首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In yeast telomerase mutants, the Sgs1 RecQ helicase slows the rate of senescence and also facilitates the appearance of certain types of survivors of critical telomere shortening via mechanisms dependent on Rad52-dependent homologous recombination (HR). Here we describe a third function for Sgs1 in telomerase-deficient cells, inhibition of survivors that grow independent of Rad52. Unlike tlc1 rad52 double mutants, which do not form survivors of telomere dysfunction, tlc1 rad52 sgs1 triple mutants readily generated survivors. After emerging from growth crisis, the triple mutants progressively lost telomeric and subtelomeric sequences, yet grew for more than 1 year. Analysis of cloned chromosome termini and of copy number changes of loci genome-wide using tiling arrays revealed terminal deletions extending up to 57 kb, as well as changes in Ty retrotransposon copy numbers. Amplification of the remaining terminal sequences generated large palindromes at some chromosome termini. Sgs1 helicase activity but not checkpoint function was essential for inhibiting the appearance of the survivors, and the continued absence of Sgs1 was required for the growth of the established survivors. Thus, in addition to facilitating the maintenance of telomere repeat sequences via HR-dependent mechanisms, a RecQ helicase can prevent the adoption of HR-independent mechanisms that stabilize chromosome termini without the use of natural telomere sequences. This provides a novel mechanism by which RecQ helicases may help maintain genome integrity and thus prevent age-related diseases and cancer.  相似文献   

2.
In the yeast Saccharomyces cerevisiae, Cdc13, Yku, and telomerase define three parallel pathways for telomere end protection that prevent chromosome instability and death by senescence. We report here that cdc13-1 yku70delta mutants generated telomere deprotection-resistant cells that, in contrast with telomerase-negative senescent cells, did not display classical crisis events. cdc13-1 yku70delta cells survived telomere deprotection by exclusively amplifying TG(1-3) repeats (type II recombination). In a background lacking telomerase (tlc1delta), this process predominated over type I recombination (amplification of subtelomeric Y' sequences). Strikingly, inactivation of the Rad50/Rad59 pathway (which is normally required for type II recombination) in cdc13-1 yku70delta or yku70delta tlc1delta mutants, but also in cdc13-1 YKU70(+) tlc1delta mutants, still permitted type II recombination, but this process was now entirely dependent on the Rad51 pathway. In addition, delayed senescence was observed in cdc13-1 yku70delta rad51delta and cdc13-1 tlc1delta rad51delta cells. These results demonstrate that in wild-type cells, masking by Cdc13 and Yku prevents the Rad51 pathway from amplifying telomeric TG(1-3) sequences. They also suggest that Rad51 is more efficient than Rad50 in amplifying the sequences left uncovered by the absence of Cdc13 or Yku70.  相似文献   

3.
Maringele L  Lydall D 《Genetics》2004,166(4):1641-1649
Telomerase-defective budding yeast cells escape senescence by using homologous recombination to amplify telomeric or subtelomeric structures. Similarly, human cells that enter senescence can use homologous recombination for telomere maintenance, when telomerase cannot be activated. Although recombination proteins required to generate telomerase-independent survivors have been intensively studied, little is known about the nucleases that generate the substrates for recombination. Here we demonstrate that the Exo1 exonuclease is an initiator of the recombination process that allows cells to escape senescence and become immortal in the absence of telomerase. We show that EXO1 is important for generating type I survivors in yku70delta mre11delta cells and type II survivors in tlc1delta cells. Moreover, in tlc1delta cells, EXO1 seems to contribute to the senescence process itself.  相似文献   

4.
The number of telomeric DNA repeats at chromosome ends is maintained around a mean value by a dynamic balance between elongation and shortening. In particular, proteins binding along the duplex part of telomeric DNA set the number of repeats by progressively limiting telomere growth. The paradigm of this counting mechanism is the Rap1 protein in Saccharomyces cerevisiae. We demonstrate here that a Rap1-independent mechanism regulates the number of yeast telomeric repeats (TG(1-3)) and of vertebrate repeats (T(2)AG(3)) when TEL1, a yeast ortholog of the human gene encoding the ATM kinase, is inactivated. In addition, we show that a T(2)AG(3)-only telomere can be formed and maintained in humanized yeast cells carrying a template mutation of the gene encoding the telomerase RNA, which leads to the synthesis of vertebrate instead of yeast repeats. Genetic and biochemical evidences indicate that this telomere is regulated in a Rap1-independent manner, both in TEL1 and in tel1Delta humanized yeast cells. Altogether, these findings shed light on multiple repeat-counting mechanisms, which may share critical features between lower and higher eukaryotes.  相似文献   

5.
Background information. In budding yeast, the loss of either telomere sequences (in telomerase‐negative cells) or telomere capping (in mutants of two telomere end‐protection proteins, Cdc13 and Yku) lead, by distinct pathways, to telomeric senescence. After DNA damage, activation of Rad53, which together with Chk1 represents a protein kinase central to all checkpoint pathways, normally requires Rad9, a checkpoint adaptor. Results. We report that in telomerase‐negative (tlc1Δ) cells, activation of Rad53, although diminished, could still take place in the absence of Rad9. In contrast, Rad9 was essential for Rad53 activation in cells that entered senescence in the presence of functional telomerase, namely in senescent cells bearing mutations in telomere end‐protection proteins (cdc131 yku70Δ). In telomerase‐negative cells deleted for RAD9, Mrc1, another checkpoint adaptor previously implicated in the DNA replication checkpoint, mediated Rad53 activation. Rad9 and Rad53, as well as other DNA damage checkpoint proteins (Mec1, Mec3, Chk1 and Dun1), were required for complete DNA‐damage‐induced cell‐cycle arrest after loss of telomerase function. However, unexpectedly, given the formation of an active Rad53–Mrc1 complex in tlc1Δ rad9Δ cells, Mrc1 did not mediate the cell‐cycle arrest elicited by telomerase loss. Finally, we report that Rad9, Mrc1, Dun1 and Chk1 are activated by phosphorylation after telomerase inactivation. Conclusions. These results indicate that loss of telomere capping and loss of telomere sequences, both of which provoke telomeric senescence, are perceived as two distinct types of damages. In contrast with the Rad53–Rad9‐mediated cell‐cycle arrest that functions in a similar way in both types of telomeric senescence, activation of Rad53–Mrc1 might represent a specific response to telomerase inactivation and/or telomere shortening, the functional significance of which has yet to be uncovered.  相似文献   

6.
Vertebrate-like T2AG3 telomeres in tlc1-h yeast consist of short double-stranded regions and long single-stranded overhang (G-tails) and, although based on Tbf1-capping activity, they are capping deficient. Consistent with this idea, we observe Y’ amplification because of homologous recombination, even in the presence of an active telomerase. In these cells, Y’ amplification occurs by different pathways: in Tel1+ tlc1h cells, it is Rad51-dependent, whereas in the absence of Tel1, it depends on Rad50. Generation of telomeric G-tail, which is cell cycle regulated, depends on the MRX (Mre11-Rad50-Xrs2) complex in tlc1h cells or is MRX-independent in tlc1h tel1Δ mutants. Unexpectedly, we observe telomere elongation in tlc1h lacking Rad51 that seems to act as a telomerase competitor for binding to telomeric G-tails. Overall, our results show that Tel1 and Rad51 have multiple roles in the maintenance of vertebrate-like telomeres in yeast, supporting the idea that they may participate to evolutionary conserved telomere protection mechanism/s acting at uncapped telomeres.  相似文献   

7.
BACKGROUND: The Saccharomyces Mre11p, Rad50p, and Xrs2p proteins form a complex, called the MRX complex, that is required to maintain telomere length. Cells lacking any one of the three MRX proteins and Mec1p, an ATM-like protein kinase, undergo telomere shortening and ultimately die, phenotypes characteristic of cells lacking telomerase. The other ATM-like yeast kinase, Tel1p, appears to act in the same pathway as MRX: mec1 tel1 cells have telomere phenotypes similar to those of telomerase-deficient cells, whereas the phenotypes of tel1 cells are not exacerbated by the loss of a MRX protein. RESULTS: The nuclease activity of Mre11p was found to be dispensable for the telomerase-promoting activity of the MRX complex. The association of the single-stranded TG1-3 DNA binding protein Cdc13p with yeast telomeres occurred efficiently in the absence of Tel1p, Mre11p, Rad50p, or Xrs2p. Targeting of catalytically active telomerase to the telomere suppressed the senescence phenotype of mec1 mrx or mec1 tel1 cells. Moreover, when telomerase was targeted to telomeres, telomere lengthening was robust in mec1 mrx and mec1 tel1 cells. CONCLUSIONS: These data rule out models in which the MRX complex is necessary for Cdc13p binding to telomeres or in which the MRX complex is necessary for the catalytic activity of telomerase. Rather, the data suggest that the MRX complex is involved in recruiting telomerase activity to yeast telomeres.  相似文献   

8.
Le S  Moore JK  Haber JE  Greider CW 《Genetics》1999,152(1):143-152
Telomere length is maintained by the de novo addition of telomere repeats by telomerase, yet recombination can elongate telomeres in the absence of telomerase. When the yeast telomerase RNA component, TLC1, is deleted, telomeres shorten and most cells die. However, gene conversion mediated by the RAD52 pathway allows telomere lengthening in rare survivor cells. To further investigate the role of recombination in telomere maintenance, we assayed telomere length and the ability to generate survivors in several isogenic DNA recombination mutants, including rad50, rad51, rad52, rad54, rad57, xrs2, and mre11. The rad51, rad52, rad54, and rad57 mutations increased the rate of cell death in the absence of TLC1. In contrast, although the rad50, xrs2, and mre11 strains initially had short telomeres, double mutants with tlc1 did not affect the rate of cell death, and survivors were generated at later times than tlc1 alone. While none of the double mutants of recombination genes and tlc1 (except rad52 tlc1) blocked the ability to generate survivors, a rad50 rad51 tlc1 triple mutant did not allow the generation of survivors. Thus RAD50 and RAD51 define two separate pathways that collaborate to allow cells to survive in the absence of telomerase.  相似文献   

9.
10.
Telomerase and ATM/Tel1p protect telomeres from nonhomologous end joining   总被引:6,自引:0,他引:6  
Chan SW  Blackburn EH 《Molecular cell》2003,11(5):1379-1387
Telomeres protect chromosome ends from fusing to double-stranded breaks (DSBs). Using a quantitative real-time PCR assay, we show that nonhomologous end joining between a telomere and an inducible DSB was undetectable in wild-type cells, but occurred within a few hours of DSB induction in approximately 1/2000 genomes in telomerase-deficient cells and in >1/1000 genomes in telomerase-deficient cells also lacking the ATM homolog Tel1p. The fused telomeres contained very little telomeric DNA, suggesting that catastrophic telomere shortening preceded fusion. Lengthening of telomeres did not prevent such catastrophic telomere shortening and fusion events. Telomere-DSB fusion also occurred in cells containing a catalytically inactive telomerase and in tel1 mec1 cells where telomerase cannot elongate telomeres. Thus, telomerase and Tel1p function in telomere protection as well as in telomere elongation.  相似文献   

11.
Telomere dysfunction increases mutation rate and genomic instability   总被引:27,自引:0,他引:27  
Hackett JA  Feldser DM  Greider CW 《Cell》2001,106(3):275-286
The increased tumor incidence in telomerase null mice suggests that telomere dysfunction induces genetic instability. To test this directly, we examined mutation rate in the absence of telomerase in S. cerevisiae. The mutation rate in the CAN1 gene increased 10- to 100-fold in est1Delta strains as telomeres became dysfunctional. This increased mutation rate resulted from an increased frequency of terminal deletions. Chromosome fusions were recovered from est1Delta strains, suggesting that the terminal deletions may occur by a breakage-fusion-bridge type mechanism. At one locus, chromosomes with terminal deletions gained a new telomere through a Rad52p-dependent, Rad51p-independent process consistent with break-induced replication. At a second locus, more complicated rearrangements involving multiple chromosomes were seen. These data suggest that telomerase can inhibit chromosomal instability.  相似文献   

12.
13.
Craven RJ  Petes TD 《Genetics》2001,158(1):145-154
Mec1p is a cell cycle checkpoint protein related to the ATM protein kinase family. Certain mec1 mutations or overexpression of Mec1p lead to shortened telomeres and loss of telomeric silencing. We conducted a multicopy suppressor screen for genes that suppress the loss of silencing in strains overexpressing Mec1p. We identified SCS2 (suppressor of choline sensitivity), a gene previously isolated as a suppressor of defects in inositol synthesis. Deletion of SCS2 resulted in decreased telomeric silencing, and the scs2 mutation increased the rate of cellular senescence observed for mec1-21 tel1 double mutant cells. Genetic analysis revealed that Scs2p probably acts through a different telomeric silencing pathway from that affected by Mec1p.  相似文献   

14.
R J Craven  T D Petes 《Genetics》1999,152(4):1531-1541
In the yeast Saccharomyces cerevisiae, chromosomes terminate with approximately 400 bp of a simple repeat poly(TG(1-3)). Based on the arrangement of subtelomeric X and Y' repeats, two types of yeast telomeres exist, those with both X and Y' (Y' telomeres) and those with only X (X telomeres). Mutations that result in abnormally short or abnormally long poly(TG(1-3)) tracts have been previously identified. In this study, we investigated telomere length in strains with two classes of mutations, one that resulted in short poly(TG(1-3)) tracts (tel1) and one that resulted in elongated tracts (pif1, rap1-17, rif1, or rif2). In the tel1 pif1 strain, Y' telomeres had about the same length as those in tel1 strains and X telomeres had lengths intermediate between those in tel1 and pif1 strains. Strains with either the tel1 rap1-17 or tel1 rif2 genotypes had short tracts for all chromosome ends examined, demonstrating that the telomere elongation characteristic of rap1-17 and rif2 strains is Tel1p-dependent. In strains of the tel1 rif1 or tel1 rif1 rif2 genotypes, telomeres with Y' repeats had short terminal tracts, whereas most of the X telomeres had long terminal tracts. These results demonstrate that the regulation of telomere length is different for X and Y' telomeres.  相似文献   

15.
Changes in telomere chromatin have been linked to cellular senescence, but the underlying mechanisms and impact on lifespan are unclear. We found that inactivation of the Sas2 histone acetyltransferase delays senescence in Saccharomyces cerevisiae telomerase (tlc1) mutants through a homologous recombination‐dependent mechanism. Sas2 acetylates histone H4 lysine 16 (H4K16), and telomere shortening in tlc1 mutants was accompanied by a selective and Sas2‐dependent increase in subtelomeric H4K16 acetylation. Further, mutation of H4 lysine 16 to arginine, which mimics constitutively deacetylated H4K16, delayed senescence and was epistatic to sas2 deletion, indicating that deacetylated H4K16 mediates the delay caused by sas2 deletion. Sas2 normally prevents the Sir2/3/4 heterochromatin complex from leaving the telomere and spreading to internal euchromatic loci. Senescence was delayed by sir3 deletion, but not sir2 deletion, indicating that senescence delay is mediated by release of Sir3 specifically from the telomere repeats. In contrast, sir4 deletion sped senescence and blocked the delay conferred by sas2 or sir3 deletion. We thus show that manipulation of telomere chromatin modulates senescence caused by telomere shortening.  相似文献   

16.
SGS1 is required for telomere elongation in the absence of telomerase   总被引:22,自引:0,他引:22  
In S. cerevisiae, mutations in genes that encode telomerase components, such as the genes EST1, EST2, EST3, and TLC1, result in the loss of telomerase activity in vivo. Two telomerase-independent mechanisms can overcome the resulting senescence. Type I survival is characterized by amplification of the subtelomeric Y' elements with a short telomere repeat tract at the terminus. Type II survivors arise through the abrupt addition of long tracts of telomere repeats. Both mechanisms are dependent on RAD52 and on either RAD50 or RAD51. We show here that the telomere elongation pathway in yeast (type II) is dependent on SGS1, the yeast homolog of the gene products of Werner's (WRN) and Bloom's (BLM) syndromes. Survival in the absence of SGS1 and EST2 is dependent upon RAD52 and RAD51 but not RAD50. We propose that the RecQ family helicases are required for processing a DNA structure specific to eroding telomeres.  相似文献   

17.
Vernon M  Lobachev K  Petes TD 《Genetics》2008,179(1):237-247
The yeast TEL1 and MEC1 genes (homologous to the mammalian ATM and ATR genes, respectively) serve partially redundant roles in the detection of DNA damage and in the regulation of telomere length. Haploid yeast tel1 mec1 strains were subcultured nonselectively for approximately 200 cell divisions. The subcultured strains had very high rates of chromosome aberrations: duplications, deletions, and translocations. The breakpoints of the rearranged chromosomes were within retrotransposons (Ty or delta-repeats), and these chromosome aberrations nonrandomly involved chromosome III. In addition, we showed that strains with the hypomorphic mec1-21 allele often became disomic for chromosome VIII. This property of the mec1-21 strains is suppressed by a plasmid containing the DNA2 gene (located on chromosome VIII) that encodes an essential nuclease/helicase involved in DNA replication and DNA repair.  相似文献   

18.
19.
Cdc13 performs an essential function in telomere end protection in budding yeast. Here, we analyze the consequences on telomere dynamics of cdc13-induced telomeric DNA damage in proliferating cells. Checkpoint-deficient cdc13-1 cells accumulated DNA damage and eventually senesced. However, these telomerase-proficient cells could survive by using homologous recombination but, contrary to telomerase-deficient cells, did so without prior telomere shortening. Strikingly, homologous recombination in cdc13-1 mec3, as well as in telomerase-deficient cdc13-1 cells, which were Rad52- and Rad50-dependent but Rad51-independent, exclusively amplified the TG(1-3) repeats. This argues that not only short telomeres are substrates for type II recombination. The Cdc13-1 mutant protein harbored a defect in its association with Stn1 and Ten1 but also an additional, unknown, defect that could not be cured by expressing a Cdc13-1- Ten1-Stn1 fusion. We propose that Cdc13 prevents telomere uncapping and inhibits recombination between telomeric sequences through a pathway distinct from and complementary to that used by telomerase.  相似文献   

20.
Carter SD  Iyer S  Xu J  McEachern MJ  Aström SU 《Genetics》2007,175(3):1035-1045
The relationship between telomeres and nonhomologous end-joining (NHEJ) is paradoxical, as NHEJ proteins are part of the telomere cap, which serves to differentiate telomeres from DNA double-strand breaks. We explored these contradictory functions for NHEJ proteins by investigating their role in Kluyveromyces lactis telomere metabolism. The ter1-4LBsr allele of the TER1 gene resulted in the introduction of sequence altered telomeric repeats and subsequent telomere-telomere fusions (T-TFs). In this background, Lig4 and Ku80 were necessary for T-TFs to form. Nej1, essential for NHEJ at internal positions, was not. Hence, T-TF formation was mediated by an unusual NHEJ mechanism. Rad50 and mre11 strains exhibited stable short telomeres, suggesting that Rad50 and Mre11 were required for telomerase recruitment. Introduction of the ter1-4LBsr allele into these strains failed to result in telomere elongation as normally observed with the ter1-4LBsr allele. Thus, the role of Rad50 and Mre11 in the formation of T-TFs was unclear. Furthermore, rad50 and mre11 mutants had highly increased subtelomeric recombination rates, while ku80 and lig4 mutants displayed moderate increases. Ku80 mutant strains also contained extended single-stranded 3' telomeric overhangs. We concluded that NHEJ proteins have multiple roles at telomeres, mediating fusions of mutant telomeres and ensuring end protection of normal telomeres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号