首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We have isolated and characterized two multicopy suppressors, mssA and mssB, which suppress the cold-sensitive growth phenotype of the smbA2 mutant of Escherichia coli. The mssA gene is located immediately upstream of the rpsA gene (20.5 min). MssA protein was found to be related to nucleoside monophosphate kinases. The mssB, gene was found to be identical to the deaD gene (69 min), which encodes a putative RNA helicase. The SmbA protein belongs to the aspartokinase family and probably represents a new, fourth aspartokinase species in E. coli. Expression of the smbA gene is essential for cell growth. The smbA2 mutant shows a pleiotropic phenotype characterized by cold-sensitive growth, hypersensitivity to the detergent sodium dodecyl sulfate, and formation of a translucent segment at midcell or at a pole of the cell when grown at 22° C. In addition, some cellular proteins were either increased or decreased in amount in the smbA2 mutant. SmbA may be a regulatory factor in the expression of a battery of genes. MssA and MssB might also relate to the expression of some of these genes. Multiple copies mssA and mssB, suppressed the various phenotypic features of the smbA2 mutant to various extents, suppressing the cold-sensitive growth completely.  相似文献   

2.
K Yamanaka  T Ogura  H Niki    S Hiraga 《Journal of bacteriology》1992,174(23):7517-7526
The mukB gene encodes a protein involved in chromosome partitioning in Escherichia coli. To study the function of this protein, we isolated from the temperature-sensitive mukB null mutant and characterized 56 suppressor mutants which could grow at 42 degrees C. Ten of the mutants also showed cold-sensitive growth at 22 degrees C. Using one of the cold-sensitive mutants as host, the wild type of the suppressor gene was cloned. The cloned suppressor gene complemented all of the 56 suppressor mutations. DNA sequencing revealed the presence of an open reading frame of 723 bp which could encode a protein of 25,953 Da. The gene product was indeed detected. The previously undiscovered gene, named smbA (suppressor of mukB), is located at 4 min on the E. coli chromosome, between the tsf and frr genes. The smbA gene is essential for cell proliferation in the range from 22 to 42 degrees C. Cells which lacked the SmbA protein ceased macromolecular synthesis. The smbA mutants are sensitive to a detergent, sodium dodecyl sulfate, and they show a novel morphological phenotype under nonpermissive conditions, suggesting a defect in specific membrane sites.  相似文献   

3.
Abstract The effects of heat shock upon the expression of several developmentally regulated genes of Myxococcus xanthus were examined. No effects were observed on levels or timing of developmentally regulated β-galactosidase expression in eight randomly selected Tn5lac insertion mutants. However, heat shock significantly affected the fruiting behavior of temperature-sensitive aggregation ( tag ) mutants of M. xanthus . The tag mutant phenotype exhibits the normal aggregation of cells to form fruiting bodies at temperatures < 34°C, but cells fail to aggregate at temperatures ⩾ 34°C. Heat shock administered to tag mutant strains prior to starvation prohibited fruiting body formation at permissive temperatures. Additionally, tag mutant strains were found to be extremely sensitive to killing at 40°C. Heat shock was also found to increase tagA and tagE expression by 22 and 47%, respectively. Mutations in tagA blocked heat shock induced expression of tagE .  相似文献   

4.
Aims:  To assess the ability of Listeria monocytogenes to form biofilm on different food-contact surfaces with regard to different temperatures, cellular hydrophobicity and motility.
Methods and Results:  Forty-four L. monocytogenes strains from food and food environment were tested for biofilm formation by crystal violet staining. Biofilm levels were significantly higher on glass at 4, 12 and 22°C, as compared with polystyrene and stainless steel. At 37°C, L. monocytogenes produced biofilm at significantly higher levels on glass and stainless steel, as compared with polystyrene. Hydrophobicity was significantly ( P  < 0·05) higher at 37°C than at 4, 12 and 22°C. Thirty (68·2%) of 44 strains tested showed swimming at 22°C and 4 (9·1%) of those were also motile at 12°C. No correlation was observed between swimming and biofilm production.
Conclusions:  L. monocytogenes can adhere to and form biofilms on food-processing surfaces. Biofilm formation is significantly influenced by temperature, probably modifying cell surface hydrophobicity.
Significance and Impacts of the Study:  Biofilm formation creates major problems in the food industry because it may represent an important source of food contamination. Our results are therefore important in finding ways to prevent contamination because they contribute to a better understanding on how L. monocytogenes can establish biofilms in food industry and therefore survive in the processing environment.  相似文献   

5.
Stages of prophase of living primary spermatocytes were determined by use of Rose culture chambers (1). Dissociated primary spermatocytes were cultured at low cell-density in a collagen matrix at 22°C or 27°C and the percentages of cells which had progressed from various stages in prophase through meiosis to various advanced stages were measured. In a standard medium (Leibovitz-15 + 10% fetal bovine serum), more than 70% of the primary spermatocytes at stages beyond the pachytene stage could advance to round spermatids with flagella within a few days at 22°C. The percentages of cells that progressed from stages before the late zygotene stage were less, but at least 13 % of leptotene cells reached metaphase I within a week at 22°C. The percentage of cells that progressed was slightly lower at 27°C than at 22°C: 6.3 and 4.3 days were required for progress from leptotene to metaphase I at 22°C and 27C, respectively. Fetal bovine serum was not indispensable for progression through meiosis. Moreover, 0.5–5.0 μg/ml ovine follicle stimulating hormone (NIAMDD-o-FSH-13), 0.01–1.0 μg/ml 5α-dihydrotestosterone and 1.0 μg/ml testosterone propionate had no significant effect in increasing the percentage of cell progression at 22°C.  相似文献   

6.
Further evidence is presented here for previously reported connections between the syntheses of two envelope proteins X and Y, cell division and DNA replication, respectively. On addition of 1% NaCl to an Escherichia coli temperature-sensitive mutant at 41 °C (non-permissive temperature) the phenotype, inability to synthesize DNA but continued ability to divide at 41 °C in the absence of NaCl, becomes wild-type. The syntheses of proteins X and Y also are converted to the wild-type pattern by NaCl. Furthermore, inhibition of DNA synthesis by thymidine starvation at 41 °C in the presence of NaCl changes the cell envelope proteins as with the wild-type, in contrast to altered syntheses in the absence of NaCl. The effect of nalidixic acid on the mutant and a recA strain are also studied for changes in envelope proteins. All of these changes are consistent with the originally proposed relationships.  相似文献   

7.
Abstract.  The influence of temperature on the insect cell line, BmN, derived from the silkworm, Bombyx mori is investigated. These cells proliferate at an accelerated pace as the temperature increases from 22 to 30 °C, but the growth rate slows at 34 °C, and proliferation stops at 38 °C. At high temperatures, abnormal cellular morphology is observed. Cells treated at 38 °C have cytoplasmic bilateral protrusions and they gradually aggregate and float in the medium. BmN cells without proliferation at 38 °C are viable but have reduced DNA synthesis. At high temperatures, the cell cycle of BmN cells halts at the G2 phase. After heat treatment of the larvae, an accumulation of larval haemocytes with high DNA content is found, which suggests that the cell cycle arrest at G2 also occurs in the silkworm at high temperatures.  相似文献   

8.
Abstract A reduced pigmentation mutant was isolated from Aureobasidium pullulans ATCC 42023 by chemical mutagenesis and was subsequently characterized. The pigment melanin was present not only in A. pullulans cells but also contaminated the elaborated polysaccharide and thus, was measured in both fractions. Cellular and polysaccharide melanin levels of the mutant strain were at least 11-fold and 18-fold reduced, respectivelu, compared toits parent strain after 7 days of growth at 30°C whether sucrose or glucose served as the carbon source in the culture medium. Polysaccharide and cell dry weight levels of the mutant were very similar to those observed for the parent after growth on sucrose or glucose as the source of carbon over a period of 7 days at 30°C. The pullulan content of the polysaccharide produced by the parent or mutant strain was lower for sucrose-grown cells than for glucose-grown cells. It was also noted that the pullulan content of the polysaccharide elaborated by the mutant strain was slightly higher than that of the polysaccharide produced by the parent strain after growth on either sucrose or glucose.  相似文献   

9.
Incubating conditions which induced actin paracrystal-like intracellular structures (actin rods) were investigated by using several cell lines. We have found that an incubation of cells of a mouse fibroblastic cell line, C3H-2K, in an isotonic solution of NaCl containing 1 mM MgCl2, 1 mM CaCl2 and 10 mM MES, pH 6.5, induced disintegration of stress fibers and formation of actin rods in the cytoplasm. Actin rods were induced also by incubating in salt buffers in which Na+ of the above solution was substituted by most cations except K+ or Rb+. When the actin rod-forming cells were transferred back to DMEM containing 10% FBS, actin rods disappeared and stress fibers subsequently re-formed within 1 h at 37 degrees C. Although the induction was observed in NaCl buffer at a wide range of pH values (5.5-10), the optimal pH was 6.5. Formation of actin rods is dependent upon cellular metabolism, as it was inhibited at 4 degrees C, or by metabolic inhibitors. Incubation in NaCl buffer induced actin rods in HeLa, L, NRK, BALB/c 3T3 and Swiss 3T3 cells, but not in CEF or MEF cells. A decrease in cell volume was observed parallel with the induction of actin rods, except for CEF and MEF cells. Alterations in intracellular concentrations of Na, K or Ca were not correlated with the induction, however. Actin rods were also induced in C3H-2K cells by a brief treatment with non-ionic detergents. Tween 80 at concentrations as low as 0.003% was effective for the induction, but did not increase the passive membrane transport of p-nitrophenylphosphate. In contrast to the induction by NaCl buffer, treatment with Tween 80 induced numerous tiny actin rods at 4 degrees C, which became larger when further incubated at 37 degrees C. Double immunofluorescence staining with anti-actin antibody and anti-vinculin antibody showed that vinculin plaques remained at least in an early stage of the actin rod formation. We discuss the mechanism for the induction of actin rods based upon the present findings.  相似文献   

10.
L E McGann  H E Frey 《Cryobiology》1972,9(2):107-111
Survival of unprotected Chinese hamster cells frozen to −196 °C in tissue culture medium or exposed to a 6X NaCl solution is a function of the time in the cell cycle at which freezing or the exposure to hypertonicity takes place. In both cases, the cells are sensitive to exposure in M and G2, and are resistant in late S. The survival curves are different in late G1 or early S. This indicates that damage due to hypertonicity is not the only mode of injury present when cells are frozen to −196 °C.  相似文献   

11.
Abstract Stationary phase, yeast-form cells of Candida albicans grown in glucose-yeast extract medium were shifted to N -acetylglucosamine (GlcNAc) and/or glucose medium, and the pattern of protein synthesized under conditions of a progressive decrease in the rate of total protein synthesis was analyzed by SDS-PAGE and autoradiography.
Marked temporal modulations in the rate of synthesis of some cytoplasmic proteins were detected both in cells forming germ-tubes (at 37°C) and in yeast cells (at 28°C). The major modulated components showed molecular weights of 63, 53, 48 and 34 kDa. These products could not be qualified as heat-shock or heat-stroke proteins, because analogous modulations were observed on shifting cells from 28°C to 37°C or from 28°C to 28°C. However, no marked modulations in the synthesis of specific proteins were detected when amino acids were added to the medium fostering germ-tube formation under conditions of unimpaired overall rate of protein synthesis.
It is suggested that the modulations observed in cells incubated in GlcNAc-glucose medium could represent a response to a nutritional stress.  相似文献   

12.
Accumulation of chlorophyll and protochlorophyllide (PChlide) was followed during beterotrophic growth of the pigment mutant C-2A' of Scenedesmus obliquus L. in the darkness at 30 and 20°C. At 30°C the cells remained yellow with accumulation of protochlorophyllide, whereas they became green at 20°C with only traces of protochlorophyllide. The capacity of mutant cells to reduce PChlide to chlorophyllide (Chlide) in the dark with or without addition of 5-aminolevulinic acid as measured in isolated membranes, was high in cells grown at 20°C but negligible at 30°C. The high capacity to reduce PChlide created in cells growing at 20°C was only slightly diminished by exposure of cells to 38°C for 3 h. Mechanisms of temperature-sensitive chlorosis in algae and higher plants are discussed in relation to the results with pigment mutant C-2A' of Scenedesmus obliquus . It is assumed that either an activator of NADPH protochlorophyllide oxidoreductase (EC 1.6.99.1) or a different enzyme system can be activated by lower temperature as by light.  相似文献   

13.
The effect of sodium chloride concentrations (6, 16 and 26% (w/v) NaCl) on the survival of Listeria monocytogenes at low temperatures (10°C and under refrigeration, average 2°C) and frozen (- 18°C) was investigated. All salt concentrations tested were ineffective in reducing numbers over 6 h incubation at low temperatures. Over a longer time (33 d) at low temperatures, the organism grew in 6% NaCl, numbers remained the same in 16% NaCl and numbers declined in 26% NaCl. Although L. monocytogenes was destroyed in 26% NaCl, numbers declined too slowly for immersion in cold brine at this concentration to be a useful bacteriocidal treatment. Storage at - 18°C for 33 d caused no significant reduction in numbers at any of the NaCl concentrations tested.  相似文献   

14.
The effect of combinations of temperature (2°, 3°, 4°, 5°, 8° and 10°C), pH (5·0–7·2) and NaCl (0·1–5·0% w/w) on growth from spores of non-proteolytic Clostridium botulinum types B, E and F was determined using a strictly anaerobic medium. Inoculated media were observed weekly for turbidity, and tests were made for the presence of toxin in conditions that approached the limits of growth. Growth and toxin production were detected at 3°C in 5 weeks, at 4°C in 3/4 weeks and at 5°C in 2/3 weeks. The resulting data define growth/no growth boundaries with respect to low temperature, pH, NaCl and incubation time. This is important in assessment of the risk of growth and toxin production by non-proteolytic Cl. botulinum in minimally processed chilled foods.  相似文献   

15.
Evidence regarding the regulation of cell division has been obtained from the study of septation in a mutant of Escherichia coli. The mutant, MX74T2 ts52, gradually stops dividing when transferred from 30 to 41°C in rich medium, but forms long filaments and continues to synthesize DNA and protein. These filaments serve as test objects for the investigation of the regulation of septation. A synchronous cell division of the filaments is induced after 15 minutes, even at 41°C, by the addition of chloramphenicol (100 μg/ml.), rifampicin (200 μg/ml.), or by transfer to minimal medium. Blocking of protein formation with puromycin (500 μg/ml.) or amino-acid analogues does not permit septation. Thus, septation appears to be coupled to inhibition of peptide bond formation rather than protein synthesis. A model for the control of cell division is proposed in which a small effector molecule that is related to peptide bond formation is needed for septation.  相似文献   

16.
Scenedesmus acutus Meyen was cultured at four temperatures (9.5°, 16.5°, 24°, and 29° C) in standard medium or in medium with filtered water from a Daphnia culture. Growth was significantly reduced at low temperatures. At 9.5° C it took more than a week before formation of eight-celled coenobia occurred in both the absence and presence of water from a Daphnia culture. At higher temperatures, formation of four- and eight-celled coenobia occurred more rapidly and was already observed in the presence of Daphnia water within 2 days. As cultures aged, also in the absence of Daphnia water, four-celled coenobia became dominant. At cold temperature, cell volume initially was significantly larger but declined after 3–4 weeks. Grazer-induced colony formation had occurred independent of the incubation temperature, but the number of cells per colony was increased with declining temperature. The morphological expression may be interpreted as a cyclomorphosis driven by nutrients, temperature, and chemical cues from grazers.  相似文献   

17.
A new thermosensitive mutant of Escherichia coli deficient in cell division was isolated by means of membrane filtration after nitrosoguanidine mutagenesis. The mutant cells grow normally at 30 C but stop dividing immediately after shift to 42 C, resulting in multinucleated filaments lacking septa. The number of colony-forming units does not decrease for at least 6 hr at 42 C. The maximum length of the filaments is 10 to 16 times that of normal cells. Addition of a high concentration of NaCl fails to stimulate cell division at 42 C. The filaments formed at 42 C divide abruptly 30 min after shift to 30 C, and synchronous increase of cell number is shown for 3 hr. The macromolecular synthesis of protein and nucleic acids at 42 C is normal on the whole. The cell division shown after the shift from 42 to 30 C is observed in the absence of thymine, but not in the presence of chloramphenicol or in a medium deficient in amino acids. However, the filament can divide to some extent in the presence of chloramphenicol if some protein synthesis is allowed to proceed at 30 C before the addition of the antibiotic. The elongated cells divide at 42 C provided that they are exposed to 30 C before being shifted to high temperature.  相似文献   

18.
19.
Survival, recoverability and sublethal injury of two strains of Listeria monocytogenes , Scott A and an environmental strain KM, on exposure to sea water at 12·8 or 20·8 °C was determined using in situ diffusion chambers. Plate counts were used to assess recoverability and injury while 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) reduction was used to determine respiratory activity. T90 values (times for 10-fold decreases in numbers of recoverable cells) on non-selective medium (trypticase soya agar with 0·6% yeast extract) at 12·8 and 20·8 °C were 61·7 and 69·2 h for L. monocytogenes Scott A, and 103·0 and 67·0 h for L. monocytogenes KM, respectively. On selective medium (Oxford agar), T90 values at 12·8 and 20·8 °C were 60·6 and 56·9 h for L. monocytogenes Scott A, and 83·0 and 65·9 h for L. monocytogenes KM, respectively. With Scott A, the percentage of sublethally injured cells at 12·8 and 20·8 °C was 1·7 and 17·7%, respectively, while for KM the values were 19·0 and 1·6%, respectively. The fraction of cells reducing CTC but which were not recoverable on plating progressively increased on exposure to sea water. Listeria monocytogenes KM challenged at 58 °C showed an apparent increase in heat resistance after exposure to sea water at 20·8 °C for 7 d ( D 58= 2·64 min) compared with before exposure ( D 58= 1·24). This increase in thermal resistance was not apparent at temperatures greater than 63 °C, and analysis of the best-fit regression lines fitted to the thermal data obtained from the two cell populations indicated that their thermal resistance was not significantly different ( P > 0·05) over the temperature range tested (58–62 °C).  相似文献   

20.
The effects of various concentrations of sodium chloride solutions (0·1%–3%) and different temperatures (4, 10, 20, 30 and 37 °C) on survival of Legionella pneumophila were investigated. It was found that at temperatures between 4 °C and 20 °C, Legionella organisms survived in salt solutions up to 3% NaCl. Only the combination of high temperatures, i. e. 30 °C and 37 °C, with NaCl concentrations over 1·5%, reduced cell numbers significantly. It was interesting to note that the addition of small amounts of NaCl (0·1%–0·5%) enhanced survival of Leg. pneumophila , suggesting a protective effect of NaCl. In order to obtain information about conditions encountered in the environment, the survival experiments were repeated in sterile sea water from the Baltic Sea and the North Sea. The marked bacterial die-off, especially at higher temperatures, was not observed in natural sea water. All these results indicate that Leg. pneumophila can survive in the marine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号