length was shorter and pennation angle larger compared with values at rest (P < 0.01). During isokinetic concentric contractions from 0 to 4.36 rad/s, fascicle length measured at a constant ankle joint angle increased curvilinearly from 49.5 to 69.7 mm (41%; P < 0.01), whereas pennation angle decreased curvilinearly from 14.8 to 9.8 degrees (34%; P < 0.01). During eccentric muscle actions, fascicles contracted quasi-isometrically, independent of angular velocity. The behavior of muscle fascicles during shortening contractions was believed to reflect the degree of stretch applied to the series elastic component, which decreases with increasing contraction velocity. The quasi-isometric behavior of fascicles during eccentric muscle actions suggests that the series elastic component acts as a mechanical buffer during active lengthening.  相似文献   

16.
The present study was designed to examine fascicle-tendon interaction in the synergistic medial gastrocnemius (MG) and soleus (Sol) muscles during drop jumps (DJ) performed from different drop heights (DH). Eight subjects performed unilateral DJ with maximal rebounds on a sledge apparatus from different DH. During the exercises, fascicle lengths (using ultrasonography) and electromyographic activities were recorded. The results showed that the fascicles of the MG and Sol muscles behaved differently during the contact phase, but the whole muscle-tendon unit and its tendinous tissue lengthened before shortening in both muscles. The Sol fascicles also lengthened before shortening during the ground contact in all conditions. During the braking phase, the Sol activation increased with increasing DH. However, the amplitude of Sol fascicle lengthening was not dependent on DH during the same phase. In the MG muscle, the fascicles primarily shortened during the braking phase in the lower DH condition. However, in the higher DH conditions, the MG fascicles either behaved isometrically or were lengthened during the braking phase. These results suggest that the fascicles of synergistic muscles (MG and Sol) can behave differently during DJ and that, with increasing DH, there may be specific length change patterns of the fascicles of MG but not of Sol.  相似文献   

17.
The present study investigated the differences between the human medial gastrocnemius (MG) and soleus (SOL) muscles in length changes of muscle fascicles and tendinous tissues during twitch contraction induced by an electrical nerve stimulus. Also, the time-course characteristics of twitch torque were related with changes in the length of muscle fascicles and tendinous tissues. No significant difference was observed between MG and SOL in contraction and half relaxation times of the changes in lengths and velocities of both muscle fascicles and tendinous tissues. The time-course of changes in twitch torque was nearly identical to that of the length of muscle fascicles and tendinous tissues. It was suggested that the behavior of MG and SOL during twitch contraction is practically similar in spite of their known physiological and architectural differences, and that the time-course of twitch torque is greatly influenced by the changes in the length of muscle fascicles and tendinous tissues.  相似文献   

18.
Contractile force is transmitted to the skeleton through tendons and aponeuroses, and, although it is appreciated that the mechanocharacteristics of these tissues play an important role for movement performance with respect to energy storage, the association between tendon mechanical properties and the contractile muscle output during high-force movement tasks remains elusive. The purpose of the study was to investigate the relation between the mechanical properties of the connective tissue and muscle performance in maximal isometric and dynamic muscle actions. Sixteen trained men participated in the study. The mechanical properties of the vastus lateralis tendon-aponeurosis complex were assessed by ultrasonography. Maximal isometric knee extensor force and rate of torque development (RTD) were determined. Dynamic performance was assessed by maximal squat jumps and countermovement jumps on a force plate. From the vertical ground reaction force, maximal jump height, jump power, and force-/velocity-related determinants of jump performance were obtained. RTD was positively related to the stiffness of the tendinous structures (r = 0.55, P < 0.05), indicating that tendon mechanical properties may account for up to 30% of the variance in RTD. A correlation was observed between stiffness and maximal jump height in squat jumps and countermovement jumps (r = 0.64, P < 0.05 and r = 0.55, P < 0.05). Power, force, and velocity parameters obtained during the jumps were significantly correlated to tendon stiffness. These data indicate that muscle output in high-force isometric and dynamic muscle actions is positively related to the stiffness of the tendinous structures, possibly by means of a more effective force transmission from the contractile elements to the bone.  相似文献   

19.
Load-strain characteristics of tendinous tissues (Achilles tendon and aponeurosis) were determined in vivo for human medial gastrocnemius (MG) muscle. Seven male subjects exerted isometric plantar flexion torque while the elongation of tendinous tissues of MG was determined from the tendinous movements by using ultrasonography. The maximal strain of the Achilles tendon and aponeurosis, estimated separately from the elongation data, was 5.1 +/- 1.1 and 5.9 +/- 1.6%, respectively. There was no significant difference in strain between the Achilles tendon and aponeurosis. In addition, no significant difference in strain was observed between the proximal and distal regions of the aponeurosis. The results indicate that tendinous tissues of the MG are homogeneously stretched along their lengths by muscle contraction, which has functional implications for the operation of the human MG muscle-tendon unit in vivo.  相似文献   

20.
Force-velocity and force-length relations were obtained for the edl of four Wistar rats in order to characterise the contractile properties (CE) of these muscle-tendon complexes. Compliances of the undamped part of the series components (SE) were measured in quick length decreases. Force-extension relations of SEs were obtained by integration of compliance to force. A muscle model consisting of CE, SE and a visco-elastic element was used to simulate the force output of the muscle tendon complex in response to a changing muscle length lOI as input. This simulated force was compared with the experimental force of the same muscle measured in response to the same lOI as input. Tetanic contractions were used in all experiments. The results show that this muscle model can predict the experimental force within a mean maximal error not larger than approximately 14% of the force amplitude. However the comparison of simulated force with experimental force and a few additional experiments show that the muscles do not have a unique instantaneous force-velocity characteristic. As shown by several other studies, force seems to be influenced by many other variables (time, history etc.) than CE length and velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号