首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Abstract

An overview of the biochemical photophysiology of tropical, reef-building corals is presented with a discussion on the biosynthetic relationship between natural UV-absorbing sunscreens and certain antioxidant functions in marine organisms. Our studies reveal that marine organisms, including ‘UV-extremophilic’ bacteria, are a rich source of novel antioxidants having potential for the development of commercial and biomedical applications. Novel sunscreening agents derived from tropical marine organisms of the Great Barrier Reef are in development. New marine-derived antioxidants are being isolated for testing as chemopreventatives in a variety of oxidatively degenerative diseases.  相似文献   

3.
An overview of the biochemical photophysiology of tropical, reef-building corals is presented with a discussion on the biosynthetic relationship between natural UV-absorbing sunscreens and certain antioxidant functions in marine organisms. Our studies reveal that marine organisms, including 'UV-extremophilic' bacteria, are a rich source of novel antioxidants having potential for the development of commercial and biomedical applications. Novel sunscreening agents derived from tropical marine organisms of the Great Barrier Reef are in development. New marine-derived antioxidants are being isolated for testing as chemopreventatives in a variety of oxidatively degenerative diseases.  相似文献   

4.
Light stress in plants results in damage to the water oxidizing reaction center, photosystem II (PSII). Redox signaling, through oxidative modification of amino acid side chains, has been proposed to participate in this process, but the oxidative signals have not yet been identified. Previously, we described an oxidative modification, N-formylkynurenine (NFK), of W365 in the CP43 subunit. The yield of this modification increases under light stress conditions, in parallel with the decrease in oxygen evolving activity. In this work, we show that this modification, NFK365-CP43, is present in thylakoid membranes and may be formed by reactive oxygen species produced at the Mn(4)CaO(5) cluster in the oxygen-evolving complex. NFK accumulation correlates with the extent of photoinhibition in PSII and thylakoid membranes. A modest increase in ionic strength inhibits NFK365-CP43 formation, and leads to accumulation of a new, light-induced NFK modification (NFK317) in the D1 polypeptide. Western analysis shows that D1 degradation and oligomerization occur under both sets of conditions. The NFK modifications in CP43 and D1 are found 17 and 14 Angstrom from the Mn(4)CaO(5) cluster, respectively. Based on these results, we propose that NFK is an oxidative modification that signals for damage and repair in PSII. The data suggest a two pathway model for light stress responses. These pathways involve differential, specific, oxidative modification of the CP43 or D1 polypeptides.  相似文献   

5.
The antioxidant systems of mitochondria are not well known. Using a proteomics-based approach, we defined these mitochondrial antioxidant systems and analyzed their response to oxidative stress. It appears that the major mitochondrial antioxidant system is made of manganese superoxide dismutase on the one hand, and of peroxiredoxin III, mitochondrial thioredoxin and mitochondrial thioredoxin reductase on the other hand. With the exception of thioredoxin reductase, all these proteins are induced by oxidative stress. In addition, a change in the peroxiredoxin III pattern can also be observed.  相似文献   

6.
Cadmium contamination is a critical constraint to plant production in agricultural soils in some regions. Cerium is one of the rare earth elements, it plays a positive role in plant growth with a appropriate content. The present study was conducted to examine the role of cerium nutrition in the amelioration of effects on cadmium toxicity in rice (Oryza sativa L.) seedlings by a hydroponic experiment. Measurements included growth condition, photosynthesis related parameters, chloroplast ultra-structure and antioxidant enzymes content. Our results showed that the growth of rice seedlings was markedly inhibited by cadmium (100 μM), and the inhibition was significantly alleviated by cerium (10 μM). Fresh weight, single seedling height and chlorophyll content of rice plants in cerium treated groups were increased by 24.4, 18.2 and 32.05 % compared to those of plants cultivated in only cadmium-present condition. Additionally, in cadmium treated plants, the addition of cerium significantly increased the value of the maximum quantum yield of primary photochemistry (F v /F m ), indicator of PSII ‘structure and functioning’ (SFI ABS ) and the performance index on absorption basis (PI ABS ), elevated the activity of whole chain electron transport activity, enhanced photophosphorylation and its coupling factor Ca2+-ATPase activities. The result showed that the chloroplasts and thylakoid membrane of the rice seedlings leaves grown in cerium treatment developed better than that in cerium-absent group under cadmium toxicity. Moreover, addition with 10 μM cerium mitigated cadmium stress by inducing leaf enzyme activities for antioxidation like superoxide dismutase, peroxidase and catalase, dramatically depressed superoxide (O 2 ·? ), hydrogen peroxide and malondialdehyde accumulation. Results indicated that alleviation of cadmium toxicity by cerium application is partly related to improved light-use-efficiency, increased antioxidant enzymes, decreased oxidative stress in rice seedlings.  相似文献   

7.
Spermine and putrescine enhance oxidative stress tolerance in maize leaves   总被引:3,自引:0,他引:3  
The protective effects of spermine (SPM) and putrescine (PUT) against paraquat (PQ), a herbicide in agriculture and oxidative stress inducer, were investigated in the leaves of maize. Maize leaves were pretreated to SPM and PUT at concentrations of 0.2 and 1 mM and treated with PQ afterwards. Pretreatment with 1 mM of SPM and PUT significantly prevented the losses in chlorophyll and carotenoid levels induced by PQ. Ascorbic acid content in the leaves pretreated with both polyamines was found to be higher than those of the leaves pretreated with water. Also, pretreatment with SPM and PUT was determined to have some effects on the activities of superoxide dismutase (SOD) and peroxidase (POD). 1 mM of SPM increased SOD activity, but PUT has no significant effect on SOD activity. On the other hand, POD activity was recorded to increase slightly in response to both concentrations of SPM and 1 mM of PUT. The results showed that such polyamine pretreated plants may become more tolerant to oxidative stress due to increases in the antioxidative enzymes and antioxidants.  相似文献   

8.
The purposes of this study were to 1) examine the immune and oxidative stress responses following high-intensity interval training (HIIT); 2) determine changes in antioxidant enzyme gene expression and enzyme activity in lymphocytes following HIIT; and 3) assess pre-HIIT, 3-h post-HIIT, and 24-h post-HIIT lymphocyte cell viability following hydrogen peroxide exposure in vitro. Eight recreationally active males completed three identical HIIT protocols. Blood samples were obtained at preexercise, immediately postexercise, 3 h postexercise, and 24 h postexercise. Total number of circulating leukocytes, lymphocytes, and neutrophils, as well as lymphocyte antioxidant enzyme activities, gene expression, cell viability (CV), and plasma thiobarbituric acid-reactive substance (TBARS) levels, were measured. Analytes were compared using a three (day) × four (time) ANOVA with repeated measures on both day and time. The a priori significance level for all analyses was P < 0.05. Significant increases in superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities were observed in lymphocytes following HIIT. No significant increases in lymphocyte SOD, CAT, or GPX gene expression were found. A significant increase in TBARS was found immediately post-HIIT on days 1 and 2. Lymphocyte CV in vitro significantly increased on days 2 and 3 compared with day 1. Additionally, there was a significant decrease in CV at 3 h compared with pre- and 24 h postexercise. These findings indicate lymphocytes respond to oxidative stress by increasing antioxidant enzyme activity. Additionally, HIIT causes oxidative stress but did not induce a significant postexercise lymphocytopenia. Analyses in vitro suggest that lymphocytes may become more resistant to subsequent episodes of oxidative stress. Furthermore, the analysis in vitro confirms that lymphocytes are more vulnerable to cytotoxic molecules during recovery from exercise.  相似文献   

9.
Flavonoids and urate antioxidant interplay in plasma oxidative stress   总被引:4,自引:0,他引:4  
Flavonoids are naturally occurring plant compounds with antioxidant properties. Their consumption has been associated with the protective effects of certain diets against some of the complications of atherosclerosis. Lowdensity lipoprotein (LDL) oxidative modification is currently thought to be a significant event in the atherogenic process. Most of the experiments concerning the inhibition of LDL oxidation used isolated LDL. We used diluted human whole plasma to study the influence of flavonoids on lipid peroxidation (LPO) promoted by copper, and their interaction with uric acid, one of the most important plasma antioxidants. Lipid peroxidation was evaluated by the formation of thiobarbituric acid reactive substances (TBARS) and of free malondialdehyde (MDA). The comparative capability of the assayed flavonoids on copper (II) reduction was tested using the neocuproine colorimetric test. In our assay system, urate disappears and free MDA and TBARS formation increase during the incubation of plasma with copper. Most of the tested flavonoids inhibited copperinduced LPO. The inhibition of LPO by flavonoids correlated positively with their capability to reduce copper (II). The urate consumption during the incubation of plasma with copper was inhibited by myricetin, quercetin and kaempferol. The inhibition of urate degradation by flavonoids correlated positively with the inhibition of LPO. Urate inhibited the copperinduced LPO in a concentrationdependent mode. Luteolin, rutin, catechin, quercetin had an antioxidant synergy with urate. Our results show that some flavonoids could protect endogenous urate from oxidative degradation, and demonstrate an antioxidant synergy between urate and some of the flavonoids.  相似文献   

10.
Reducing postprandial oxidative stress (OxS), decreasing postprandial blood triglyceride level (TG) and improving lipoprotein status is likely to have a preventive impact on the development of cardiovascular disease (CVD). Previously we have shown that the antioxidant probiotic Lactobacillus fermentum ME-3 (DSM14241) is characterized by antiatherogenic effects. This randomized double-blind placebo-controlled study evaluated the influence of kefir enriched with an antioxidative probiotic L. fermentum ME-3 (LfKef) on postprandial OxS, blood TG response and lipoprotein status. 100 clinically healthy subjects were recruited into the study. Blood parameters of postprandial OxS, TG and lipoprotein status were determined by oxidized LDL, baseline diene conjugation in LDL (BDC-LDL), oxidized LDL complex with beta-2 glycoprotein (Beta2-GPI-oxLDL), paraoxonase (PON) activity, LDL-Chol, HDL-Chol and TG. To evaluate general body postprandial OxS-load we measured 8-isoprostanes (8-EPI) in the urine. Consumption of LfKef significantly reduced the postprandial level of oxidized LDL, BDC-LDL, Beta2-GPI-oxLDL, urinary 8-isoprostanes and postprandial TG and caused a significant increase in HDL-Chol and PON activity. This is the first evidence that kefir enriched with an antioxidant probiotic may have a positive effect on both postprandial OxS and TG response as well as on lipoprotein status.  相似文献   

11.
Content of reactive oxygen species (ROS): O2*-, H2O2 and OH* as well as activities of antioxidant enzymes: superoxide dismutase (SOD), guaiacol peroxidase (POX) and catalase (CAT) were studied in leaves of Arabidopsis thaliana ecotype Columbia, treated with Cu excess (0, 5, 25, 30, 50, 75, 100, 150 and 300 microM). After 7 days of Cu action ROS content and the activity of SOD and POX increased, while CAT activity decreased in comparison with control. Activities of SOD, POX and CAT were correlated both with Cu concentration (0-75 microM) in the growth medium and with OH* content in leaves. Close correlation was also found between OH* content and Cu concentration. Oxidative stress in A. thaliana under Cu treatment expressed in elevated content of O2*-, H2O2 and OH* in leaves. To overcome it very active the dismutase- and peroxidase-related (and not catalase-related, as in other plants) ROS scavenging system operated in A. thaliana. Visual symptoms of phytotoxicity: chlorosis, necrosis and violet colouring of leaves as well as a reduction of shoot biomass occurred in plants.  相似文献   

12.
We aimed to evaluate the effects of acute heat stress (HS) and age on the redox state in broilers aged 21 and 42 days. We evaluated the expression of genes related to antioxidant capacity, the production of hydrogen peroxide (H2O2), and the activity of antioxidant enzymes in the liver, as well as oxidative stress markers in the liver and plasma. The experiment had a completely randomized factorial design with two thermal environments (thermoneutral and HS, 38°C for 24 h) and two ages (21 and 42 days). Twenty-one-day-old animals exposed to HS showed the highest thioredoxin reductase 1 (TrxR1) (P<0.0001) and glutathione synthetase (GSS) (P<0.0001) gene expression levels. Age influenced the expression of the thioredoxin (Trx) (P=0.0090), superoxide dismutase (SOD) (P=0.0194), glutathione reductase (GSR) (P<0.0001) and glutathione peroxidase 7 (GPx7) (P<0.0001) genes; we observed greater expression in birds at 21 days than at 42 days. Forty-two-day-old HS birds showed the highest H2O2 production (222.31 pmol dichlorofluorescein produced/min×mg mitochondrial protein). We also verified the effects of age and environment on the liver content of Glutathione (GSH) (P<0.0001 and P=0.0039, respectively) and catalase (CAT) enzyme activity (P=0.0007 and P=0.0004, respectively). Higher GSH content and lower CAT activity were observed in animals from the thermoneutral environment compared with the HS environment and in animals at 21 days compared with 42 days. Broilers at 42 days of age had higher plasma creatinine content (0.05 v. 0.01 mg/dl) and higher aspartate aminotransferase activity (546.50 v. 230.67 U/l) than chickens at 21 days of age. Our results suggest that under HS conditions, in which there is higher H2O2 production, 21-day-old broilers have greater antioxidant capacity than 42-day-old animals.  相似文献   

13.
低温锻炼后桑树幼苗光合作用和抗氧化酶对冷胁迫的响应   总被引:12,自引:0,他引:12  
以桑树品种“秋雨”为试验材料,研究了桑树幼苗在低温锻炼、冷胁迫和常温恢复期间的光合作用和抗氧化酶活性的变化.结果表明: 12 ℃3 d低温锻炼明显提高了桑树幼苗的抗冷性.3 ℃3 d冷胁迫下,12 ℃3 d低温锻炼后的桑树幼苗叶片净光合速率(Pn)、气孔导度(Gs)和PSⅡ 最大光化学效率(Fv/Fm)明显高于对照(未经低温锻炼)处理的桑树幼苗,而且其在常温下的恢复也较对照桑树幼苗迅速.在12 ℃ 3 d低温锻炼和3 ℃ 3 d冷胁迫期间,桑树幼苗叶片脯氨酸和可溶性糖含量明显增加,而经低温锻炼的桑树幼苗叶片丙二醛(MDA)含量明显低于未经低温锻炼的桑树幼苗,经低温锻炼的桑树幼苗叶片抗坏血酸过氧化物酶(APX)活性则明显高于未经低温锻炼的桑树幼苗.说明渗透调节物质含量增加和APX活性提高在低温锻炼诱导桑树幼苗的抗冷性上发挥着重要的作用.  相似文献   

14.
Glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme of the pentose phosphate pathway, is indispensable to maintenance of the cytosolic pool of NADPH and thus the cellular redox balance. The role of G6PD as an antioxidant enzyme has been recognized in erythrocytes for a long time, as its deficiency is associated with neonatal jaundice, drug- or infection-mediated hemolytic crisis, favism and, less commonly, chronic non-spherocytic hemolytic anemia. To a large extent, advances in the field were made on the pathophysiology of G6PD-deficient erythrocytes, and the molecular characterization of different G6PD variants. Not until recently did numerous studies cast light on the importance of G6PD in other aspects of the physiology of both cells and organisms. Deficiency in G6PD activity, and hence a disturbance in redox homeostasis, can lead to dysregulation of cell growth and signaling, anomalous embryonic development, altered susceptibility to viral infection as well as increased susceptibility to degenerative diseases. The present review covers recent developments in this field. Additionally, molecular characterization of G6PD variants, especially those frequently found in Taiwan and Southern China, is also addressed.  相似文献   

15.
In the present study, we measured the markers of oxidative stress as well as activity of antioxidative enzymes and content of α-tocopherol in the acclimated and non-acclimated cucumber (Cucumis sativus L.) cell suspension cultures subjected to 150 and 200 mM NaCl. The content of carbonyl groups and lipid peroxidation were lower in the acclimated cultures than in the non-acclimated ones as well as their increases after NaCl treatments. Both NaCl concentrations enhanced activity of glutathione peroxidase in the examined cultures whereas activity of glutathione-S-transferase rose only in the acclimated ones. The increase in content of α-tocopherol induced by NaCl was more pronounced in the acclimated cultures. NaCl caused high decline in cell vigour in the non-acclimated cultures up to 80–90 % at the end of the experiment. The presented data suggest that the acclimated cultures coped with the salt stress better than the non-acclimated ones.  相似文献   

16.
The effects of 24-epibrassinolide under high temperature in eggplant (Solanum melongena L.) seedlings were studied by investigating the plant growth, chlorophyll content, photosynthesis and antioxidant systems. High temperature significantly inhibited the plant growth and markedly decreased the chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate, while it increased intercellular CO2 concentration. In a similar manner, high temperature also decreased significantly maximum quantum efficiency of PSII, potential photochemical efficiency, the quantum efficiency of PSII, photochemical quenching, the excitation capture efficiency of open centers, and increased non-photochemical quenching. Application of 0.05–0.2 μM EBR remarkably promoted the plant growth and alleviated high-temperature-induced inhibition of photosynthesis. Under high temperature, reactive oxygen species levels and lipid peroxidation were markedly increased, which were remarkably inhibited by application of 0.05–0.2 μM EBR. The activities of antioxidative enzymes such as superoxide dismutase, peroxidase, catalase and ascorbate peroxidase, and contents of ascorbic acid and reduced glutathione were significantly increased during high-temperature treatments, and these increases were more pronounced than those of EBR at 0.05–0.2 μM treatment. The EBR treatment also greatly enhanced contents of proline, soluble sugar and protein under high-temperature stress. Taken together, it can be concluded that 0.05–0.2 μM EBR could alleviate the detrimental effects of high temperatures on plant growth by increasing photosynthetic efficiency and enhancing antioxidant enzyme systems. Addition of 0.1 μM EBR had the best ameliorative effect against high temperature, while the addition of 0.4 μM EBR had no significant effects.  相似文献   

17.
After treatment with increased quantities of nitrogen and Azotobacter strains, activities of antioxidant enzymes superoxide dismutase, peroxidase and catalase, content of chlorophylls and carotenoids, soluble proteins and dry matter in leaves of sugar beet increased. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The objective of this study was to examine the role of antioxidant enzymes in waterlogging tolerance of pigeonpea (Cajanus cajan L. Halls) genotypes ICP 301 (tolerant) and Pusa 207 (susceptible). Waterlogging resulted in visible yellowing and senescence of leaves, decrease in leaf area, dry matter, relative water content and chlorophyll content in leaves, and membrane stability index in roots and leaves. The decline in all parameters was greater in Pusa 207 than ICP 301. Oxidative stress in the form of superoxide radical, hydrogen peroxide and thiobarbituric acid reactive substances (TBARS) contents initially decreased, however at 4 and 6 d of waterlogging it increased over control plants, probably due to activation of DPI-sensitive NADPH-oxidase. Antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione reductase and catalase also increased under waterlogging. The comparatively greater antioxidant enzyme activities resulting in less oxidative stress in ICP 301 could be one of the factor determining its higher tolerance to flooding as compared to Pusa 207. This study is the first to conclusively prove that waterlogging induced increase in ROS is via NADPH oxidase.  相似文献   

19.
In this review, it is our aim 1) to describe the high diversity in molecular and structural antioxidant defenses against oxidative stress in animals, 2) to extend the traditional concept of antioxidant to other structural and functional factors affecting the "whole" organism, 3) to incorporate, when supportable by evidence, mechanisms into models of life-history trade-offs and maternal/epigenetic inheritance, 4) to highlight the importance of studying the biochemical integration of redox systems, and 5) to discuss the link between maximum life span and antioxidant defenses. The traditional concept of antioxidant defenses emphasizes the importance of the chemical nature of molecules with antioxidant properties. Research in the past 20 years shows that animals have also evolved a high diversity in structural defenses that should be incorporated in research on antioxidant responses to reactive species. Although there is a high diversity in antioxidant defenses, many of them are evolutionary conserved across animal taxa. In particular, enzymatic defenses and heat shock response mediated by proteins show a low degree of variation. Importantly, activation of an antioxidant response may be also energetically and nutrient demanding. So knowledge of antioxidant mechanisms could allow us to identify and to quantify any underlying costs, which can help explain life-history trade-offs. Moreover, the study of inheritance mechanisms of antioxidant mechanisms has clear potential to evaluate the contribution of epigenetic mechanisms to stress response phenotype variation.  相似文献   

20.
Ferryl heme proteins may play a major role in vivo under certain pathological conditions. Catecholestrogens, the estradiol-derived metabolites, can act either as antioxidants or pro-oxidants in iron-dependent systems. The aim of the present work was (1) to determine the effects of ferrylmyoglobin on hepatocyte cytotoxicity, and (2) to assess the pro/antioxidant potential of a series of estrogens (phenolic, catecholic and stilbene-derived) against ferrylmyoglobin induced lipid peroxidation in rat hepatocytes. Cells were exposed to metmyoglobin plus hydrogen peroxide to form ferrylmyoglobin in the presence of the transition metal chelator diethylentriaminepentaacetic acid. Results showed that ferrylmyoglobin induced an initial oxidative stress, mainly reflected in an early lipid peroxidation and further decrease in GSH and ATP. However, cells gradually adapted to this situation, by recovering the endogenous ATP and GSH levels at longer incubation times. Phenolic and stilbene-derived estrogens inhibited ferrylmyoglobin-induced lipid peroxidation to different degrees: diethylstilbestrol>estradiol>resveratrol. Catecholestrogens at concentrations higher than 1 microM also inhibited lipid peroxidation with similar efficacy. The ability of estrogens to reduce ferrylmyoglobin to metmyoglobin may account for their antioxidant activity. In contrast, physiological concentrations (100 pM-100 nM) of the catecholestrogens exerted pro-oxidant activities, 4-hydroxyestradiol being more potent than 2-hydroxyestradiol. The implications of these interactions should be considered in situations where local myoglobin or hemoglobin microbleeding takes place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号