首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Role of charged residues in the S1-S4 voltage sensor of BK channels   总被引:1,自引:0,他引:1       下载免费PDF全文
The activation of large conductance Ca(2+)-activated (BK) potassium channels is weakly voltage dependent compared to Shaker and other voltage-gated K(+) (K(V)) channels. Yet BK and K(V) channels share many conserved charged residues in transmembrane segments S1-S4. We mutated these residues individually in mSlo1 BK channels to determine their role in voltage gating, and characterized the voltage dependence of steady-state activation (P(o)) and I(K) kinetics (tau(I(K))) over an extended voltage range in 0-50 microM [Ca(2+)](i). mSlo1 contains several positively charged arginines in S4, but only one (R213) together with residues in S2 (D153, R167) and S3 (D186) are potentially voltage sensing based on the ability of charge-altering mutations to reduce the maximal voltage dependence of P(O). The voltage dependence of P(O) and tau(I(K)) at extreme negative potentials was also reduced, implying that the closed-open conformational change and voltage sensor activation share a common source of gating charge. Although the position of charged residues in the BK and K(V) channel sequence appears conserved, the distribution of voltage-sensing residues is not. Thus the weak voltage dependence of BK channel activation does not merely reflect a lack of charge but likely differences with respect to K(V) channels in the position and movement of charged residues within the electric field. Although mutation of most sites in S1-S4 did not reduce gating charge, they often altered the equilibrium constant for voltage sensor activation. In particular, neutralization of R207 or R210 in S4 stabilizes the activated state by 3-7 kcal mol(-1), indicating a strong contribution of non-voltage-sensing residues to channel function, consistent with their participation in state-dependent salt bridge interactions. Mutations in S4 and S3 (R210E, D186A, and E180A) also unexpectedly weakened the allosteric coupling of voltage sensor activation to channel opening. The implications of our findings for BK channel voltage gating and general mechanisms of voltage sensor activation are discussed.  相似文献   

2.
Transient receptor potential vanilloid subtype I (TRPV1) is a thermosensory ion channel that is also gated by chemical substances such as vanilloids. Adjacent to the channel gate, this polymodal thermoTRP channel displays a TRP domain, referred to as AD1, that plays a role in subunit association and channel gating. Previous studies have shown that swapping the AD1 in TRPV1 with the cognate from the TRPV2 channel (AD2) reduces protein expression and produces a nonfunctional chimeric channel (TRPV1-AD2). Here, we used a stepwise, sequential, cumulative site-directed mutagenesis approach, based on rebuilding the AD1 domain in the TRPV1-AD2 chimera, to unveil the minimum number of amino acids needed to restore protein expression and polymodal channel activity. Unexpectedly, we found that virtually full restitution of the AD1 sequence is required to reinstate channel expression and responses to capsaicin, temperature, and voltage. This strategy identified E692, R701, and T704 in the TRP domain as important for TRPV1 activity. Even conservative mutagenesis at these sites (E692D/R701K/T704S) impaired channel expression and abolished TRPV1 activity. However, the sole mutation of these positions in the TRPV1-AD2 chimera (D692E/K701R/S704T) was not sufficient to rescue channel gating, implying that other residues in the TRP domain are necessary to endow activity to TRPV1-AD2. A biophysical analysis of a functional chimera suggested that mutations in the TRP domain raised the energetics of channel gating by altering the coupling of stimuli sensing and pore opening. These findings indicate that inter- and/or intrasubunit interactions in the TRP domain are essential for correct TRPV1 gating.  相似文献   

3.
The transient receptor potential vanilloid 2 (TRPV2) ion channel is activated by a chemical ligand (2-aminoethoxydiphenyl borate; 2-APB), noxious heat and mechanical stimulation. In a heterologous mammalian cell expression system, the oxidant chloramine T (ChT) sensitizes TRPV2 activation in response to 2-APB and heat by oxidation of methionine residues at positions 528 and 607 in rat TRPV2. Here, we used a Xenopus oocyte expression system to determine whether ChT-mediated oxidation can also sensitize TRPV2 to mechanical stimulation. In this system, we confirmed that ChT sensitized TRPV2 activation in response to 2-APB and heat, but we detected no sensitization to mechanical stimulation. This result suggests that the activation mechanism of TRPV2 by a chemical ligand and heat differs from that for mechanical stimulation. Further, we demonstrated that two-electrode voltage clamp recording in the Xenopus oocyte expression system is an excellent format for high throughput analysis of oxidization of redox-sensitive TRP channels.  相似文献   

4.
This study was carried out to determine the effect of 2-aminoethoxydiphenyl borate (2-APB), a common activator of transient receptor potential vanilloid (TRPV) type 1, 2, and 3 channels, on cardiorespiratory reflexes, pulmonary C fiber afferents, and isolated pulmonary capsaicin-sensitive neurons. In anesthetized, spontaneously breathing rats, intravenous bolus injection of 2-APB elicited the pulmonary chemoreflex responses, characterized by apnea, bradycardia, and hypotension. After perineural treatment of both cervical vagi with capsaicin to block the conduction of C fibers, 2-APB no longer evoked any of these reflex responses. In open-chest and artificially ventilated rats, 2-APB evoked an abrupt and intense discharge in vagal pulmonary C fibers in a dose-dependent manner. The stimulation of C fibers by 2-APB was attenuated but not abolished by capsazepine, a selective antagonist of the TRPV1, which completely blocked the response to capsaicin in these C fiber afferents. In isolated pulmonary capsaicin-sensitive neurons, 2-APB concentration dependently evoked an inward current that was partially inhibited by capsazepine but almost completely abolished by ruthenium red, an effective blocker of all TRPV channels. In conclusion, 2-APB evokes a consistent and distinct stimulatory effect on pulmonary C fibers in vivo and on isolated pulmonary capsaicin-sensitive neurons in vitro. These results establish the functional evidence demonstrating that TRPV1, V2, and V3 channels are expressed on these sensory neurons and their terminals.  相似文献   

5.
Transient receptor potential vanilloid 3 (TRPV3), robustly expressed in the skin, is a nonselective calcium-permeable cation channel activated by warm temperature, voltage, and certain chemicals. Natural monoterpenoid carvacrol from plant oregano is a known skin sensitizer or allergen that specifically activates TRPV3 channel. However, how carvacrol activates TRPV3 mechanistically remains to be understood. Here, we describe the molecular determinants for chemical activation of TRPV3 by the agonist carvacrol. Patch clamp recordings reveal that carvacrol activates TRPV3 in a concentration-dependent manner, with an EC50 of 0.2 mM, by increasing the probability of single-channel open conformation. Molecular docking of carvacrol into cryo-EM structure of TRPV3 combined with site-directed mutagenesis further identified a unique binding pocket formed by the channel S2-S3 linker important for mediating this interaction. Within the binding pocket consisting of four residues (Ile505, Leu508, Arg509, and Asp512), we report that Leu508 is the most critical residue for the activation of TRPV3 by carvacrol, but not 2-APB, a widely used nonspecific agonist and TRP channel modulator. Our findings demonstrate a direct binding of carvacrol to TRPV3 by targeting the channel S2-S3 linker that serves as a critical domain for chemical-mediated activation of TRPV3. We also propose that carvacrol can function as a molecular tool in the design of novel specific TRPV3 modulators for the further understanding of TRPV3 channel pharmacology.  相似文献   

6.
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) has been recognized as an important activator of certain transient receptor potential (TRP) channels. More specifically, TRPV1 is a pain receptor activated by a wide range of stimuli. However, whether or not PI(4,5)P2 is a TRPV1 agonist remains open to debate. Utilizing a combined approach of mutagenesis and molecular modeling, we identified a PI(4,5)P2 binding site located between the TRP box and the S4-S5 linker. At this site, PI(4,5)P2 interacts with the amino acid residues Arg-575 and Arg-579 in the S4-S5 linker and with Lys-694 in the TRP box. We confirmed that PI(4,5)P2 behaves as a channel agonist and found that Arg-575, Arg-579, and Lys-694 mutations to alanine reduce PI(4,5)P2 binding affinity. Additionally, in silico mutations R575A, R579A, and K694A showed that the reduction in binding affinity results from the delocalization of PI(4,5)P2 in the binding pocket. Molecular dynamics simulations indicate that PI(4,5)P2 binding induces conformational rearrangements of the structure formed by S6 and the TRP domain, which cause an opening of the lower TRPV1 channel gate.  相似文献   

7.
Transient receptor potential vanilloid 1 (TRPV1) is a voltage-dependent non-selective cation channel activated by capsaicin, the main pungent ingredient of chili peppers, and noxious heat. Although TRPV1 channels produce outwardly rectifying currents even in the absence of capsaicin, little is known about the regulation mechanism of the TRPV1 currents. In the present study, we found that intracellular ATP regulates the basal activities of TRPV1 channels in a concentration-dependent manner. The ATP-dependent regulation of TRPV1 channels was mediated by phosphoinositides. Moreover, an increase in intracellular ATP concentration negatively shifted voltage-dependent activation of TRPV1 channels. These results suggest that the ATP-dependent production of phosphoinositides regulates the voltage-dependent gating of the basal TRPV1 channel activities in the absence of capsaicin.  相似文献   

8.
The voltage sensor is a four-transmembrane helix bundle (S1-S4) that couples changes in membrane potential to conformational alterations in voltage-gated ion channels leading to pore opening and ion conductance. Although the structure of the voltage sensor in activated potassium channels is available, the conformation of the voltage sensor at rest is still obscure, limiting our understanding of the voltage-sensing mechanism. By employing a heterologously expressed Bacillus halodurans sodium channel (NaChBac), we defined constraints that affect the positioning and depolarization-induced outward motion of the S4 segment. We compared macroscopic currents mediated by NaChBac and mutants in which E43 on the S1 segment and the two outermost arginines (R1 and R2) on S4 were substituted. Neutralization of the negatively charged E43 (E43C) had a significant effect on channel gating. A double-mutant cycle analysis of E43 and R1 or R2 suggested changes in pairing during channel activation, implying that the interaction of E43 with R1 stabilizes the voltage sensor in its closed/available state, whereas interaction of E43 with R2 stabilizes the channel open/unavailable state. These constraints on S4 dynamics that define its stepwise movement upon channel activation and positioning at rest are novel, to the best of our knowledge, and compatible with the helical-screw and electrostatic models of S4 motion.  相似文献   

9.
As a prototype cellular sensor, the TRPV1 cation channel undergoes a closed-to-open gating transition in response to various physical and chemical stimuli including noxious heat. Despite recent progress, the molecular mechanism of heat activation of TRPV1 gating remains enigmatic. Toward decrypting the structural basis of TRPV1 heat activation, we performed extensive molecular dynamics simulations (with cumulative simulation time of ~11 μs) for the wild-type channel and a constitutively active double mutant at different temperatures (30, 60, and 72°C), starting from a high-resolution closed-channel structure of TRPV1 solved by cryo-electron microscopy. In the wild-type simulations, we observed heat-activated conformational changes (e.g., expansion or contraction) in various key domains of TRPV1 (e.g., the S2-S3 and S4-S5 linkers) to prime the channel for gating. These conformational changes involve a number of dynamic hydrogen-bond interactions that were validated with previous mutational studies. Next, our mutant simulations observed channel opening after a series of conformational changes that propagate from the channel periphery to the channel pore via key intermediate domains (including the S2-S3 and S4-S5 linkers). The gating transition is accompanied by a large increase in the protein-water electrostatic interaction energy, which supports the contribution of desolvation of polar/charged residues to the temperature-sensitive TRPV1 gating. Taken together, our molecular dynamics simulations and analyses offered, to our knowledge, new structural, dynamic, and energetic information to guide future mutagenesis and functional studies of the TRPV1 channels and development of TRPV1-targeting drugs.  相似文献   

10.
Vanilloid receptor 1 (TRPV1), a membrane-associated cation channel, is activated by the pungent vanilloid from chili peppers, capsaicin, and the ultra potent vanilloid from Euphorbia resinifera, resiniferatoxin (RTX), as well as by physical stimuli (heat and protons) and proposed endogenous ligands (anandamide, N-arachidonyldopamine, N-oleoyldopamine, and products of lipoxygenase). Only limited information is available in TRPV1 on the residues that contribute to vanilloid activation. Interestingly, rabbits have been suggested to be insensitive to capsaicin and have been shown to lack detectable [(3)H]RTX binding in membranes prepared from their dorsal root ganglia. We have cloned rabbit TRPV1 (oTRPV1) and report that it exhibits high homology to rat and human TRPV1. Like its mammalian orthologs, oTRPV1 is selectively expressed in sensory neurons and is sensitive to protons and heat activation but is 100-fold less sensitive to vanilloid activation than either rat or human. Here we identify key residues (Met(547) and Thr(550)) in transmembrane regions 3 and 4 (TM3/4) of rat and human TRPV1 that confer vanilloid sensitivity, [(3)H]RTX binding and competitive antagonist binding to rabbit TRPV1. We also show that these residues differentially affect ligand recognition as well as the assays of functional response versus ligand binding. Furthermore, these residues account for the reported pharmacological differences of RTX, PPAHV (phorbol 12-phenyl-acetate 13-acetate 20-homovanillate) and capsazepine between human and rat TRPV1. Based on our data we propose a model of the TM3/4 region of TRPV1 bound to capsaicin or RTX that may aid in the development of potent TRPV1 antagonists with utility in the treatment of sensory disorders.  相似文献   

11.
The vanilloid receptor 1 (VR1 or TRPV1) ion channel is activated by noxious heat, low pH and by a variety of vanilloid-related compounds. The antagonist, capsazepine is more effective at inhibiting the human TRPV1 response to pH 5.5 than the rat TRPV1 response to this stimulus. Mutation of rat TRPV1 at three positions in the S3 to S4 region, to the corresponding human amino acid residues I514M, V518L, and M547L decreased the IC(50) values for capsazepine inhibition of the pH 5.5 response from >10,000 nm to 924 +/- 241 nm in [Ca(2+)](i) assays and increased capsazepine inhibition of the capsaicin response to levels seen for human TRPV1. We have previously noted that phorbol 12-phenylacetate 13-acetate 20-homovanillate (PPAHV) is a strong agonist of rat TRPV1 but not human TRPV1 in [Ca(2+)](i) assays (1). Mutation of methionine 547 in S4 of rat TRPV1 to leucine, found in human TRPV1 (M547L), reduced the ability of PPAHV to activate TRPV1 by approximately 20-fold. The reciprocal mutation of human TRPV1 (L547M) enabled the human receptor to respond to PPAHV. These mutations did not significantly affect the agonist activity of capsaicin, resiniferatoxin (RTX) or olvanil in [Ca(2+)](i) assays. Introducing the equivalent mutation into guinea pig TRPV1 (L549M) increased the agonist potency of PPAHV by > 10-fold in the [Ca(2+)](i) assay and increased the amplitude of the evoked current. The rat M547L mutation reduced the affinity of RTX binding. Thus, amino acids within the S2-S4 region are important sites of agonist and antagonist interaction with TRPV1.  相似文献   

12.
Voltage-dependent ion channels control changes in ion permeability in response to membrane potential changes. The voltage sensor in channel proteins consists of the highly positively charged segment, S4, and the negatively charged segments, S2 and S3. The process involved in the integration of the protein into the membrane remains to be elucidated. In this study, we used in vitro translation and translocation experiments to evaluate interactions between residues in the voltage sensor of a hyperpolarization-activated potassium channel, KAT1, and their effect on the final topology in the endoplasmic reticulum (ER) membrane. A D95V mutation in S2 showed less S3-S4 integration into the membrane, whereas a D105V mutation allowed S4 to be released into the ER lumen. These results indicate that Asp(95) assists in the membrane insertion of S3-S4 and that Asp(105) helps in preventing S4 from being releasing into the ER lumen. The charge reversal mutation, R171D, in S4 rescued the D105R mutation and prevented S4 release into the ER lumen. A series of constructs containing different C-terminal truncations of S4 showed that Arg(174) was required for correct integration of S3 and S4 into the membrane. Interactions between Asp(105) and Arg(171) and between negative residues in S2 or S3 and Arg(174) may be formed transiently during membrane integration. These data clarify the role of charged residues in S2, S3, and S4 and identify posttranslational electrostatic interactions between charged residues that are required to achieve the correct voltage sensor topology in the ER membrane.  相似文献   

13.
Gating modifiers of voltage-gated sodium channels (Na(v)s) are important tools in neuroscience research and may have therapeutic potential in medicinal disorders. Analysis of the bioactive surface of the scorpion beta-toxin Css4 (from Centruroides suffusus suffusus) toward rat brain (rNa(v)1.2a) and skeletal muscle (rNa(v)1.4) channels using binding studies revealed commonality but also substantial differences, which were used to design a specific activator, Css4(F14A/E15A/E28R), of rNa(v)1.4 expressed in Xenopus oocytes. The therapeutic potential of Css4(F14A/E15A/E28R) was tested using an rNa(v)1.4 mutant carrying the same mutation present in the genetic disorder hypokalemic periodic paralysis. The activator restored the impaired gating properties of the mutant channel expressed in oocytes, thus offering a tentative new means for treatment of neuromuscular disorders with reduced muscle excitability. Mutant double cycle analysis employing toxin residues involved in the construction of Css4(F14A/E15A/E28R) and residues whose equivalents in the rat brain channel rNa(v)1.2a were shown to affect Css4 binding revealed significant coupling energy (>1.3 kcal/mol) between F14A and E592A at Domain-2/voltage sensor segments 1-2 (D2/S1-S2), R27Q and E1251N at D3/SS2-S6, and E28R with both E650A at D2/S3-S4 and E1251N at D3/SS2-S6. These results show that despite the differences in interactions with the rat brain and skeletal muscle Na(v)s, Css4 recognizes a similar region on both channel subtypes. Moreover, our data indicate that the S3-S4 loop of the voltage sensor module in Domain-2 is in very close proximity to the SS2-S6 segment of the pore module of Domain-3 in rNa(v)1.4. This is the first experimental evidence that the inter-domain spatial organization of mammalian Na(v)s resembles that of voltage-gated potassium channels.  相似文献   

14.
Transient receptor potential vanilloid 1 (TRPV1) ion channel serves as the detector for noxious temperature above 42 °C, pungent chemicals like capsaicin, and acidic extracellular pH. This channel has also been shown to function as an ionotropic cannabinoid receptor. Despite the solving of high-resolution three-dimensional structures of TRPV1, how endocannabinoids such as anandamide and N-arachidonoyl dopamine bind to and activate this channel remains largely unknown. Here we employed a combination of patch-clamp recording, site-directed mutagenesis, and molecular docking techniques to investigate how the endocannabinoids structurally bind to and open the TRPV1 ion channel. We found that these endocannabinoid ligands bind to the vanilloid-binding pocket of TRPV1 in the “tail-up, head-down” configuration, similar to capsaicin; however, there is a unique interaction with TRPV1 Y512 residue critical for endocannabinoid activation of TRPV1 channels. These data suggest that a differential structural mechanism is involved in TRPV1 activation by endocannabinoids compared with the classic agonist capsaicin.  相似文献   

15.
Transient receptor potential vanilloid 1 (TRPV1) functions as a polymodal nociceptor and is activated by several vanilloids, including capsaicin, protons and heat. Although TRPV1 channels are widely distributed in the brain, their roles remain unclear. Here, we investigated the roles of TRPV1 in cytotoxic processes using TRPV1-expressing cultured rat cortical neurons. Capsaicin induced severe neuronal death with apoptotic features, which was completely inhibited by the TRPV1 antagonist capsazepine and was dependent on extracellular Ca2+ influx. Interestingly, nifedipine, a specific L-type Ca2+ channel blocker, attenuated capsaicin cytotoxicity, even when applied 2-4 h after the capsaicin. ERK inhibitor PD98059 and several antioxidants, but not the JNK and p38 inhibitors, attenuated capsaicin cytotoxicity. Together, these data indicate that TRPV1 activation triggers apoptotic cell death of rat cortical cultures via L-type Ca2+ channel opening, Ca2+ influx, ERK phosphorylation, and reactive oxygen species production.  相似文献   

16.
Our recent study (Ni D, Lee LY. Am J Physiol Lung Cell Mol Physiol 294: L563-L571, 2008) demonstrated that the responses of rat pulmonary sensory neurons to transient receptor potential vanilloid (TRPV)1 activators were enhanced by increasing temperature, but the role of the TPRV1 channel in this potentiating effect could not be definitively evaluated. In the present study, we used whole cell perforated patch-clamp technique to compare the responses of isolated nodose/jugular sensory neurons to chemical activators and increasing temperature between wild-type (WT) and TRPV1-null (TRPV1-/-) mice. Our results showed that, in voltage-clamp mode, the peak inward current evoked by hyperthermia was not different between WT and TRPV1-/- neurons; however, the inward current evoked by 2-aminoethoxydiphenyl borate (2-APB), a common activator of TRPV1-3 channels, was greatly potentiated by increasing temperature from 36 to 40.5 degrees C in WT neurons (n = 9; P < 0.01) but was not affected by the same change in temperature in TRPV1-/- neurons (n = 9; P = 0.54). Similarly, the inward current evoked by acid (pH 5.5), an activator of both TRPV1 channel and the acid-sensing ion channel, was enhanced by increasing temperature (n = 7; P < 0.05) in WT neurons, and this potentiating effect was absent in TRPV1-/- neurons (n = 13; P = 0.11). These results demonstrated that deletion of the TRPV1 channel does not significantly alter the stimulatory effect of hyperthermia on nodose/jugular neurons but eliminates the potentiating effect of increasing temperature on the responses of these neurons to nonselective TRPV1 channel activators. This study further suggests that a positive interaction between these chemical activators and increasing temperature at the TRPV1 channel is primarily responsible for the hyperthermia-induced sensitization of these neurons.  相似文献   

17.
The TRPV1 ion channel serves as an integrator of noxious stimuli with its activation linked to pain and neurogenic inflammation. Cholesterol, a major component of cell membranes, modifies the function of several types of ion channels. Here, using measurements of capsaicin-activated currents in excised patches from TRPV1-expressing HEK cells, we show that enrichment with cholesterol, but not its diastereoisomer epicholesterol, markedly decreased wild-type rat TRPV1 currents. Substitutions in the S5 helix, rTRPV1-R579D, and rTRPV1-F582Q, decreased this cholesterol response and rTRPV1-L585I was insensitive to cholesterol addition. Two human TRPV1 variants, with different amino acids at position 585, had different responses to cholesterol with hTRPV1-Ile(585) being insensitive to this molecule. However, hTRPV1-I585L was inhibited by cholesterol addition similar to rTRPV1 with the same S5 sequence. In the absence of capsaicin, cholesterol enrichment also inhibited TRPV1 currents induced by elevated temperature and voltage. These data suggest that there is a cholesterol-binding site in TRPV1 and that the functions of TRPV1 depend on the genetic variant and membrane cholesterol content.  相似文献   

18.
Nociceptive neurons in the peripheral nervous system detect noxious stimuli and report the information to the central nervous system. Most nociceptive neurons express the vanilloid receptor, TRPV1, a nonselective cation channel gated by vanilloid ligands such as capsaicin, the pungent essence of chili peppers. Here, we report the synthesis and biological application of two caged vanilloids: biologically inert precursors that, when photolyzed, release bioactive vanilloid ligands. The two caged vanilloids, Nb-VNA and Nv-VNA, are photoreleased with quantum efficiency of 0.13 and 0.041, respectively. Under flash photolysis conditions, photorelease of Nb-VNA and Nv-VNA is 95% complete in approximately 40 micros and approximately 125 micros, respectively. Through 1-photon excitation with ultraviolet light (360 nm), or 2-photon excitation with red light (720 nm), the caged vanilloids can be photoreleased in situ to activate TRPV1 receptors on nociceptive neurons. The consequent increase in intracellular free Ca(2+) concentration ([Ca(2+)](i)) can be visualized by laser-scanning confocal imaging of neurons loaded with the fluorescent Ca(2+) indicator, fluo-3. Stimulation results from TRPV1 receptor activation, because the response is blocked by capsazepine, a selective TRPV1 antagonist. In Ca(2+)-free extracellular medium, photoreleased vanilloid can still elevate [Ca(2+)](i), which suggests that TRPV1 receptors also reside on endomembranes in neurons and can mediate Ca(2+) release from intracellular stores. Notably, whole-cell voltage clamp measurements showed that flash photorelease of vanilloid can activate TRPV1 channels in <4 ms at 22 degrees C. In combination with 1- or 2-photon excitation, caged vanilloids are a powerful tool for probing morphologically distinct structures of nociceptive sensory neurons with high spatial and temporal precision.  相似文献   

19.
The Transient Receptor Potential Vanilloid 1 (TRPV1, vanilloid receptor 1) ion channel plays a key role in the perception of thermal and inflammatory pain, however, its molecular environment in dorsal root ganglia (DRG) is largely unexplored. Utilizing a panel of sequence-directed antibodies against TRPV1 protein and mouse DRG membranes, the channel complex from mouse DRG was detergent-solubilized, isolated by immunoprecipitation and subsequently analyzed by mass spectrometry. A number of potential TRPV1 interaction partners were identified, among them cytoskeletal proteins, signal transduction molecules, and established ion channel subunits. Based on stringent specificity criteria, the voltage-gated K+ channel beta 2 subunit (Kvβ2), an accessory subunit of voltage-gated K+ channels, was identified of being associated with native TRPV1 channels. Reverse co-immunoprecipitation and antibody co-staining experiments confirmed TRPV1/Kvβ2 association. Biotinylation assays in the presence of Kvβ2 demonstrated increased cell surface expression levels of TRPV1, while patch-clamp experiments resulted in a significant increase of TRPV1 sensitivity to capsaicin. Our work shows, for the first time, the association of a Kvβ subunit with TRPV1 channels, and suggests that such interaction may play a role in TRPV1 channel trafficking to the plasma membrane.  相似文献   

20.
The vanilloid receptor TRPV1 is a polymodal nonselective cation channel of nociceptive sensory neurons involved in the perception of inflammatory pain. TRPV1 exhibits desensitization in a Ca2+-dependent manner upon repeated activation by capsaicin or protons. The cAMP-dependent protein kinase (PKA) decreases desensitization of TRPV1 by directly phosphorylating the channel presumably at sites Ser116 and Thr370. In the present study we investigated the influence of protein phosphatase 2B (calcineurin) on Ca2+-dependent desensitization of capsaicin- and proton-activated currents. By using site-directed mutagenesis, we generated point mutations at PKA and protein kinase C consensus sites and studied wild type (WT) and mutant channels transiently expressed in HEK293t or HeLa cells under whole cell voltage clamp. We found that intracellular application of the cyclosporin A.cyclophilin A complex (CsA.CyP), a specific inhibitor of calcineurin, significantly decreased desensitization of capsaicin- or proton-activated TRPV1-WT currents. This effect was similar to that obtained by extracellular application of forskolin (FSK), an indirect activator of PKA. Simultaneous applications of CsA.CyP and FSK in varying concentrations suggested that these substances acted independently from each other. In mutation T370A, application of CsA.CyP did not reduce desensitization of capsaicin-activated currents as compared with WT and to mutant channels S116A and T144A. In a double mutation at candidate protein kinase C phosphorylation sites, application of CsA.CyP or FSK decreased desensitization of capsaicin-activated currents similar to WT channels. We conclude that Ca2+-dependent desensitization of TRPV1 might be in part regulated through channel dephosphorylation by calcineurin and channel phosphorylation by PKA possibly involving Thr370 as a key amino acid residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号