首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
《Cryobiology》2013,66(3):235-241
Metabolic signaling coordinates the transition by hibernating mammals from euthermia into profound torpor. Organ-specific responses by activated p38 mitogen activated protein kinase (MAPK) are known to contribute to this transition. Therefore, we hypothesized that the MAPK-activated protein kinase-2 (MAPKAPK2), a downstream target of p38 MAPK, would also be active in establishing the torpid state. Kinetic parameters of MAPKAPK2 from skeletal muscle of Richardson’s ground squirrels, Spermophilus richardsonii, were analyzed using a fluorescence assay. MAPKAPK2 activity was 27.4 ± 1.27 pmol/min/mg in muscle from euthermic squirrels and decreased by ∼63% during cold torpor, while total protein levels were unchanged (as assessed by immunoblotting). In vitro treatment of MAPKAPK2 via stimulation of endogenous phosphatases and addition of commercial alkaline phosphatase decreased enzyme activity to only ∼3–5% of its original value in muscle extracts from both euthermic and hibernating squirrels suggesting that posttranslational modification suppresses MAPKAPK2 during the transition from euthermic to torpid states. Enzyme S0.5 and nH values for ATP and peptide substrates changed significantly between euthermia and torpor, and also between assays at 22 versus 10 °C but, kinetic parameters were actually closely conserved when values for the euthermic enzyme at 22 °C were directly compared with the hibernator enzyme at 10 °C. Arrhenius plots showed significantly different activation energies of 40.8 ± 0.7 and 54.3 ± 2.7 kJ/mol for the muscle enzyme from euthermic versus torpid animals, respectively but MAPKAPK2 from the two physiological states showed no difference in sensitivity to urea denaturation. Overall, the results show that total activity of MAPKAPK2 is in fact reduced, despite previous findings of p38 MAPK activation, and kinetic parameters are altered when ground squirrels enter torpor but protein stability is not apparently changed. The data suggest that MAPKAPK2 suppression may have a significant role in the differential regulation of muscle target proteins when ground squirrels enter torpor.  相似文献   

2.
Akt (or protein kinase B) plays a central role in coordinating growth, survival and anti-apoptotic responses in cells and we hypothesized that changes in Akt activity and properties would aid the reprioritization of metabolic functions that occurs during mammalian hibernation. Akt was analyzed in skeletal muscle and liver of Richardson's ground squirrels, Spermophilus richardsonii, comparing the enzyme from euthermic and hibernating states. Akt activity, measured with a synthetic peptide substrate, decreased by 60–65% in both organs during hibernation. Western blotting showed that total Akt protein did not change in hibernation but active, phosphorylated Akt (Ser 473) was reduced by 40% in muscle compared with euthermic controls and was almost undetectable in liver. Kinetic analysis of muscle Akt showed that S0.5 values for Akt peptide were 28% lower during hibernation, compared with the euthermic enzyme, whereas S0.5 ATP increased by 330%. Assay at 10 °C also elevated S0.5 ATP of euthermic Akt by 350%. Changes in ATP affinity would limit Akt function in the hibernator since the muscle adenylate pool size is also strongly suppressed during cold torpor. Other parameters of euthermic and hibernator Akt were the same including activation energy calculated from Arrhenius plots and sensitivity to urea denaturation. DEAE Sephadex chromatography of muscle extracts revealed three peaks of Akt activity in euthermia but only two during hibernation suggesting isozymes are differentially dephosphorylated during torpor. Altered enzyme properties and suppression of Akt activity would contribute to the coordinated suppression of energy-expensive anabolic and growth processes that is needed to maintain viability during over weeks of winter torpor.  相似文献   

3.
The perforated patch clamp method was used to study the effect of the agonist of beta-adrenoreceptors isoproterenol on L-type Ca2+ current in cardiocytes of rats and ground squirrels in two states: active and hibernating. It is shown that isoproterenol exerts a dual effect on Ca2+ currents of rats and ground squirrels in the active state: at V h = –50 mV, the current increases, whereas at V h = –30 mV, it decreases. In hibernating ground squirrels, the dual effect of isoproterenol is not observed: isoproterenol increases Ca2+ current at any V h values. The hypothesis is put forward that, during the entrance of ground squirrels into hibernation, the phosphorylation of one of the sites (not cAMP-dependent) of L-type Ca2+ channels is blocked.  相似文献   

4.
Metabolic signaling coordinates the transition by hibernating mammals from euthermia into profound torpor. Organ-specific responses by activated p38 mitogen activated protein kinase (MAPK) are known to contribute to this transition. Therefore, we hypothesized that the MAPK-activated protein kinase-2 (MAPKAPK2), a downstream target of p38 MAPK, would also be active in establishing the torpid state. Kinetic parameters of MAPKAPK2 from skeletal muscle of Richardson’s ground squirrels, Spermophilus richardsonii, were analyzed using a fluorescence assay. MAPKAPK2 activity was 27.4 ± 1.27 pmol/min/mg in muscle from euthermic squirrels and decreased by ∼63% during cold torpor, while total protein levels were unchanged (as assessed by immunoblotting). In vitro treatment of MAPKAPK2 via stimulation of endogenous phosphatases and addition of commercial alkaline phosphatase decreased enzyme activity to only ∼3–5% of its original value in muscle extracts from both euthermic and hibernating squirrels suggesting that posttranslational modification suppresses MAPKAPK2 during the transition from euthermic to torpid states. Enzyme S0.5 and nH values for ATP and peptide substrates changed significantly between euthermia and torpor, and also between assays at 22 versus 10 °C but, kinetic parameters were actually closely conserved when values for the euthermic enzyme at 22 °C were directly compared with the hibernator enzyme at 10 °C. Arrhenius plots showed significantly different activation energies of 40.8 ± 0.7 and 54.3 ± 2.7 kJ/mol for the muscle enzyme from euthermic versus torpid animals, respectively but MAPKAPK2 from the two physiological states showed no difference in sensitivity to urea denaturation. Overall, the results show that total activity of MAPKAPK2 is in fact reduced, despite previous findings of p38 MAPK activation, and kinetic parameters are altered when ground squirrels enter torpor but protein stability is not apparently changed. The data suggest that MAPKAPK2 suppression may have a significant role in the differential regulation of muscle target proteins when ground squirrels enter torpor.  相似文献   

5.
Cells were grown as primary monolayer cultures from kidney cortex of guinea pigs (nonhibernators), hamsters and ground squirrels (both hibernating species). When plates of cells were placed at 5 °C, cells of guinea pigs lost 37% of their K+ in 2 h and those of the hibernator lost about 10%.Uptake of 42K into the cells exhibited a simple, single exponential time course at both temperatures. Unidirectional efflux of K+ was equal to K+ influx in all cultures at 37 °C and, within limits of error, in hibernator cells at 5 °C. Efflux was 3- to 5-fold greater than influx in guinea pig cells at 5 °C.After 2 h in the cold the ouabain-sensitive K+ influx remaining (7–15% of that at 37 °C) was about the same in the cells of the 3 species. Cells from active hamsters and from hibernating ground squirrels, however, exhibited significantly greater pump activity after 45 min in the cold (19 and 14%, respectively). The stimulation of K+ influx by increasing [K+]o did not show an increase in Km+ at 5 °C in cells of guinea pigs and ground squirrels. Lowering [K+]c and/or raising [Na+]c by treatment in low- and high-K+ media caused only slight stimulation of K+ influx, except in cells of ground squirrels at 5 °C in which the stimulation was at least 11-times greater than at 37 °C or in cells of guinea pigs at either temperature.This altered kinetic response of K+ transport to cytoplasmic ion stimulation with cooling accounted for about one-third of the improved regulation of K+ at 5 °C in ground squirrel cells; the other two-thirds was attributable to a greater decrease in K+ leak with cooling. The inhibition of active transport by cold in all 3 species was much less severe than that previously seen in any (Na+ + K+)-ATPase of mammalian cells.  相似文献   

6.
The citric acid cycle (CAC) is a central metabolic pathway that links carbohydrate, lipid, and amino acid metabolism in the mitochondria and, hence, is a crucial target for metabolic regulation. The α-ketoglutarate dehydrogenase complex (KGDC) is the rate-limiting step of the CAC, the three enzymes of the complex catalyzing the transformation of α-ketoglutarate to succinyl-CoA with the release of CO2 and reduction of NAD to NADH. During hibernation, the metabolic rate of small mammals is suppressed, in part due to reduced body temperature but also active controls that suppress aerobic metabolism. The present study examined KGDC regulation during hibernation in skeletal muscle of the Richardson's ground squirrel (Urocitellus richardsonii). The KGDC was partially purified from skeletal muscle of euthermic and hibernating ground squirrels and kinetic properties were evaluated at 5°, 22°, and 37 °C. KGDC from hibernator muscle at all temperatures compared with euthermic controls exhibited a decreased affinity for CoA as well as reduced activation by Ca2+ ions at 5 °C from both euthermic and hibernating conditions. Co-immunoprecipitation was employed to isolate the E1, E2 and E3 enzymes of the complex (OGDH, DLST, DLD) to allow immunoblot analysis of post-translational modifications (PTMs) of each enzyme. The results showed elevated phospho-tyrosine content on all three enzymes during hibernation as well as increased ADP-ribosylation and succinylation of hibernator OGDH. Taken together these results show that the KGDC is regulated by posttranslational modifications and temperature effects to reorganize enzyme activity and mitochondrial function to aid suppression of mitochondrial activity during hibernation.  相似文献   

7.
Summer hibernation induced in ground squirrels (Citellus tridecemlineatus) by urine or plasma from hibernating bats (Myotis lucifugus or Eptesicus fuscus). Summer hibernation in the thirteen-lined ground squirrel can be induced by intravenous injection of urine or blood plasma previously isolated from winter hibernating little brown bats (M. lucifugus) or big brown bats (E. fuscus). Urine- and plasma-injected ground squirrels kept at 8 °C hibernated earlier, longer, and deeper (as indicated by core temperature and respiratory rate measurements) than control ground squirrels injected with saline. This successful cross-order induction of hibernation demonstrates that the hibernation-inducing trigger (HIT) may be present in nonrodent mammals.  相似文献   

8.
(1) We examined relationships between ground squirrel activity and operative temperature (Te) in two habitats in southwestern Idaho, USA to determine how activity patterns are tied to environmental conditions and how habitat can mediate the thermal environment. (2) Midday environmental conditions were too hot throughout much of the active season for Piute ground squirrels to remain active in a grassland habitat. (3) Ground squirrels were most active in grassland at a Te of approximately 25°C and showed a strong bimodal activity pattern during the latter half of their active season (after 15 April). (4) Suitable aboveground microclimates existed throughout most of the season in sagebrush (Artemisia tridentata) habitats and ground squirrels remained active throughout the day. (5) The availability of cooler microhabitats may make sagebrush a better habitat than grassland for Piute ground squirrels, especially during the latter portion of the active season and in hotter than normal years.  相似文献   

9.
Dolichyl pyrophosphate N-acetyl[14C]glucosamine was synthesized after incubation of liver microsomes from hibernating ground squirrels with UDP-N-acetyl[14C )glucosamine. The radioactivity of glycolipid formed by liver microsomes from hibernating ground squirrels was about 2-fold greater than by liver microsomes from active animals. Addition of exogenous dolichyl phosphate to the incubation mixture increased the formation of dolichyl pyrophosphate N-acetyl[14C]glucosamine by microsomes from both active and hibernating ground squirrels about 6 times. Liver microsomes from hibernating ground squirrels converted dolichyl pyrophosphate N-acetyl[14C]glucosamine into dolichyl pyrophosphate N,N'-diacetyl[14C]chitobiose in the presence of unlabelled UDP-N-acetylglucosamine. This conversion was maximal at 1.0 M concentration of unlabelled UDP-N-acetylglucosamine. The level of dolichyl phosphate assessed by the level of dolichyl pyrophosphate N-acetylglucosamine formation was nearly 2 times greater in liver microsomes from hibernating ground squirrels than from active animals.  相似文献   

10.
1. Mitochondrial alpha-glycerophosphate dehydrogenase (GPD) activity was assayed in liver homogenates from active and torpid ground squirrels. 2. Arrhenius plots of GPD activity were linear in non-hibernating animals and discontinuous in hibernators. Compared with non-hibernators, the energy of activation in hibernators was reduced between 37 and 25 degrees C, but increased between 25 and 6 degrees C. 3. A dose-response relation between GPD activity and injected thyroxine was determined in active animals. No correlation was found between enzyme activity at 37 or 6 degrees C and circulating titres of thyroid hormones, in ground squirrels sampled during the preparative and hibernating phases.  相似文献   

11.
A carbonyl reductase (SCR2) gene was synthesized and expressed in Escherichia coli after codon optimization to investigate its biochemical properties and application in biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE), which is an important chiral synthon for the side chain of cholesterol-lowering drug. The recombinant SCR2 was purified and characterized using ethyl 4-chloro-3-oxobutanoate (COBE) as substrate. The specific activity of purified enzyme was 11.9 U mg?1. The optimum temperature and pH for enzyme activity were 45 °C and pH 6.0, respectively. The half-lives of recombinant SCR2 were 16.5, 7.7, 2.2, 0.41, and 0.05 h at 30 °C, 35 °C, 40 °C, 45 °C, and 50 °C, respectively, and it was highly stable in acidic environment. This SCR2 displayed a relatively narrow substrate specificity. The apparent K m and V max values of purified enzyme for COBE are 6.4 mM and 63.3 μmol min?1 mg?1, respectively. The biocatalytic process for the synthesis of (S)-CHBE was constructed by this SCR2 in an aqueous–organic solvent system with a substrate fed-batch strategy. At the final COBE concentration of 1 M, (S)-CHBE with yield of 95.3 % and e.e. of 99 % was obtained after 6-h reaction. In this process, the space-time yield per gram of biomass (dry cell weight, DCW) and turnover number of NADP+ to (S)-CHBE were 26.5 mmol L?1 h?1 g?1 DCW and 40,000 mol/mol, respectively, which were the highest values as compared with other works.  相似文献   

12.
Acetate kinase (ATP: acetate phosphotransferase EC 2.7.2.1) has been purified from Clostridium thermoaceticum. The enzyme of a specific activity of 282 μmoles min-1 mg-1 appeared homogeneous as judged from Sephadex chromatography and sedimentation velocity. Polyacrylamide gel electrophoretic patterns at pH 9.0 and 9.5 showed heterogeneity. Velocity curves obtained with varying amount of acetate were of the Michaelis-Menten type with an apparent K m of 0.135 M. With varying amounts of ATP sigmoidal kinetic was observed (S0.5=1.64 mM), suggesting cooperative binding of this substrate. The enzyme had only moderate thermal stability with a temperature optimum of about 60°C and exhibited a broken line in an Arrhenius graph. From gel filtration a molecular weight of about 60 000 daltons was estimated for the enzyme. The S20w value was 6.0 S.  相似文献   

13.
Hibernation in mammals involves major alterations in nutrition and metabolism that would be expected to affect levels of circulating molecules. To gain insight into these changes we conducted a non-targeted LC–MS based metabolomic analysis of plasma using hibernating ground squirrels in late torpor (LT, Tb ~ 5 °C) or during an interbout arousal period (IBA, Tb ~ 5 °C) and non-hibernating squirrels in spring (Tb ~ 37 °C). Several metabolites varied and allowed differentiation between hibernators and spring squirrels, and between torpid and euthermic squirrels. Methionine and the short-chain carnitine esters of propionate and butyryate/isobutyrate were reduced in LT compared with the euthermic groups. Pantothenic acid and several lysophosphatidylcholines were elevated in LT relative to the euthermic groups, whereas lysophosphatidylethanolamines were elevated during IBA compared to LT and spring animals. Two regulatory lipids varied among the groups: sphingosine 1-phosphate was lower in LT vs. euthermic groups, whereas cholesterol sulfate was elevated in IBA compared to spring squirrels. Levels of long-chain fatty acids (LCFA) and total NEFA tended to be elevated in hibernators relative to spring squirrels. Three long-chain acylcarnitines were reduced in LT relative to IBA; free carnitine was also lower in LT vs. IBA. Our results identified several biochemical changes not previously observed in the seasonal hibernation cycle, including some that may provide insight into the metabolic limitations of mammalian torpor.  相似文献   

14.
The rate of respiration and ATP synthesis in liver mitochondria (M) isolated from hibernating ground squirrels and incubated in the medium with normal tonicity (250 mosm) was shown to be considerably lower than the rate of respiration and ATP synthesis in liver M from active animals. The increase of the medium tonicity to 600 mosm simulated the state of M from hibernating animals, resulting in a decrease of the respiration rate of M from active ground squirrels. On the contrary, the decrease of the tonicity to 60 mosm caused the activation of the respiration and increase of the ATP synthesis in M from hibernating ground squirrels. Bromophenacylbromide (BPhB), an inhibitor of phospholipase A2, prevented the activation of the respiration of M from hibernating animals incubated in the medium with low tonicity. BPhB had practically no effect on the respiration of M from both hibernating and active ground squirrels as well as on the swelling of M in hypotonic medium. It was concluded that the activation of the respiration and increase of the ATP synthesis rate in M from hibernating ground squirrels incubated in the medium with low tonicity is related to the activation of phospholipase A2. It was assumed that decrease of phospholipase A2 activity and change in the lipid composition of mitochondrial membrane may be one of the reasons for inhibition of the respiration rate in M from hibernating ground squirrels.  相似文献   

15.
16.
The brains of the hibernating hamsters and 13-lined ground squirrels maintain Na+ and K+ at the same concentrations as in the awake state. The ability of slices of the cerebral cortex when incubated in vitro to accumulate or retain K+ is similar in the awake hamster and rat at both 38 and 5 ° C. On the other hand, slices of cerebral cortex from the hibernating hamster retained slightly more K+ at 5 °C than did those of awake hamster or rat. It was concluded that the cerebral cortex of the awake hamster is probably not cold resistant with respect to the maintenance of cation balance. Further, the cold resistance that exists in the cerebral cortex of the hibernating hamster is largely destroyed when the brain is disrupted by slicing.  相似文献   

17.
18.
The effects of insulin (0.1–50 nM) on isometric twitch force (0.1 to 1.0 Hz; 30 ± 1°C; 1.8 mM Ca2+) were studied in right ventricular papillary muscles from active ground squirrels of different seasons (summer, n = 14; autumn, n = 16 and winter interbout, n = 16) in control conditions and after one-hour pretreatment of PM with 2 μM nifedipine (an L-type Ca2+-channel inhibitor) and 1.0 mM orthovanadate (a tyrosine phosphatase inhibitor). In active animals of different seasonal periods insulin causes both positive and negative inotropic effects. At low frequencies (0.1–0.5 Hz), insulin of low concentrations (0.1–1.0 nM) induces a transient (within the first 20 min after application) positive effect (about 15–25%). Application of high hormone concentration (10 nM) in a low range of stimulation frequencies causes a biphasic effect (a small initial positive inotropic effect followed by a marked negative one). At frequencies above 0.5-Hz stimulation, insulin of 10 nM concentration causes presumably a negative inotropic effect. It was proposed that ICaL is possibly involved in the insulin-induced negative inotropy in ground squirrels hearts. Alteration of protein phosphorylation in tyrosine residues is known to be a major link in the mechanism of insulin action. We performed a study on sodium orthovanadate action (a known inhibitor of tyrosine phosphatase) on the inotropic insulin effect. In the group of summer animals the pretreatment of papillary muscles with sodium orthovanadate (100 μM) does not change the negative inotropic effect of insulin in a low range of stimulation frequencies but almost completely removes this effect at stimulation frequencies above 0.3 Hz (n = 4). Nifedipine (1–1.5 h pretreatment), a blocker of L-type calcium channel, reduces the inhibitory effect of insulin in autumn and winter animals, and on the contrary intensifies it in summer animals. This fact indicates that different mechanisms must be involved in insulin actions in animals of summer and winter periods. The main findings of the present study are that insulin induces positive, negative or no inotropic effects in papillary muscles of ground squirrels myocardium. The character of the effects of insulin depends on the physiological state of animals; time and concentrations of the hormone applied; affected by conditions that alter cellular Ca2+ loading and the ratio of protein-tyrosine kinases/phosphatases activity.  相似文献   

19.
This paper presents a study of the influence of isoproterenol (1 μM) on the force of isometric contractions (0.1–1.0 Hz; 30 ± 1°C; 1.8 mM Ca2+) of papillary muscles of the right ventricle in the heart of a ground squirrel during summer activity (n = 5) and hibernation season (activity between hibernation bouts, n = 4; torpor, n = 4; and arousal, n = 5). It is shown that isoproterenol increases the force of contraction (a positive inotropic effect) by 20 ± 3% and 61 ± 7% at stimulation frequencies of 0.4 and 1.0 Hz, respectively. In animals of hibernating period the isoproterenol-induced increase in the force of contraction is rather brief (within 3 min after onset of the influence) and is accompanied by a 30–50% decrease in the force from the control level (a negative inotropic effect) at stimulation frequencies from 0.3 to 0.8 Hz. The positive isoproterenol inotropic effect in active summer ground squirrels is associated with a decrease in a relative value of the pause potentiating effect (a qualitative indicator of calcium content in sarcoplasmic reticulum), and the negative inotropic effect, with its increase. In all groups of animals under examination the isoproterenol inotropic effect (regardless of its direction) is accompanied by the acceleration of the temporal parameters of the contraction—relaxation cycle. The dependence of isoproterenol effects in the heart of hibernating animals on both seasonal changes in calcium homeostasis and the activity of the sympathetic nervous system is under discussion.  相似文献   

20.
In hibernating Yakutian ground squirrels S. undulatus, the content of total phospholipids in the nuclei of liver increased by 40% compared to that in animals in summer. In torpid state, the amount of sphingomyelin increased almost 8 times; phosphatidylserine, 7 times; and cardiolipin, 4 times. In active “winter” ground squirrels, the amount of sphingomyelin, phosphatidylserine, and cardiolipin decreased compared to the hibernating individuals but remained high compared to the “summer” ones. The torpor state did not affect the amount of lysophosphatidylcholine and phosphatidylinositol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号