首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1. The diurnal changes in the level of total protein, cortisol, T3 and T4 were studied in four barren and four pregnant standard-bred mares, kept and examined under the same conditions. 2. Blood samples were taken every 4 hr. for one day each month, throughout one year. 3. In barren mares, a diurnal rhythm in cortisol level (acrophase at 0530 hr in summer and at 0830 hr in winter) and in T3 level (acrophase at 1330 hr in summer and at 1800 hr in winter) was found. 4. In pregnant mares, a diurnal rhythm in cortisol level only till 5th month of pregnancy was observed. 5. A diurnal rhythm in T3 level was found throughout the pregnancy, with acrophase always at 1400 hr. 6. No diurnal rhythm in the total protein content and in the T4 level was observed. 7. In both groups of mares the seasonal cyclicity in T3 and T4 levels were found. A seasonal cyclicity in cortisol level was found only in pregnant mares. 8. Pregnancy abolished seasonal cyclicity in total protein and showed it in cortisol level. 9. Pregnancy in mares modifies diurnal rhythms as well as seasonal cycles in secretion and metabolism of the hormones studied.  相似文献   

3.
4.
Seasonal variation in daily food intake is a well-documented phenomenon in many organisms including wild-type coho salmon where the appetite is noticeably reduced during periods of decreased day length and low water temperature. This reduction may in part be explained by altered production of cholecystokinin (CCK) and growth hormone (GH). CCK is a hormone produced in the brain and gut that mediates a feeling of satiety and thus has an inhibitory effect on food intake and foraging behaviour. Growth hormone (GH) enhances feeding behaviour and consequently growth, but its production is reduced during winter. The objectives of this study were: first, to compare the seasonal feeding behaviour of wild and GH-transgenic coho salmon; second, to determine the behavioural effect of blocking the action of CCK (by using devazepide) on the seasonal food intake; and third, to measure CCK expression in brain and gut tissues between the two genotypes across seasons. We found that, in contrast to wild salmon, food intake in transgenic salmon was not reduced during winter indicating that seasonal control of appetite regulation has been disrupted by constitutive production of GH in transgenic animals. Blocking of CCK increased food intake in both genotypes in all seasons. The increase was stronger in wild genotypes than transgenic fish; however blocking CCK in wild-type fish in winter did not elevate appetites to levels observed in the summer. The response to devazepide was generally faster in transgenic than in wild salmon with more rapid effects observed during summer than during winter, possibly due to a higher temperature in summer. Overall, a seasonal effect on CCK mRNA levels was observed in telencephalon with levels during winter being higher compared to the summer in wild fish, but with no seasonal effect in transgenic fish. No differences in seasonal CCK expression were found in hypothalamus. Higher levels of CCK were detected in the gut of both genotypes in winter compared to summer. Thus, CCK appears to mediate food intake among seasons in both wild-type and GH-transgenic salmon, and an altered CCK regulation may be responsible at least in part for the seasonal regulation of food intake.  相似文献   

5.
Phosphoenolpyruvate carboxylase (PEPC; EC4.1.1.31) plays a key role during C(4) photosynthesis. The enzyme is activated by metabolites such as glucose-6-phosphate and inhibited by malate. This metabolite sensitivity is modulated by the reversible phosphorylation of a conserved serine residue near the N terminus in response to light. The phosphorylation of PEPC is modulated by a protein kinase specific to PEPC (PEPC-PK). To explore the role PEPC-PK plays in the regulation of C(4) photosynthetic CO(2) fixation, we have transformed Flaveria bidentis (a C(4) dicot) with antisense or RNA interference constructs targeted at the mRNA of this PEPC-PK. We generated several independent transgenic lines where PEPC is not phosphorylated in the light, demonstrating that this PEPC-PK is essential for the phosphorylation of PEPC in vivo. Malate sensitivity of PEPC extracted from these transgenic lines in the light was similar to the malate sensitivity of PEPC extracted from darkened wild-type leaves but greater than the malate sensitivity observed in PEPC extracted from wild-type leaves in the light, confirming the link between PEPC phosphorylation and the degree of malate inhibition. There were, however, no differences in the CO(2) and light response of CO(2) assimilation rates between wild-type plants and transgenic plants with low PEPC phosphorylation, showing that phosphorylation of PEPC in the light is not essential for efficient C(4) photosynthesis for plants grown under standard glasshouse conditions. This raises the intriguing question of what role this complexly regulated reversible phosphorylation of PEPC plays in C(4) photosynthesis.  相似文献   

6.

Background and Aims

Photosynthetic plasticity in response to a range of environmental factors that include [CO2], water availability, light intensity and temperature, is ubiquitous among plants with crassulacean acid metabolism (CAM). The present study examined how seasonal changes in light availability, as experienced by greenhouse CAM crops in northern latitude regions, influence diel carboxylation patterns and impact on carbon gain and seasonal accumulation of biomass.

Methods

In the CAM bromeliad Aechmea ‘Maya’ integrated measurements of leaf gas exchange, diel metabolite dynamics (e.g. malate, soluble sugars and starch) and biomass accumulation were made four times a year, i.e. in winter, spring, summer and autumn.

Key Results

During the brighter seasons (spring and summer) daytime Phases II and IV were dominated by C4 carboxylation, whilst the higher diurnal uptake in the autumn and winter was characterized by equal contributions of both Rubisco and PEPC. As a consequence, net CO2 uptake showed a significant depression at the end of the day in the darker months when supplementary illumination was turned off. Remarkable seasonal consistency was found in the amount of storage reserves available for nocturnal carboxylation, a consequence of predominantly daytime export of carbohydrate in spring and summer whilst nocturnal export was the major sink for carbohydrate in autumn and winter.

Conclusions

Throughout the different seasons Aechmea ‘Maya’ showed considerable plasticity in the timing and magnitude of C3 and C4 carboxylation processes over the diel cycle. Under low PPFD (i.e. winter and autumn) it appears that there was a constraint on the amount of carbohydrate exported during the day in order to maintain a consistent pool of transient carbohydrate reserves. This gave remarkable seasonal consistency in the amount of storage reserves available at night, thereby optimizing biomass gain throughout the year. The data have important practical consequences for horticultural productivity of CAM plants and suggest a scenario for reconciling carbohydrate partitioning between competing sinks of nocturnal acidification and export for growth.Key words: Aechmea ‘Maya’, seasonal, CAM, bromeliad, carbon budgets, gas exchange, metabolite dynamics, PEPC, photoperiod extension, PPFD, photosynthetic plasticity, Rubisco  相似文献   

7.
Seasonal changes in pineal function are well coordinated with seasonal reproductive activity of tropical birds. Further, immunomodulatory property of melatonin is well documented in seasonally breeding animals. Present study elucidates the interaction of peripheral melatonin with seasonal pattern of immunity and reproduction in Indian tropical male bird Perdicula asiatica. Significant seasonal changes were noted in pineal, testicular and immune function(s) of this avian species. Maximum pineal activity along with high immune status was noted during winter month while maximum testicular activity with low immune status was noted in summer. During summer month's long photoperiod suppressed pineal activity and high circulating testosterone suppressed immune parameters, while in winter short photoperiod elevated pineal activity and high circulating melatonin maintained high immune status and suppressed gonadal activity. Therefore, seasonal levels of melatonin act like a major temporal synchronizer to maintain not only the seasonal reproduction but also immune adaptability of this avian species.  相似文献   

8.
Our work aims at the exploration of cortisol secretion in the Bedouin goat, native to the Algerian Sahara desert, to understand the mechanisms of adaptation to extreme hot climates. In the present study, diurnal and seasonal variations of cortisol concentrations were measured in basal conditions, as well as the response to ACTH stimulation tests across seasons in bucks. The plasma concentrations of cortisol showed no diurnal cycle but a large variation across seasons. The highest levels occurred in summer and winter when the environmental conditions are at their extreme levels. The rectal temperature showed nychthemeral and seasonal variations, and BW was also different across seasons with highest values in summer and lowest in winter. The results obtained after administration of two doses (2 or 10 μg/kg BW) of synthetic ACTH to three different age groups (kids, adults and elderly animals) showed a strong increase in plasma cortisol concentrations under all conditions with maximum levels achieved between 15 and 120 min. The analysis of the area under the cortisol curve showed no significant difference between the responses to the two doses of ACTH and between age groups, but showed seasonal variations with the lowest response in autumn than in other seasons. We conclude that season significantly affects secretion of cortisol in both basal state and under ACTH stimulation. However, the variation of adrenal reactivity to ACTH is not sufficient to explain seasonal differences, and in particular the summer peak in basal circulating cortisol concentrations. Further research should focus on the respective contribution of environmental factors (such as day length, temperature, humidity) and the mechanisms involved in cortisol regulation.  相似文献   

9.
It is well reported that the environmental factors along with different endocrine stimulus play a crucial role in maintenance of adrenocortical activity in birds. This study is first to report a detailed seasonal activity cycle of adrenal cortex, particu-larly its secretory physiology in a tropical nocturnal bird, Indian spotted owlet Athene brama. The maximum cortical activity having highest glandular mass, glandular free cholesterol, esterified cholesterol profiles, and peak level of corticosterone in plasma coincided with the long day length, highest temperature and increasing amplitude of relative humidity and rainfall of the early summer month, May. Cortical activity declined to minimum level in August when the ecofactors also declined parallely and hence, the birds entered into partial hibernation. The cortical activity progressed slowly throughout the winter (September–March) to reach maximum level in May. Further, the electron microscopic observations of cortical cell morphology strongly supported the above seasonal activity status of the gland revealing a comparatively large number of mitochondria during May than August, along with lipid filled vacuoles during May but not in August. Besides, assessment of gonadal and pineal hormones in relation with seasonal activity of adrenal cortex presented a parallel relationship with gonad while completely inverse relationship with pineal. Therefore, the study concludes that the seasonal adrenocortical activity of this tropical nocturnal bird might be regulated by multiple factors, particularly by the environmental temperature, humidity/rainfall and photoperiod along with the internal factors at least by gonadal and pineal hormones.  相似文献   

10.
It is well reported that the environmental factors along with different endocrine stimulus play a crucial role in maintenance of adrenocortical activity in birds. This study is first to report a detailed seasonal activity cycle of adrenal cortex, particu-larly its secretory physiology in a tropical nocturnal bird, Indian spotted owlet Athene brama . The maximum cortical activity having highest glandular mass, glandular free cholesterol, esterified cholesterol profiles, and peak level of corticosterone in plasma coincided with the long day length, highest temperature and increasing amplitude of relative humidity and rainfall of the early summer month, May. Cortical activity declined to minimum level in August when the ecofactors also declined parallely and hence, the birds entered into partial hibernation. The cortical activity progressed slowly throughout the winter (September-March) to reach maximum level in May. Further, the electron microscopic observations of cortical cell morphology strongly supported the above seasonal activity status of the gland revealing a comparatively large number of mitochondria during May than August, along with lipid filled vacuoles during May but not in August. Besides, assessment of gonadal and pineal hormones in relation with seasonal activity of adrenal cortex presented a parallel relationship with gonad while completely inverse relationship with pineal. Therefore, the study concludes that the seasonal adrenocortical activity of this tropical nocturnal bird might be regulated by multiple factors, particularly by the environmental temperature, humidity/rainfall and photoperiod along with the internal factors at least by gonadal and pineal hormones.  相似文献   

11.
Activity patterns of the muskrat Ondatra zibethicus L. were examined during summer and winter in Delta Marsh, Manitoba, Canada (50°11'N, 98°23'W). Animals exhibited intermittent activity throughout the day with a mean periodicity close to 6 h in both seasons. The 24-h activity pattern in summer was typically bimodal with major peaks occurring between sunset and sunrise. Muskrats were more diurnal in winter when maximal levels of activity occurred in late afternoon and early evening (1500–2000). Pronounced inter- and intra-individual variability in daily activity ensured continuous, or nearly continuous occupation of winter shelters by a variable number of muskrats, and thus enchanced microclimate stability. Daily variation in activity and weather were weakly correlated both summer and winter. Of the environmental variables tested, only photoperiod and wind speed in summer, and photoperiod and air temperature in winter correlated significantly with total time spent in lodge or burrow per day.  相似文献   

12.
The aim of this study was to evaluate how the summer and winter conditions affect the photosynthesis and water relations of well-watered orange trees, considering the diurnal changes in leaf gas exchange, chlorophyll (Chl) fluorescence, and leaf water potential (Ψ) of potted-plants growing in a subtropical climate. The diurnal pattern of photosynthesis in young citrus trees was not significantly affected by the environmental changes when compared the summer and winter seasons. However, citrus plants showed higher photosynthetic performance in summer, when plants fixed 2.9 times more CO2 during the diurnal period than in the winter season. Curiously, the winter conditions were more favorable to photosynthesis of citrus plants, when considering the air temperature (< 29 °C), leaf-to-air vapor pressure difference (< 2.4 kPa) and photon flux density (maximum values near light saturation) during the diurnal period. Therefore, low night temperature was the main environmental element changing the photosynthetic performance and water relations of well-watered plants during winter. Lower whole-plant hydraulic conductance, lower shoot hydration and lower stomatal conductance were noticed during winter when compared to the summer season. In winter, higher ratio between the apparent electron transport rate and leaf CO2 assimilation was verified in afternoon, indicating reduction in electron use efficiency by photosynthesis. The high radiation loading in the summer season did not impair the citrus photochemistry, being photoprotective mechanisms active. Such mechanisms were related to increases in the heat dissipation of excessive light energy at the PSII level and to other metabolic processes consuming electrons, which impede the citrus photoinhibition under high light conditions.  相似文献   

13.
14.
Steady-state mRNA levels for three Hsp70s were found to be regulated by a distinctive light/dark mechanism in spinach leaves. Messenger RNAs for the chloroplast stromal and two cytosolic forms displayed a diurnal expression pattern under isothermal conditions that appeared to be independent of circadian control. While protein blot data showed relatively constant Hsp70 protein levels, the higher Hsp70 mRNA levels in the light paralleled the diurnal cycle of total cell protein synthesis. Fractionation studies showed that the major cytosolic Hsp70 cognate group was associated with polysomes. Therefore, the variation of Hsp70 mRNAs is consistent with the diurnal metabolic activity of plant photosynthetic cells in which the demand of protein biogenesis for chaperone function and tissue temperature are highest during the day.  相似文献   

15.
We assessed the seasonal variations in the effects of hypercarbia (3 or 5% inspired CO2) on cardiorespiratory responses in the bullfrog Rana catesbeiana at different temperatures (10, 20 and 30 degrees C). We measured breathing frequency, blood gases, acid-base status, hematocrit, heart rate, blood pressure and oxygen consumption. At 20 and 30 degrees C, the rate of oxygen consumption had a tendency to be lowest during winter and highest during summer. Hypercarbia-induced changes in breathing frequency were proportional to body temperature during summer and spring, but not during winter (20 and 30 degrees C). Moreover, during winter, the effects of CO2 on breathing frequency at 30 degrees C were smaller than during summer and spring. These facts indicate a decreased ventilatory sensitivity during winter. PaO2 and pHa showed no significant change during the year, but PaCO2 was almost twice as high during winter than in summer and spring, indicating increased plasma bicarbonate levels. The hematocrit values showed no significant changes induced by temperature, hypercarbia or season, indicating that the oxygen carrying capacity of blood is kept constant throughout the year. Decreased body temperature was accompanied by a reduction in heart rate during all four seasons, and a reduction in blood pressure during summer and spring. Blood pressure was higher during winter than during any other seasons whereas no seasonal change was observed in heart rate. This may indicate that peripheral resistance and/or stroke volume may be elevated during this season. Taken together, these results suggest that the decreased ventilatory sensitivity to hypercarbia during winter occurs while cardiovascular parameters are kept constant.  相似文献   

16.
The success of P. juliflora, an evergreen woody species has been largely attributed to temperature acclimation and stomatal control of photosynthesis under wide range of environmental conditions prevalent in India. We studied the contribution of the enzyme ribulose-1,5 bisphosphate carboxylase/oxygenase (Rubisco) in diurnal and seasonal photosynthesis changes in P. juliflora. The changes observed in photosynthesis under natural conditions could be effected by the growth temperatures, which ranged from 10–30 °C in winter to 30–47 °C in summer. However, the Total Rubisco activity displayed a constant diurnal pattern and showed a maximum at 1200 in all seasons namely spring, summer, monsoon and winter irrespective of the changes in temperature. The Total Rubisco activity from two cohorts of leaves produced in spring and monsoon appeared to be down-regulated differentially at low PPFD during the evening. The in vivo and in vitro measurements of carboxylation efficiency of Rubisco showed wide variation during the day and were correlated with the photosynthesis rate. The light activation of Rubisco showed the acclimation to moderately high temperatures in different seasons except in summer. The exceptionally high temperatures (>45 °C) in summer, though not affecting Total activity, severely inhibited the light activation of Rubisco and also modulated the recovery process for the activation of Rubisco. Our studies suggest that the modulation of Rubisco driven by Rubisco activase and not Rubisco per se was crucial for the diurnal regulation of photosynthesis. NBRI Publication No.: 528  相似文献   

17.
Lobaria pulmonaria (L.) Hoffm. is an epiphytic lichen common to temperate deciduous forests where it copes with large changes in temperature and light levels through repeated annual cycles. Samples of L. pulmonaria were taken from a deciduous forest in southeastern Canada at 35-day intervals from February 1999 to February 2000 and also from a rare population in an evergreen forest in March and August 1999. At field-ambient temperatures and light levels, the realised photosystem II (PSII) electron transport was low both in the summer and winter, with transient peaks in the spring and autumn. In contrast, the seasonal pattern of potential electron transport measured at a fixed 20 degrees C peaked in winter, showing the importance of temperature in driving photosynthesis to low levels in the winter despite an acclimation of electron-transport potential to exploit the high ambient light. Realised gross CO2 uptake was correlated with PSII electron transport at mechanistically plausible rates at all sampling sites in the summer but not in the winter, indicating electron diversion away from CO2 fixation in the winter. Chlorophyll content was highest in the dark summer months. The amount of ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) large subunit (LSU) was highest in spring. Changes in the level of this hyperabundant protein and in the activity of PSII maintained a relatively constant rate of maximum CO2 uptake per RuBisCO LSU from April through November, despite great changes in the seasonal light and temperature. L. pulmonaria acclimates between light and temperature stress in the winter months to light-limitation in the dark summer months. Transition intervals in the spring and autumn, with warm, bright and wet conditions, are likely the most amenable times for growth.  相似文献   

18.
The diurnal variations of several plasma hormones and free fatty acids (FFA) were studied during periods in summer and winter for pigeons reared either outdoors or indoors. The latter were subjected to constant temperature and naturally varying photoperiods. A significant seasonal variation in the mean daily levels of triiodothyronine (T3), thyroxine (T4), corticosterone (B), lutropin (LH) and FFA was seen in the outdoor birds and in the T4 and B levels of indoor birds. The diurnal variation of hormone levels was generally more pronounced in winter in both groups. Cold ambient temperature significantly decreased the plasma LH level and potentiated the increasing effect of short photoperiod on plasma B level. Diurnal variation of plasma FFA level seems to be under the control of photoperiod, without any effects due to the ambient temperature. No significant correlation was found between FFA and GH concentrations.  相似文献   

19.
C4 leaf phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is subject to a day/night regulatory phosphorylation cycle. By using the cytoplasmic protein synthesis inhibitor cycloheximide (CHX), we previously reported that the reversible in vivo light activation of the C4 PEPC protein-serine kinase requires protein synthesis. In the present leaf gas-exchange study, we have examined how and to what extent the CHX-induced inhibition of PEPC protein kinase activity/PEPC phosphorylation in the light influences C4 photosynthesis. Detached Sorghum vulgare and maize (Zea mays) leaves fed 10 [mu]M CHX showed a gradual but marked decrease in photosynthetic CO2 assimilation capacity. A series of control experiments designed to assess deleterious secondary effects of the inhibitor established that this reduction in C4 leaf CO2 assimilation was not due to (a) an increased stomatal resistance to CO2 diffusion, (b) a decrease in the activation state of other photoactivated C4 cycle enzymes, and (c) a perturbation of the Benson-Calvin C3 cycle, as evidenced by the absence of an inhibitory effect of CHX on leaf photosynthesis by a C3 grass (Triticum aestivum). It is notable that the CHX-induced decrease in CO2 assimilation by illuminated Sorghum leaves was highly correlated with a decrease in the apparent phosphorylation status of PEPC and a concomitant change in carbon isotope discrimination consistent with a shift from a C4 to a C3 mode of leaf CO2 fixation. These collective findings indicate that the light-dependent activation of the PEPC protein-serine kinase and the resulting phosphorylation of serine-8 or serine-15 in Sorghum or maize PEPC, respectively, are fundamental regulatory events that influence leaf C4 photosynthesis in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号