首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc deficiency and salinity are well-documented soil problems and often occur simultaneously in cultivated soils. Usually, plants respond to environmental stress factors by activating their antioxidative defense mechanisms. The antioxidative response of wheat genotypes to salinity in relation to Zn nutrition is not well understood. So, we investigated the effect of Zn nutrition on the growth, membrane permeability and sulfhydryl group (–SH groups) content of root cells and antioxidative defense mechanisms of wheat plants exposed to salt stress. In a hydroponic experiment, three bread wheat genotypes (Triticum aestivum L. cvs. Rushan, Kavir, and Cross) with different Zn-deficiency tolerance were exposed to adequate (1 μM Zn) and deficient (no Zn) Zn supply and three salinity levels (0, 60, and 120 mM NaCl). The results obtained showed that adequate Zn nutrition counteracted the detrimental effect of 60 mM NaCl level on the growth of all three wheat genotypes while it had no effect on the root and shoot growth of ‘Rushan’ and ‘Kavir’ at the 120 mM NaCl treatment. At the 0 and 60 mM NaCl treatments, Zn application decreased root membrane permeability while increased –SH group content and root activity of catalase (CAT) and superoxide dismutase (SOD) in ‘Rushan’ and ‘Kavir’. In contrast, Zn had no effect on the root membrane permeability and –SH group content of ‘Rushan’ and ‘Kavir’ exposed to the 120 mM NaCl treatment. At all salinity levels, ‘Cross’ plants supplied with Zn had lower root membrane permeability and higher –SH group content compared to those grown under Zn-deficient conditions. At the 0 and 60 salinity levels, Zn-deficient roots of Kavir and Rushan genotype leaked significantly higher amounts of Fe and K than the Zn-sufficient roots. In contrast, at the 120 mM treatment, Zn application had no effect or slightly increased Fe and K concentration in the root ion leakage of these wheat genotypes. For ‘Cross’, at all salinity levels, Zn-deficient roots leaked significantly higher amounts of Fe and K compared with the Zn-sufficient roots. The differential tolerance to salt stress among wheat genotypes examined in this study was related to their tolerance to Zn-deficiency, –SH group content, and root activity of CAT and SOD. Greater tolerance to salinity of Zn-deficiency tolerant genotype ‘Cross’ is probably associated with its greater antioxidative defense capacity.  相似文献   

2.
Plants use various mechanisms to cope with drought constraints at morphological, physiological, and biochemical level by means of different adaptive mechanisms. All organisms use a network of signal transduction pathways to control their metabolism and to adapt to the environment. Among these pathways, calcium (Ca2+) ions play an important role as a universal second messenger. Calcium has unique properties and universal ability to transmit diverse signals that trigger primary physiological actions in the cell in response to hormones, pathogens, and stress factors. Calcium plays a fundamental role in regulating the polar growth of cells and tissues and participates in plant adaptation to various stress factors. This study was conducted to examine the role of Ca2+ in ameliorating the adverse effect of drought stress responses in two contrasting wheat genotypes, HD 2733 (drought sensitive) and HD 2987 (drought tolerant), differing in their drought tolerance. The plants were treated with mannitol or Hoagland solution and then supplemented with CaCl2 (10 mM). Measurements of seed germination, shoot growth, and chlorophyll content showed that calcium treatment increased all these factors in tolerant genotype (HD 2987) under induced stress condition. Drought stress reduced relative water content, osmolyte, and soluble sugar accumulation in both the genotypes, but CaCl2 supplementation increased all the components under stress condition in HD 2987 as compared to HD 2733. The oxidative damage caused by induced stress was lower in HD 2987 compared to HD 2733 genotypes as assessed by their higher photosynthetic capacity and lower electrolyte leakage, malondialdehyde (MDA) content as well as H2O2 accumulation. Less accumulation of superoxide and H2O2 was also observed in HD 2987 genotype after CaCl2 supplementation combined with mannitol treatment. In addition, the enhanced accumulation of calcium in the HD 2987 genotype is correlated with the higher activities of antioxidant enzymes than HD 2733 genotype under similar stress conditions. Our findings provide evidence of the protective role of exogenous calcium in conferring better tolerance against mannitol-induced drought stress in wheat genotypes, which could be useful as genetic stock to develop wheat tolerant varieties in breeding programs.  相似文献   

3.
Ryan PR  Reid RJ  Smith FA 《Plant physiology》1997,113(4):1351-1357
One explanation for Al toxicity in plants suggests that Al displaces Ca2+ from critical sites in the apoplasm. We evaluated the Ca2+-displacement hypothesis directly using near-isogenic lines of wheat (Triticum aestivum L.) that differ in Al tolerance at a single locus. We measured both the growth and total accumulation (apoplasmic plus symplasmic) of 45Ca and Al into roots that had been exposed to Al alone or to Al with other cations. Root growth in the Al-sensitive line was found to be severely inhibited by low activities of Al, even though Ca2+ accumulation was relatively unaffected. In solutions containing the same activity of the Al3+ and Ca2+ ions as above, but also including either 3.0 mM Mg2+, 3.0 mM Sr2+, or 30 mM Na+, growth improved, whereas 45Ca2+ accumulation was significantly decreased. Since most of the 45Ca2+ accumulated by roots during short-term treatments will reside in the apoplasm, these results indicate that displacement of Ca2+ from the apoplasm by Al cannot account for the Al-induced inhibition of root growth and, therefore, do not support the Ca2+-displacement hypothesis for Al toxicity. We also show that total accumulation of Al by root apices is greater in the Al-sensitive genotype than the Al-tolerant genotype and suggest that cation amelioration of Al toxicity is caused by the reduction in Al accumulation.  相似文献   

4.
Nineteen wheat genotypes were used to examine the effects of foliar applied glycine betaine (GB, 100 mM) on concentration of various osmolytes (such as proline, choline, GB and sucrose) under drought stress conditions. Drought stress caused a significant increase in proline content and GB content of wheat genotypes, both at maximum tillering and anthesis stages. Choline and sucrose were accumulated significantly at higher levels under stress conditions at both the stages. GB application increased the proline content and endogenous levels of GB in comparison to their stressed counterparts both at maximum tillering and anthesis stages but this increase was observed to be genotype specific. Furthermore, significant decrease in choline levels and sucrose contents of GB treated plants at anthesis stage and enhanced levels of proline questioned about involvement of GB in production of other osmolytes as well as stage specific response of wheat genotypes to GB spray. But these changes in osmolyte accumulation (OA) were not correlated with relative water content and stress tolerance index observed, under both GB sprayed and non-sprayed drought stressed conditions. So OA could not be considered as a selection criteria for drought tolerance in wheat.  相似文献   

5.
Bruguiera cylindrica is a major mangrove species in the tropical mangrove ecosystems and it grows in a wide range of salinities without any special features for the excretion of excess salt. Therefore, the adaptation of this mangrove to salinity could be at the physiological and biochemical level. The 3-month-old healthy plantlets of B. cylindrica, raised from propagules were treated with 0 mM, 400 mM, 500 mM and 600 mM NaCl for 20 days under hydroponic culture conditions provided with full strength Hoagland medium. The modulation of various physiochemical changes in B. cylindrica, such as chlorophyll a fluorescence, total chlorophyll content, dry weight, fresh weight and water content, Na+ accumulation, oxidation and antioxidation (enzymatic and non-enzymatic) features were studied. Total chlorophyll content showed very minute decrease at 500 mM and 600 mM NaCl treatment for 20 days and the water content percentage was decreased both in leaf and root tissues with increasing concentration. A significant increase of Na+ content of plants from 84.505 mM/plant dry weight in the absence of NaCl to 543.38 mM/plant dry weight in plants treated with 600 mM NaCl was recorded. The malondialdehyde and the metabolites content associated with stress tolerance (amino acid, total phenols and proline) showed an increasing pattern with increasing NaCl concentration as compared to the control in both leaf and root tissues but the increase recorded in plantlets subjected to 500 mM was much less, indicating the tolerance potential of this species towards 500 mM NaCl. The significant decrease of sugar content was found only in 600 mM NaCl on 20 days of treatment, showing that the process of sugar synthesis was negatively affected but the same process remains less affected at 500 mM NaCl. A slight reduction in ascorbate and glutathione content and very less increase in carotenoid content were observed at 500 mM and 600 mM NaCl stress. Antioxidant enzymes (APX, GPX, SOD and CAT) showed an enhanced activity in all the treatments and the increased activity was more significant in 600 mM treated plants. The result establishes that B. cylindrica tolerates high NaCl concentration, to the extent of 500 mM NaCl without any major inhibition on photosynthesis and metabolite accumulation. Understanding the modulation of various physiological and biochemical changes of B. cylindrica at high levels of NaCl will help us to know the physiochemical basis of tolerance strategy of this species towards high NaCl.  相似文献   

6.
Excess of ammonia generates oxidative and osmotic stress, and results in an accumulation of compatible solutes. The aim of this study was to investigate the physiological significance of excess ammonium-induced proline and sucrose accumulation on antioxidative activity and osmotic adjustment. The detached leaves of white clover (Trifolium repense L.) were fed with 0, 10, 50, 100, and 200 mM NH4Cl, and the contribution of proline and sucrose to osmotic adjustment and their relationship with antioxidative enzymes activity were assessed. A gradual decline of relative water content and osmotic potential (Ψπ) with increasing NH4Cl feeding level was accompanied by an increase in ammonia concentration. Significant accumulation of proline and sucrose was observed when NH4Cl was fed over 100 mM compared with control (0 mM NH4Cl). The increase in enzyme activity was significant only at 200 mM for ascorbate peroxidase (APOD) and over 100 mM NH4Cl for guaiacol peroxidase (GPOD) and catalase (CAT). The contribution of proline and sucrose to osmotic adjustment over 100 mM, where proline and sucrose accumulation was more important, maintained at control levels or significantly decreased. The content of proline and sucrose as affected by NH4Cl feeding level was positively related with the activity of APOD, GPOD, and CAT. These results suggest that proline and sucrose accumulation induced by the excess of ammonium has a more influential role in antioxidative activity rather than osmotic adjustment.  相似文献   

7.
Nickel (Ni) phytoextraction using hyperaccumulator plant species to accumulate Ni from mineralized and contaminated soils rich in Ni is undergoing commercial development. Serpentinite derived soils have a very low ratio of Ca/Mg among soils due the nature of the parent rock. In crop plants, soil Ca reduces Ni uptake and phytotoxicity, so it is possible that the low Ca of serpentine soils could limit hyperaccumulator plant tolerance of serpentine soils used for commercial phytomining. In this study, we investigated the effects of varied Ca concentration in the presence of high Mg characteristic of serpentine soils on Ni uptake and tolerance by serpentine-endemic species Alyssum murale Waldst. et Kit. and A. pintodasilvae T.R. Dudley in comparison with cabbage (Brassica oleracea L. var. capita) in a nutrient solution study. The levels of Ca and Mg used were based on serpentine and normal soils, and Ni was based on achieving over 1% Ni in Alyssum shoots in preliminary tests. Varied solution concentrations of Ni (31.6–1,000 μM for Alyssum, 1.0–10 μM for cabbage) and Ca (0.128–5 mM) were used in a factorial experimental design; 2 mM Mg was used to mimic serpentine soils. Alyssum spp. showed much greater tolerance to high Ni, high Mg, and low Ca solution concentrations than cabbage. For Alyssum spp., Ni induced phytotoxicity was only apparent at 1,000 μM Ni with relatively low and high Ca/Mg quotient. In the 1,000 μM Ni treatment, shoot Ni concentrations ranged from 8.18 to 22.8 g kg?1 for A. murale and 7.60 to 16.0 g kg?1 for A. pintodasilvae. Normal solution Ca concentrations (0.8–2 mM) gave the best yield across all Ni treatments for the Alyssum species tested. It was clear that solution Ca levels affected shoot Ni concentration, shoot yield and Ni translocation from root to shoot, but the relation was non-linear, increasing with increasing Ca up to 2 mM Ca, then declining at the highest Ca. Our results indicate that Ca addition to high Mg serpentine soils with very low Ca/Mg ratio may reduce Ni phytotoxicity and improve annual Ni phytoextraction by Alyssum hyperaccumulator species. Removal of shoot biomass in phytomining will require Ca application to maintain full yield potential.  相似文献   

8.
The effect of N supply on soybean (Glycine max L. Merrill) seedgrowth was investigated using an in vitro liquid culture system.Sucrose was maintained at 200 mM and N was supplied by asparagineand methion-ine in a 6.25:1 molar ratio. Media N concentrationsfrom zero to 270 mM had little effect on cultured cotyledondry matter accumulation rate for 7 or 14 d, but rates approachedzero after 21 d when there was no N in the media. Only 17 mMN was required for maximum cotyledon growth rate up to 21 d.Cotyledon N accumulation and concentration increased in directproportion to the N concentration in the media. The N concentrationin cotyledons from a high protein genotype was higher than anormal genotype at all media N levels (0–270 mM). Solublesugar and oil concentrations in the cotyledons were highestat zero media N and decreased as media N increased. These datasuggest that the concept of seed N demand, which is thoughtto cause senescence in soybean, is incorrect. Soybean seedscan accumulate dry matter without accumulating N and apparentlyneed only minimal supplies of N (17 mM) to maintain the metabolicenzymes necessary to sustain dry matter accumulation. Geneticdifferences in seed protein concentration seem to be regulatedby the cotyledons not the supply of N. Key words: Seed N demand, seed dry matter accumulation, in vitro culture  相似文献   

9.
In this study, we determined the effect of ethylenediaminetetraacetic acid (EDTA) and calcium (Ca) on arsenic (As) uptake and toxicity to Pisum sativum. Plants were treated with three levels of As (25, 125, and 250 µM) in the presence and absence of three levels of Ca (1, 5, and 10 mM) and EDTA (25, 125, and 250 µM). Exposure to As caused an overproduction of hydrogen peroxide (H2O2) in roots and leaves, which induced lipid peroxidation and decreased pigment contents. Application of both Ca and EDTA significantly reduced As accumulation by pea, Ca being more effective in reducing As accumulation. Both Ca and EDTA enhanced As-induced H2O2 production, but reduced lipid peroxidation. In the case of pigment contents, EDTA significantly reduced pigment contents, whereas Ca significantly enhanced pigment contents compared to As alone. The effect of As treatment in the presence and absence of EDTA and Ca was more pronounced in younger leaves compared to older leaves. The effect of amendments varied greatly with their applied levels, as well as type and age of plant organs. Importantly, due to possible precipitation of Ca-As compounds, the soils with higher levels of Ca ions are likely to be less prone to food chain contamination.  相似文献   

10.
Superior effectiveness of Mg over Ca in alleviating Al rhizotoxicity cannot be accounted for by predicted changes in plasma membrane Al3+ activity. The influence of Ca and Mg on the production and secretion of citrate and malate, and on Al accumulation by roots was investigated with soybean genotypes Young and PI 416937 which differ in Al tolerance. In the presence of a solution Al3+ activity of 4.6 microM, citrate and malate concentrations of tap root tips of both genotypes increased with additions of either Ca up to 3 mM or Mg up to 50 microM. Citrate efflux rate from roots exposed to Al was only enhanced with Mg additions and exceeded malate efflux rates by as much as 50-fold. Maximum citrate release occurred within 12 h after adding Mg to solution treatments. Adding 50 microM Mg to 0.8 mM CaSO4 solutions containing Al3+ activities up to 4.6 microM increased citrate concentration of tap root tips by 3- to 5-fold and root exudation of citrate by 6- to 9-fold. Plants treated with either 50 microM Mg or 3 mM Ca had similar reductions in Al accumulation at tap root tips, which coincided with the respective ability of these ions to relieve Al rhizotoxicity. Amelioration of Al inhibition of soybean root elongation by low concentrations of Mg in solution involved Mg-stimulated production and efflux of citrate by roots.  相似文献   

11.
Kubo  K.  Jitsuyama  Y.  Iwama  K.  Hasegawa  T.  Watanabe  N. 《Plant and Soil》2004,262(1-2):169-177
Improvement of root penetration (RP) ability in durum wheat (Triticum turgidum L. var. durum) is an important breeding target to reduce yield losses due to soil compaction and drought. This study investigated the genotypic difference of RP ability in durum wheat of seven Ethiopian landraces (ET genotypes), which were presumed to adapt to soil compaction, and 17 genotypes bred in North America (NA genotypes). The pregerminated seed was planted in a pot with four paraffin-Vaseline (PV) discs of hardness 0.12, 0.24, 0.50 and 0.73 MPa. After eight weeks from planting, each plant was sampled and the number of roots penetrating through the PV discs was counted. No genotype penetrated through the PV disc of 0.73 MPa hardness. The number of roots penetrating through the PV disc of 0.50 MPa hardness showed a significant difference among the genotypes: highest in an ET genotype and lowest in a NA genotype. The mean value was also significantly higher in ET genotypes than in NA genotypes, and it significantly correlated with root weight density below the disc and plant height. The mean root diameter and root weight density above the disc showed no significant difference between NA and ET genotypes. Our results indicate that a large genotypic difference exists for RP ability in durum wheat, and that ET genotypes have a higher RP ability than NA genotypes.  相似文献   

12.
Growth, osmotic adjustment, antioxidant enzyme defense and the principle medicinal component bacoside A were studied in the in vitro raised shoot cultures of Bacopa monnieri, a known medicinal plant, under different concentrations of NaCl [0.0 (control), 50, 100, 150 or 200 mM]. A sharp increase in Na+ content was observed at 50 mM NaCl level and it was about 6.4-fold higher when compared with control. While Na+ content increased in the shoots with increasing levels of NaCl in the medium, both K+ and Ca2+ concentrations decreased. Significant reduction was observed in shoot number per culture; shoot length, fresh weight (FW), dry weight (DW) and tissue water content (TWC) when shoots were exposed to increasing NaCl concentrations (50–200 mM) as compared with the control. Decrease in TWC was not significant at higher NaCl level (150 and 200 mM). At 200 mM NaCl, growth of shoots was adversely affected and microshoots died under prolonged stress. Minimum damage to the membrane as assessed by malondialdehyde (MDA) content was noticed in the controls in contrast to sharp increase of it in NaCl-stressed shoots. Higher amounts of free proline, glycinebetaine and total soluble sugars (TSS) accumulated in NaCl-stressed shoots indicating that it is a glycinebetaine accumulator. About 2.11-fold higher H2O2 content was observed at 50 mM NaCl as compared with control and it reached up to 7.1-folds more at 200 mM NaCl. Antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and guaiacol peroxidase) also increased with a rise in NaCl level. Increase in bacoside A, a triterpene saponin content was observed only up to 100 mM NaCl level. Higher salt concentrations inhibited the accumulation of bacoside A. It appears from the data that accumulation of osmolytes, ions and elevated activities of antioxidant enzymes play an important role in osmotic adjustment in shoot cultures of Bacopa under salt stress.  相似文献   

13.
While phosphate (Pi) serves as an essential and indispensible plant nutrient, phosphite (Phi) acts as a potent herbicide. Despite their differential influence on plants, both the ions can attenuate phosphate starvation responses (PSRs). We analyzed and compared Pi and Phi uptake and accumulation, attenuation of PSRs and the morphological and physiological responses of the rice seedlings in response to the increasing concentrations of Pi and Phi. Our study revealed that increasing levels of Phi led to pronounced reduction in shoot and root mass in rice seedlings in comparison to similar Pi treatments. Phi inhibited root hair and root formation at 5 and 30 mM Phi concentrations, respectively. Whereas, higher Pi concentrations (40 and 50 mM) affected only root hair elongation. Increasing Phi dose led to drastic reduction in chlorophyll content which was not so in case of Pi. There was inverse relationship between external Pi/Phi level and anthocyanin content of the leaves. In comparison to 20 mM Pi treatment, similar dose of Phi led to significant downregulation of Pi transporters in both leaves and roots. Rice seedlings were found to accumulate mmol and µmol levels of Pi and Phi, respectively. Comparison of various PSR parameters revealed that in comparison to Pi, Phi exhibited greater degree of attenuation of PSRs. Lesser Phi accumulation and greater attenuation of PSRs by Phi indicate plant’s adaption to restrict entry of this toxic ion inside cells.  相似文献   

14.
Anisodus luridus hairy root cultures were established to test biological effects of acetylsalicylic acid (ASA) and ultraviolet ray-B (UV-B) on gene expression, tropane alkaloid (TA) biosynthesis and efflux. The TAs-pathway gene expression was ASA dosage dependant. The expression of PMT, TRI and CYP80F1 showed no significant difference in hairy root cultures in treatment of 0.01 and 0.1 mM ASA, compared with those without ASA treatment; while 0.01 or 0.1 mM ASA slightly upregulated H6H expression. All the four genes including PMT, TRI, CYP80F1 and H6H had a dramatic increase in 1 mM ASA-treated hairy root cultures compared with control. The expressing levels of all the four genes were much significantly higher in 1 mM ASA-treated hairy root cultures than those in 0.01 and 0.1 mM ASA-treated ones. As expected, hairy root cultures treated with 1 mM ASA had the highest capacity of TAs biosynthesis, in which the content of scopolamine and hyoscyamine reached respectively 57.2 and 14.7 μg g?1 DW. Surprisingly, it was found that 1 mM ASA dramatically induced the efflux of scopolamine. In the liquid medium with 1 mM ASA, the content of scopolamine was 153.4 μg flask?1, about 6.2 folds compared with that of control. At the same time, hyoscyamine was detected at trace levels in liquid medium. In the UV-B stressed hairy root cultures, all the four genes had a very strong increase of gene expression that led to more accumulation of scopolamine and lower accumulation of hyoscyamine. Only trace amounts of hyoscyamine and scopolamine were detected in the liquid medium when hairy root cultures were stressed under UV-B, and this suggested that UV-B did not affect TAs efflux.  相似文献   

15.
The phytohormone abscisic acid (ABA) has been proposed to act as a mediator in plant responses to a range of stresses, including salt stress. Most studies of ABA response apply ABA as a single dose. This may not resemble the prolonged increasing endogenous ABA levels that can occur in association with slowly increasing salinity stresses in nature or field situations. Salt stress response based on method of ABA application was examined in four potato genotypes of varying salt stress resistance: the sensitive ABA-deficient mutant and its normal sibling, a resistant genotype line 9506, and commercial cultivar ‘Norland’ of moderate resistance. ABA was applied by root drench at 0, 50, 75, or 100 μM concentrations through a single dose, or by slowly increasing multiple ABA doses in a sand-based growing system under greenhouse conditions. Salt tolerance was then evaluated after 2 weeks of exposure to 150–180 mM NaCl stress. The method of ABA application had a marked effect on the responses to salt stress. Plant responses to the method of ABA application were differentiated according to (1) growth rate, (2) root water content, and (3) apparent shoot growth response. Under a single dose, growth rate increased in all genotypes under salt stress, whereas slowly increasing multiple ABA applications generally maintained stable growth rates except in the ABA-deficient mutant where there was an upward growth trend. Percent root water content was elevated only under slowly increasing multiple ABA doses in two genotypes, whereas none of the single-dose treatments induced any change. The single ABA dose enhanced vertical growth, whereas the slowly increasing multiple ABA dose applications enhanced lateral shoot growth. Because exogenous application is still an artificial system, endogenous ABA was supplied through grafting of ABA-deficient mutant scions onto rootstocks with known elevated ABA levels. Multiple exogenous ABA applications as low as 50 μM elicited similar shoot water content responses as grafting treatments without ABA application in the mutant genotype but had no effect on the ABA normal sibling. Shoot dry weight was significantly increased through grafting over all exogenous ABA treatments. Our study further indicates that the method of ABA application regime in itself can alter plant responses under salt stress and that certain application regimes may reflect responses to elevated endogenous levels of ABA.  相似文献   

16.
Antioxidative responses were investigated in leaves of wheat (Triticum aestivum L.) grown at varying S levels ranging from deficiency to excess (1, 2, 4, 6 and 8 mM S). Optimum yield was observed in plants supplied with 4 mM S. Wheat responded to S deficiency and excess supply by decreasing growth of root and shoot. Chlorosis in young leaves was observed after 15 days of deficient S supply. The biomass and concentration of photoassimilatory pigments decreased in plants grown at 1, 2, 6 and 8 mM S supply. The concentration of thiobarbituric acid reactive substances (TBARS), cysteine, nonprotein thiol and hydrogen peroxide (H2O2) increased in plants grown under S stress. Accumulation of TBARS and H2O2 in leaves indicated oxidative damage in S-deficient and S-excess plants. Deficient and excess levels of S showed an increase in the activities of antioxidative enzymes superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2).  相似文献   

17.
A pre-washing protocol was developed for resorbable, brushite-forming calcium phosphate cements (CPCs) to avoid harmful in vitro effects on cells. CPC discs (JectOS+, Kasios; self-developed CPC) were pre-washed with repeated changes of phosphate-buffered saline (PBS; 24 h total). Unwashed or PBS-pre-washed discs were incubated in culture medium (5% fetal calf serum; up to 10 days) and then tested for their influence on pH/calcium/phosphate levels in H2O extracts. Effects on pH/calcium/phosphate levels in culture supernatants, and morphology, adherence, number, and viability of ATDC5 cells and adipose-tissue derived stem cells were analyzed in co-culture. Pre-washing did not alter CPC surface morphology or Ca/P ratio (scanning electron microscopy; energy-dispersive X-ray spectroscopy). However, acidic pH of unwashed JectOS+ and self-developed CPC (5.82; 5.11), and high concentrations of Ca (2.17; 2.40 mM) and PO4 (38.15; 49.28 mM) in H2O extracts were significantly counteracted by PBS-pre-washing (pH: 7.92; 7.92; Ca: 0.64; 1.11 mM; PO4: 5.39–5.97 mM). Also, PBS-pre-washing led to physiological pH (approx. 7.5) and PO4 levels (max. 5 mM), and sub-medium Ca levels (0.5–1 mM) in supernatants and normalized cell morphology, adherence, number, and viability. This CPC pre-washing protocol improves in vitro co-culture conditions without influencing its structure or chemical composition.  相似文献   

18.
19.
Effects of exogenous nitric oxide (NO) on the germination and antioxidant enzyme during cucumber seed germination were investigated under salt stress. Seeds of cucumber (Cucumis sativus L. cv. Jinyou 1) were treated with distilled water or NaCl in the presence or absence of NO donor sodium nitroprusside (SNP) during germination. Excess 50 mM NaCl reduced significantly the seed germination rate in a short term and speed of germination. When salt concentration increased, germination of cucumber seed was reduced and the time needed to complete germination lengthened. Addition of exogenous SNP in salt solution attenuated the salt stress effects in a dose-dependent manner, as indicated by accelerating the seed germination, as well as weight increase of budding seeds, and 50 μM SNP was optimal concentration. At 150 mM NaCl, the 50 μM exogenous SNP significantly increased the activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6) and protein content, while decreased the contents of malondialdehyde (MDA). There were no obvious effects of exogenous NO on peroxidase (POD, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.6) activities under salt stress. Exogenous NO also increased the SOD and CAT isozyme expression under salt stress, which was in accordance with the improved antioxidant activities in the germinating seeds. The NO-induced salt stress resistance was associated with activated enzymes, and enhanced protein content, thus decreasing MDA content. It is concluded that exogenous NO treatment on cucumber seeds may be a good option to improve seed germination under saline conditions.  相似文献   

20.
外源钙对黑藻抗镉胁迫能力的影响   总被引:4,自引:0,他引:4  
以分布广泛的沉水植物——黑藻为实验材料,对比研究了Cd胁迫和施加适宜浓度的外源Ca后,黑藻体内Cd积累、矿质营养、光合色素、可溶性蛋白、渗透调节物质、抗氧化能力以及非蛋白巯基(NP-SH)和植物络合素(PCs)的变化,以探讨Ca缓解水生植物Cd毒害的生理生化机制。结果表明:(1)Cd胁迫使黑藻体内Cd含量极显著增加,并造成明显的矿质营养失衡,主要表现为显著降低了P、K、Fe、Cu、Mn的含量,而外源Ca则削弱了黑藻对Cd的蓄积,并在一定程度上减轻了Cd胁迫所造成的矿质元素失衡;(2)Cd处理使黑藻体内叶绿素含量、叶绿素a/b值和可溶性蛋白含量大幅度下降并显著降低了黑藻的总抗氧化能力(T-AOC)和小分子保护物质[谷胱甘肽(GSH)、抗坏血酸(AsA)]的含量,而外源Ca延缓了黑藻的失绿症状,促进了可溶性蛋白的合成并提高了黑藻的抗氧化能力;(3)Cd胁迫使黑藻体内脯氨酸积累显著,而外施Ca减缓了其积累;可溶性糖变化趋势与之相反;(4)Cd胁迫诱导了NP-SH和PCs在黑藻体内的大量累积,外源Ca处理后,其增加幅度减小。以上结果说明外源Ca能通过抑制Cd的吸收,促进光合色素、可溶性蛋白和可溶性糖的合成,维持高的总抗氧化能力和抗氧化物质含量以及矿质营养平衡等途径来增强黑藻对Cd胁迫的抗性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号