首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upon stimulation with nerve growth factor (NGF), PC12 cells extend neurites and cease to proliferate by influencing cell cycle proteins. Previous studies have shown that neuritogenesis and a block at the G(1)/S checkpoint correlate with the nuclear translocation of and an increase in the p53 tumor suppressor protein. This study was designed to determine if p53 plays a direct role in mediating NGF-driven G(1) arrest. A retroviral vector that overexpresses a temperature-sensitive p53 mutant protein (p53ts) was used to extinguish the function of endogenous p53 in PC12 cells in a dominant-negative manner at the nonpermissive temperature. NGF treatment led to transactivation of a p53 response element in a luciferase reporter construct in PC12 cells, whereas this response to NGF was absent in PC12(p53ts) cells at the nonpermissive temperature. With p53 functionally inactivated, NGF failed to activate growth arrest, as measured by bromodeoxyuridine incorporation, and also failed to induce p21/WAF1 expression, as measured by Western blotting. Since neurite outgrowth proceeded unharmed, 50% of the cells simultaneously demonstrated neurite morphology and were in S phase. Both PC12 cells expressing SV40 T antigen and PC12 cells treated with p53 antisense oligonucleotides continued through the cell cycle, confirming the dependence of the NGF growth arrest signal on a p53 pathway. Activation of Ras in a dexamethasone-inducible PC12 cell line (GSRas1) also caused p53 nuclear translocation and growth arrest. Therefore, wild-type p53 is indispensable in mediating the NGF antiproliferative signal through the Ras/MAPK pathway that regulates the cell cycle of PC12 cells.  相似文献   

2.
3.
4.
5.
Rho-family GTPases regulate cytoskeletal dynamics in various cell types. p21-activated kinase 1 (PAK1) is one of the downstream effectors of Rac and Cdc42 which has been implicated as a mediator of polarized cytoskeletal changes in fibroblasts. We show here that the extension of neurites induced by nerve growth factor (NGF) in the neuronal cell line PC12 is inhibited by dominant-negative Rac2 and Cdc42, indicating that these GTPases are required components of the NGF signaling pathway. While cytoplasmically expressed PAK1 constructs do not cause efficient neurite outgrowth from PC12 cells, targeting of these constructs to the plasma membrane via a C-terminal isoprenylation sequence induced PC12 cells to extend neurites similar to those stimulated by NGF. This effect was independent of PAK1 ser/thr kinase activity but was dependent on structural domains within both the N- and C-terminal portions of the molecule. Using these regions of PAK1 as dominant-negative inhibitors, we were able to effectively inhibit normal neurite outgrowth stimulated by NGF. Taken together with the requirement for Rac and Cdc42 in neurite outgrowth, these data suggest that PAK(s) may be acting downstream of these GTPases in a signaling system which drives polarized outgrowth of the actin cytoskeleton in the developing neurite.  相似文献   

6.
We recently established that asparanin A, a steroidal saponin extracted from Asparagus officinalis L., is an active cytotoxic component. The molecular mechanisms by which asparanin A exerts its cytotoxic activity are currently unknown. In this study, we show that asparanin A induces G2/M phase arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Following treatment of HepG2 cells with asparanin A, cell cycle-related proteins such as cyclin A, Cdk1 and Cdk4 were down-regulated, while p21WAF1/Cip1 and p-Cdk1 (Thr14/Tyr15) were up-regulated. Additionally, we observed poly (ADP-ribose) polymerase (PARP) cleavage and activation of caspase-3, caspase-8 and caspase-9. The expression ratio of Bax/Bcl-2 was increased in the treated cells, where Bax was also up-regulated. We also found that the expression of p53, a modulator of p21WAF1/Cip1 and Bax, was not affected in asparanin A-treated cells. Collectively, our findings demonstrate that asparanin A induces cell cycle arrest and triggers apoptosis via a p53-independent manner in HepG2 cells. These data indicate that asparanin A shows promise as a preventive and/or therapeutic agent against human hepatoma.  相似文献   

7.
8.
9.
p21WAF1 is a well-characterized mediator of cell cycle arrest and may also modulate chemotherapy-induced cell death. The role of p21WAF1 in drug-induced cell cycle arrest and apoptosis of acute lymphoblastic leukemia (ALL) cells was investigated using p53-functional patient-derived xenografts (PDXs), in which p21WAF1 was epigenetically silenced in T-cell ALL (T-ALL), but not in B-cell precursor (BCP)-ALL PDXs. Upon exposure to diverse cytotoxic drugs, T-ALL PDX cells exhibited markedly increased caspase-3/7 activity and phosphatidylserine (PS) externalization on the plasma membrane compared with BCP-ALL cells. Despite dramatic differences in apoptotic characteristics between T-ALL and BCP-ALL PDXs, both ALL subtypes exhibited similar cell death kinetics and were equally sensitive to p53-inducing drugs in vitro, although T-ALL PDXs were significantly more sensitive to the histone deacetylase inhibitor vorinostat. Transient siRNA suppression of p21WAF1 in the BCP-ALL 697 cell line resulted in a moderate depletion of the cell fraction in G1 phase and marked increase in PS externalization following exposure to etoposide. Furthermore, stable lentiviral p21WAF1 silencing in the BCP-ALL Nalm-6 cell line accelerated PS externalization and cell death following exposure to etoposide and vorinostat, supporting previous findings. Finally, the Sp1 inhibitor, terameprocol, inhibited p21WAF1 expression in Nalm-6 cells exposed to vorinostat and also partially augmented vorinostat-induced cell death. Taken together, these findings demonstrate that p21WAF1 regulates the early stages of drug-induced apoptosis in ALL cells and significantly modulates their sensitivity to vorinostat.  相似文献   

10.
We previously identified FOXF1 as a potential tumor suppressor gene with an essential role in preventing DNA rereplication to maintain genomic stability, which is frequently inactivated in breast cancer through the epigenetic mechanism. Here we further addressed the role of the p53-p21WAF1 checkpoint pathway in DNA rereplication induced by silencing of FOXF1. Knockdown of FOXF1 by small interference RNA (siRNA) rendered colorectal p53-null and p21WAF1-null HCT116 cancer cells more susceptible to rereplication and apoptosis than the wild-type parental cells. In parental HCT116 cells with a functional p53 checkpoint, the p53-p21WAF1 checkpoint pathway was activated upon FOXF1 knockdown, which was concurrent with suppression of the CDK2-Rb cascade and induction of G1 arrest. In contrast, these events were not observed in FOXF1-depleted HCT116-p53−/− and HCT116-p21−/− cells, indicating that the p53-dependent checkpoint function is vital for inhibiting CDK2 to induce G1 arrest and protect cells from rereplication. The pharmacologic inhibitor (caffeine) of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR) protein kinases abolished activation of the p53-p21WAF1 pathway upon FOXF1 knockdown, suggesting that suppression of FOXF1 function triggered the ATM/ATR-mediated DNA damage response. Cosilencing of p53 by siRNA synergistically enhanced the effect of FOXF1 depletion on the stimulation of DNA rereplication and apoptosis in wild-type HCT116. Finally, we show that FOXF1 expression is predominantly silenced in breast and colorectal cancer cell lines with inactive p53. Our study demonstrated that the p53-p21WAF1 checkpoint pathway is an intrinsically protective mechanism to prevent DNA rereplication induced by silencing of FOXF1.  相似文献   

11.
The rat pheochromocytoma cell line PC12 is extensively used as a model for studies of neuronal cell differentiation. These cells develop a sympathetic neuron-like phenotype when cultured in the presence of nerve growth factor. The present study was performed in order to assess the role of mouse GTK (previously named BSK/IYK), a cytoplasmic tyrosine kinase belonging to the Src family, for neurite outgrowth in PC12 cells. We report that PC12 cells stably overexpressing GTK exhibit a larger fraction of cells with neurites as compared with control cells, and this response is not accompanied by an increased ERK activity. Treatment of the cells with the MEK inhibitor PD98059 did not reduce the GTK-dependent increased in neurite outgrowth. GTK expression induces a nerve growth factor-independent Rap1 activation, probably through altered CrkII signaling. We observe increased CrkII complex formation with p130(Cas), focal adhesion kinase (FAK), and Shb in PC12-GTK cells. The expression of GTK also correlates with a markedly increased content of FAK, phosphorylation of the adaptor protein Shb, and an association between these two proteins. Transient transfection of GTK-overexpressing cells with RalGDS-RBD or Rap1GAP, inhibitors of the Rap1 pathway, reduces the GTK-dependent neurite outgrowth. These data suggest that GTK participates in a signaling pathway, perhaps involving Shb, FAK and Rap1, that induces neurite outgrowth in PC12 cells.  相似文献   

12.
13.
14.
Alpha2-adrenergic receptors have been reported to induce subtype-specific neuronal differentiation in vitro, but the signaling mechanisms that mediate this effect have not been characterized. In the present study we found that stimulated alpha2-ARs induce delayed transactivation of TrkA in PC12 cells. The transactivation of TrkA was sensitive to the PP1 inhibitor of the Src family kinases and required prior transactivation of the EGF receptor. Moreover, alpha2-adrenergic receptors induced sustained activation of MAPK and Akt. The sustained activation of Akt, but not of MAPK, was subtype-specific and correlated with the neuronal differentiation of PC12 cells, with the order alpha2A相似文献   

15.
The Rho family of small GTPases has been implicated in cytoskeletal reorganization and subsequent morphological changes in various cell types. Among them, Rac and Cdc42 have been shown to be involved in neurite outgrowth in neuronal cells. In this study, we examined the role of RhoG, another member of Rho family GTPases, in nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. Expression of wild-type RhoG in PC12 cells induced neurite outgrowth in the absence of NGF, and the morphology of wild-type RhoG-expressing cells was similar to that of NGF-differentiated cells. Constitutively active RhoG-transfected cells extended short neurites but developed large lamellipodial or filopodial structures at the tips of neurites. RhoG-induced neurite outgrowth was inhibited by coexpression with dominant-negative Rac1 or Cdc42. In addition, expression of constitutively active RhoG elevated endogenous Rac1 and Cdc42 activities. We also found that the NGF-induced neurite outgrowth was enhanced by expression of wild-type RhoG whereas expression of dominant-negative RhoG suppressed the neurite outgrowth. Furthermore, constitutively active Ras-induced neurite outgrowth was also suppressed by dominant-negative RhoG. Taken together, these results suggest that RhoG is a key regulator in NGF-induced neurite outgrowth, acting downstream of Ras and upstream of Rac1 and Cdc42 in PC12 cells.  相似文献   

16.
17.
The rat pheochromocytoma cell line PC12 has been widely used as a model to study neuronal differentiation. PC12 cells give rise to neurites in response to basic fibroblast growth factor (bFGF). However, it is unclear whether bFGF promotes neurite outgrowth by inducing RhoA inactivation, and a mechanism for RhoA inactivation in PC12 cells in response to bFGF has not been reported. Lysophosphatidic acid (LPA) treatment and the expression of constitutively active (CA)‐RhoA (RhoA V14) impaired neurite formation in response to bFGF, while Tat‐C3 exoenzyme and the expression of dominant negative (DN)‐RhoA (RhoA N19) stimulated neurite outgrowth. GTP‐bound RhoA levels were reduced in response to bFGF, which suggests that the inactivation of RhoA is essential to neurite outgrowth in response to bFGF. To investigate the mechanism of RhoA inactivation, this study examined the roles of p190RhoGAP and Rap‐dependent RhoGAP (ARAP3). DN‐p190RhoGAP prevented neurite outgrowth, while WT‐p190RhoGAP and Src synergistically stimulated neurite outgrowth; these findings suggest that bFGF promotes the inactivation of RhoA and subsequent neurite outgrowth through p190RhoGAP and Src. Furthermore, DN‐Rap1 and DN‐ARAP3 reduced neurite formation in PC12 cells. These results suggest that RhoA is likely to be inactivated by p190RhoGAP and ARAP3 during neurite outgrowth in response to bFGF. J. Cell. Physiol. 224: 786–794, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
19.
The transient receptor potential (TRPC) family of Ca2 + permeable, non-selective cation channels is abundantly expressed in the brain, and can function as store-operated (SOC) and store-independent channels depending on their interaction with the ER Ca2 + sensor STIM1. TRPC1 and TRPC5 have critical roles in neurite outgrowth, however which of their functions regulate neurite outgrowth is unknown. In this study, we investigated the effects of TRPC channels and their STIM1-induced SOC activity on neurite outgrowth of PC12 cells. We report that PC12 cell differentiation down-regulates TRPC5 expression, whereas TRPC1 expression is retained. TRPC1 and TRPC5 interact with STIM1 through the STIM1 ERM domain. Transfection of TRPC1 and TRPC5 increased the receptor-activated Ca2 + influx that was markedly augmented by the co-expression of STIM1. Topical expression of TRPC1 in PC12 cells markedly increased neurite outgrowth while that of TRPC5 suppressed neurite outgrowth. Suppression of neurite outgrowth by TRPC5 requires the channel function of TRPC5. However, strikingly, multiple lines of evidence show that the TRPC1-induced neurite outgrowth was independent of TRPC1-mediated Ca2 + influx. Thus, a) TRPC1 and TRPC5 similarly increased Ca2 + influx but only TRPC1 induced neurite outgrowth, b) the constitutively STIM1D76A mutant that activates Ca2 + influx by TRPC and Orai channels did not increase neurite outgrowth, c) co-expression of TRPC5 with TRPC1 suppressed the effect of TRPC1 on neurite outgrowth, d) and most notable, channel-dead pore mutant of TRPC1 increased neurite outgrowth to the same extent as TRPC1WT. Suppression of TRPC1-induced neurite outgrowth by TRPC5 was due to a marked reduction in the surface expression of TRPC1. We conclude that the regulation of neurite outgrowth by TRPC1 is independent of Ca2 + influx and TRPC1-promoted neurite outgrowth depends on the surface expression of TRPC1. It is likely that TRPC1 acts as a scaffold at the cell surface to assemble a signaling complex to stimulate neurite outgrowth.  相似文献   

20.
We previously showed that a fungal protein, p15, induces neurite outgrowth and differentiation of rat pheochromocytoma PC12 cells. We report here the identification and characterization of a protein similar to p15, found in Streptomyces coelicolor A3(2). This hypothetical protein, tentatively named Scp15, has significant similarity with p15, including conserved positions of four cysteine residues involved in the formation of essential disulfide bonds in p15. Hexahistidine-tagged recombinant Scp15 proteins were produced in Escherichia coli, purified, and analyzed for their neurite-inducing activity. Although they were less active than p15, they dose-dependently induced neurites and the expression of neurofilament M. Neurite outgrowth by Scp15 was inhibited by nicardipine, suggesting that Scp15 induces neurites via activation of a calcium signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号