首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of human skin pigmentation must address both the initial evolution of intense epidermal pigmentation in hominins, and its subsequent dilution in modern humans. While many authorities believe that epidermal pigmentation evolved to protect against either ultraviolet B (UV‐B) irradiation‐induced mutagenesis or folic acid photolysis, we hypothesize that pigmentation augmented the epidermal barriers by shifting the UV‐B dose–response curve from toxic to beneficial. Whereas erythemogenic UV‐B doses produce apoptosis and cell death, suberythemogenic doses benefit permeability and antimicrobial function. Heavily melanized melanocytes acidify the outer epidermis and emit paracrine signals that augment barrier competence. Modern humans, residing in the cooler, wetter climes of south‐central Europe and Asia, initially retained substantial pigmentation. While their outdoor lifestyles still permitted sufficient cutaneous vitamin D3 (VD3) synthesis, their marginal nutritional status, coupled with cold‐induced caloric needs, selected for moderate pigment reductions that diverted limited nutritional resources towards more urgent priorities (=metabolic conservation). The further pigment‐dilution that evolved as humans reached north‐central Europe (i.e., northern France, Germany), likely facilitated cutaneous VD3 synthesis, while also supporting ongoing, nutritional requirements. But at still higher European latitudes where little UV‐B breaches the atmosphere (i.e., present‐day UK, Scandinavia, Baltic States), pigment dilution alone could not suffice. There, other nonpigment‐related mutations evolved to facilitate VD3 production; for example, in the epidermal protein, filaggrin, resulting in reduced levels of its distal metabolite, trans‐urocanic acid, a potent UV‐B chromophore. Thus, changes in human pigmentation reflect a complex interplay between latitude, climate, diet, lifestyle, and shifting metabolic priorities.  相似文献   

2.

Background

Common loss-of-function mutations in the filaggrin gene (FLG) are a major predisposing risk factor for atopic disease due to reduced epidermal filaggrin protein levels. We previously observed an association between these mutations and type 2 diabetes and hypothesized that an inherited impairment of skin barrier functions could facilitate low-grade inflammation and hence increase the risk of diabetes and cardiovascular disease. We examined the association between loss-of-function mutations in FLG and diabetes, stroke, ischemic heart disease (IHD), and all-cause mortality in the general population.

Methods

The R501X and 2282del4 loss-of function mutations in FLG were genotyped in four Danish study populations including a total of 13373 adults aged 15-77 years. Two of the studies also genotyped the R2447X mutation. By linkage to Danish national central registers we obtained information for all participants on dates of diagnoses of diabetes, stroke, and IHD, as well as all-cause mortality. Data were analyzed by Cox proportional hazard models and combined by fixed effect meta-analyses.

Results

In meta-analyses combining the results from the four individual studies, carriage of loss-of-function mutations in FLG was not associated with incident diabetes (hazard ratio (HR) (95% confidence intervals (CI)) = 0.95 (0.73, 1.23), stroke (HR (95% CI) = 1.27 (0.97, 1.65), ischemic heart disease (HR (95%CI) = 0.92 (0.71, 1.19), and all-cause mortality (HR (95%CI) = 1.02 (0.83, 1.25)). Similar results were obtained when including prevalent cases in logistic regression models.

Conclusion

Our results suggest that loss-of-function mutations in FLG are not associated with type 2 diabetes, cardiovascular disease, and all-cause mortality. However, larger studies with longer follow-up are needed to exclude any associations.  相似文献   

3.

Background

Several common genetic and environmental disease mechanisms are important for the pathophysiology behind atopic dermatitis (AD). Filaggrin (FLG) loss-of-function is of great significance for barrier impairment in AD and ichthyosis vulgaris (IV), which is commonly associated with AD. The molecular background is, however, complex and various clusters of genes are altered, including inflammatory and epidermal-differentiation genes.

Objective

The objective was to study whether the functional and molecular alterations in AD and IV skin depend directly on FLG loss-of-function, and whether FLG genotype determines the type of downstream molecular pathway affected.

Methods and Findings

Patients with AD/IV (n = 43) and controls (n = 15) were recruited from two Swedish outpatient clinics and a Swedish AD family material with known FLG genotype. They were clinically examined and their medical history recorded using a standardized questionnaire. Blood samples and punch biopsies were taken and trans-epidermal water loss (TEWL) and skin pH was assessed with standard techniques. In addition to FLG genotyping, the STS gene was analyzed to exclude X-linked recessive ichthyosis (XLI). Microarrays and quantitative real-time PCR were used to compare differences in gene expression depending on FLG genotype. Several different signalling pathways were altered depending on FLG genotype in patients suffering from AD or AD/IV. Disease severity, TEWL and pH follow FLG deficiency in the skin; and the number of altered genes and pathways are correlated to FLG mRNA expression.

Conclusions

We emphasize further the role of FLG in skin-barrier integrity and the complex compensatory activation of signalling pathways. This involves inflammation, epidermal differentiation, lipid metabolism, cell signalling and adhesion in response to FLG-dependent skin-barrier dysfunction.  相似文献   

4.
Epidemiological studies suggest that allergy risk is preferentially transmitted through mothers. This can be due to genomic imprinting, where the phenotype effect of an allele depends on its parental origin, or due to maternal effects reflecting the maternal genome''s influence on the child during prenatal development. Loss-of-function mutations in the filaggrin gene (FLG) cause skin barrier deficiency and strongly predispose to atopic dermatitis (AD). We investigated the 4 most prevalent European FLG mutations (c.2282del4, p.R501X, p.R2447X, and p.S3247X) in two samples including 759 and 450 AD families. We used the multinomial and maximum-likelihood approach implemented in the PREMIM/EMIM tool to model parent-of-origin effects. Beyond the known role of FLG inheritance in AD (R1meta-analysis = 2.4, P = 1.0 x 10−36), we observed a strong maternal FLG genotype effect that was consistent in both independent family sets and for all 4 mutations analysed. Overall, children of FLG-carrier mothers had a 1.5-fold increased AD risk (S1 = 1.50, Pmeta-analysis = 8.4 x 10−8). Our data point to two independent and additive effects of FLG mutations: i) carrying a mutation and ii) having a mutation carrier mother. The maternal genotype effect was independent of mutation inheritance and can be seen as a non-genetic transmission of a genetic effect. The FLG maternal effect was observed only when mothers had allergic sensitization (elevated allergen-specific IgE antibody plasma levels), suggesting that FLG mutation-induced systemic immune responses in the mother may influence AD risk in the child. Notably, the maternal effect reported here was stronger than most common genetic risk factors for AD recently identified through genome-wide association studies (GWAS). Our study highlights the power of family-based studies in the identification of new etiological mechanisms and reveals, for the first time, a direct influence of the maternal genotype on the offspring’s susceptibility to a common human disease.  相似文献   

5.
Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex pathogenesis. Although regulatory T cells (Tregs) have previously been studied in AD, their role remains controversial, likely owing to patient heterogeneity. Thus, we recruited adult AD patients and age‐matched healthy controls, and assessed their filaggrin (FLG) genotype, serum IgE level, and eczema area and severity index (EASI). We found increased proportions of all circulating Treg subpopulations in AD patients. Moreover, we show positive correlations between circulating Tregs and serum IgE FLG null mutations limited the expansion of both memory and effector Tregs and enhanced that of recently thymus‐emigrated Tregs. Furthermore, proportions of circulating Th2‐ or Th17‐Tregs but not Th1‐Tregs were increased in AD patients, and accentuated by FLG null mutations, thereby mimicking the immune deviation observed in Th cell populations. Moreover, ICOS+ Tregs showed reduced production of interleukin‐10, suggesting impaired immunosuppression in AD. The level of demethylation of FOXP3i1, which reflects the stability of FOXP3 expression, was similar in the blood and skin of AD patients and healthy controls. Overall, these results show that Tregs may participate into AD pathogenesis and that FLG null mutations exert further modifications on specific subpopulations of circulating Tregs.  相似文献   

6.
The relationship between the Filaggrin gene (FLG) rs2065955 polymorphism and susceptibility to Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) and EBV-negative gastric carcinoma (EBVnGC) was investigated in Shandong Province, China. We detected the FLG rs2065955 genotype and allele distribution by using PCR and restriction fragment length polymorphism (RFLP) in 64 EBVaGC, 82 EBVnGC, and 111 normal control samples. Immunohistochemistry was used to detect the level of FLG protein in 35 EBVaGC and 51 EBVnGC tumor tissues. Compared with normal controls, the genotype CC and allele C of FLG rs2065955 showed higher frequency in EBVaGC and EBVnGC. There was no significant difference between EBVaGC and EBVnGC in allele distribution of FLG rs2065955, but the genotype CC was found more frequently in EBVaGC than in EBVnGC. The risk of developing either EBVaGC or EBVnGC in genotype CC was higher than in other genotypes. Furthermore, genotype CC of FLG rs2065955 may contribute more to the risk of developing EBVaGC than EBVnGC. There was no significant difference in the expression level of FLG protein between EBVaGC and EBVnGC. In conclusion, the FLG rs2065955 polymorphism was significantly related to gastric carcinoma. Allele C of FLG rs2065955 could be a risk factor for EBVaGC or EBVnGC, while genotype CC of FLG rs2065955 was especially associated with EBVaGC.
  相似文献   

7.
Identifying the molecular basis of phenotypes that have evolved independently can provide insight into the ways genetic and developmental constraints influence the maintenance of phenotypic diversity. Melanic (darkly pigmented) phenotypes in mammals provide a potent system in which to study the genetic basis of naturally occurring mutant phenotypes because melanism occurs in many mammals, and the mammalian pigmentation pathway is well understood. Spontaneous alleles of a few key pigmentation loci are known to cause melanism in domestic or laboratory populations of mammals, but in natural populations, mutations at one gene, the melanocortin-1 receptor (Mc1r), have been implicated in the vast majority of cases, possibly due to its minimal pleiotropic effects. To investigate whether mutations in this or other genes cause melanism in the wild, we investigated the genetic basis of melanism in the rodent genus Peromyscus, in which melanic mice have been reported in several populations. We focused on two genes known to cause melanism in other taxa, Mc1r and its antagonist, the agouti signaling protein (Agouti). While variation in the Mc1r coding region does not correlate with melanism in any population, in a New Hampshire population, we find that a 125-kb deletion, which includes the upstream regulatory region and exons 1 and 2 of Agouti, results in a loss of Agouti expression and is perfectly associated with melanic color. In a second population from Alaska, we find that a premature stop codon in exon 3 of Agouti is associated with a similar melanic phenotype. These results show that melanism has evolved independently in these populations through mutations in the same gene, and suggest that melanism produced by mutations in genes other than Mc1r may be more common than previously thought.  相似文献   

8.

Background

Filaggrin is a major protein in the epidermis. Several mutations in the filaggrin gene (FLG) have been associated with a number of conditions. Filaggrin is expressed in the tympanic membrane and could alter its mechanical properties, but the relationship between genetic variation in FLG and hearing has not yet been tested.

Methodology/Principal Findings

We examined whether loss-of function mutations R501X and 2282del4 in the FLG gene affected hearing in children. Twenty eight hearing variables representing five different aspects of hearing at age nine years in 5,377 children from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort were tested for association with these mutations. No evidence of association was found between R501X or 2282del4 (or overall FLG mutation carrier status) and any of the hearing phenotypes analysed.

Conclusions/Significance

In conclusion, carrier status for common filaggrin mutations does not affect hearing in children.  相似文献   

9.
Summary Analysis of 81 phenylketonuria families from Bulgaria, Lithuania and eastern Germany demonstrated a high frequency of haplotype 2 and the associated Arg408 Trp408 substitution. Haplotype 3 and the splicing mutation in intron 12 are rare or absent in the groups studies. Pooling the data on European populations suggests a Balto-Slavic origin of the defect in codon 408 of the phenylalanine hydroxylase gene and a geographical gradient in the distribution of both major PKU mutations which may contribute to the higher incidence of classic PKU in northern Europeans.  相似文献   

10.

Background

Loss-of-function variants in the gene encoding filaggrin (FLG) are major determinants of eczema. We hypothesized that weakening of the physical barrier in FLG-deficient individuals may potentiate the effect of environmental exposures. Therefore, we investigated whether there is an interaction between FLG loss-of-function mutations with environmental exposures (pets and dust mites) in relation to the development of eczema.

Methods and Findings

We used data obtained in early life in a high-risk birth cohort in Denmark and replicated the findings in an unselected birth cohort in the United Kingdom. Primary outcome was age of onset of eczema; environmental exposures included pet ownership and mite and pet allergen levels. In Copenhagen (n = 379), FLG mutation increased the risk of eczema during the first year of life (hazard ratio [HR] 2.26, 95% confidence interval [CI] 1.27–4.00, p = 0.005), with a further increase in risk related to cat exposure at birth amongst children with FLG mutation (HR 11.11, 95% CI 3.79–32.60, p < 0.0001); dog exposure was moderately protective (HR 0.49, 95% CI 0.24–1.01, p = 0.05), but not related to FLG genotype. In Manchester (n = 503) an independent and significant association of the development of eczema by age 12 mo with FLG genotype was confirmed (HR 1.95, 95% CI 1.13–3.36, p = 0.02). In addition, the risk increased because of the interaction of cat ownership at birth and FLG genotype (HR 3.82, 95% CI 1.35–10.81, p = 0.01), with no significant effect of the interaction with dog ownership (HR 0.59, 95% CI 0.16–2.20, p = 0.43). Mite-allergen had no effects in either cohort. The observed effects were independent of sensitisation.

Conclusions

We have demonstrated a significant interaction between FLG loss-of-function main mutations (501x and 2282del4) and cat ownership at birth on the development of early-life eczema in two independent birth cohorts. Our data suggest that cat but not dog ownership substantially increases the risk of eczema within the first year of life in children with FLG loss-of-function variants, but not amongst those without. FLG-deficient individuals may need to avoid cats but not dogs in early life.  相似文献   

11.
12.
Skin pigmentation is one of the most variable phenotypic traits in humans. A non-synonymous substitution (rs1426654) in the third exon of SLC24A5 accounts for lighter skin in Europeans but not in East Asians. A previous genome-wide association study carried out in a heterogeneous sample of UK immigrants of South Asian descent suggested that this gene also contributes significantly to skin pigmentation variation among South Asians. In the present study, we have quantitatively assessed skin pigmentation for a largely homogeneous cohort of 1228 individuals from the Southern region of the Indian subcontinent. Our data confirm significant association of rs1426654 SNP with skin pigmentation, explaining about 27% of total phenotypic variation in the cohort studied. Our extensive survey of the polymorphism in 1573 individuals from 54 ethnic populations across the Indian subcontinent reveals wide presence of the derived-A allele, although the frequencies vary substantially among populations. We also show that the geospatial pattern of this allele is complex, but most importantly, reflects strong influence of language, geography and demographic history of the populations. Sequencing 11.74 kb of SLC24A5 in 95 individuals worldwide reveals that the rs1426654-A alleles in South Asian and West Eurasian populations are monophyletic and occur on the background of a common haplotype that is characterized by low genetic diversity. We date the coalescence of the light skin associated allele at 22–28 KYA. Both our sequence and genome-wide genotype data confirm that this gene has been a target for positive selection among Europeans. However, the latter also shows additional evidence of selection in populations of the Middle East, Central Asia, Pakistan and North India but not in South India.  相似文献   

13.

Background

Human skeletal system has evolved rapidly since the dispersal of modern humans from Africa, potentially driven by selection and adaptation. Osteogenin (BMP3) plays an important role in skeletal development and bone osteogenesis as an antagonist of the osteogenic bone morphogenetic proteins, and negatively regulates bone mineral density.

Methodology/Principal Findings

Here, we resequenced the BMP3 gene from individuals in four geographically separated modern human populations. Features supportive of positive selection in the BMP3 gene were found including the presence of an excess of nonsynonymous mutations in modern humans, and a significantly lower genetic diversity that deviates from neutrality. The prevalent haplotypes of the first exon region in Europeans demonstrated features of long-range haplotype homogeneity. In contrast with findings in European, the derived allele SNP Arg192Gln shows higher extended haplotype homozygosity in East Asian. The worldwide allele frequency distribution of SNP shows not only a high-derived allele frequency in Asians, but also in Americans, which is suggestive of functional adaptation.

Conclusions/Significance

In conclusion, we provide evidence for recent positive selection operating upon a crucial gene in skeletal development, which may provide new insight into the evolution of the skeletal system and bone development.  相似文献   

14.
Hair morphology is highly differentiated between populations and among people of European ancestry. Whereas hair morphology in East Asian populations has been studied extensively, relatively little is known about the genetics of this trait in Europeans. We performed a genome-wide association scan for hair morphology (straight, wavy, curly) in three Australian samples of European descent. All three samples showed evidence of association implicating the Trichohyalin gene (TCHH), which is expressed in the developing inner root sheath of the hair follicle, and explaining ∼6% of variance (p = 1.5 × 10−31). These variants are at their highest frequency in Northern Europeans, paralleling the distribution of the straight-hair EDAR variant in Asian populations.  相似文献   

15.
Deficient arylsulfatase A activity causes the neurodegenerative disease metachromatic leukodystrophy. However, some individuals with deficient enzyme activity appear clinically normal. This “pseudodeficiency” allele commonly found among many reported populations (frequency ∼ 0.10) is associated with two A→G transitions in cis in the arylsulfatase A gene causing the simultaneous loss of an N-glycosylation and a polyadenylation signal. To understand the evolutionary relationship between such common and tightly linked mutations, we studied 400 individuals in the African, European, Indian and East Asian populations and found none carrying the polyadenylation mutation alone. However, the N-glycosylation mutation could occur independently. Its frequency varied from 0.01 in Indians, 0.06 in Europeans, 0.21 in East Asians to 0.32 in Africans. The frequencies of both mutations occurring together ranged from almost non-existent in the Africans and East Asians, to 0.075 in the Europeans and 0.125 in the Indians. These frequencies were significantly different among populations. Haplotype analysis among homozygous pseudodeficiency individuals and eight multi-generation families with six polymorphic enzymes showed that, of the five haplotypes found in the general population, only one was linked to the double mutations. Alleles among the four populations with only the N-glycosylation mutation also supported linkage to the same haplotype except in some Europeans whose alleles were discordant. These results are consistent with the hypothesis that the N-glycosylation mutation may be a recurrent event among the Europeans but first occurred in an ancestral allele before the emergence of modern Homo sapiens from Africa at ∼100 000–200 000 years ago. Subsequently, the polyadenylation mutation occurred in this ancient allele with the N-glycosylation mutation, an event that likely took place after the divergence between the European and East Asian lineages. Received: 23 December 1996 / Accepted: 21 July 1997  相似文献   

16.
Atopic dermatitis is a chronic inflammatory skin disease with defects in the epidermal barrier. In a cohort of African-American children, a FLG2 nonsense mutation has been associated with the disease. In the epidermis of European patients, the expression of filaggrin-2, the filaggrin-related protein encoded by FLG2, is decreased. To describe the function of filaggrin-2 and evaluate the impact of its deficiency, its expression was downregulated using lentivirus-mediated shRNA interference in a three-dimensional reconstructed human epidermis (RHE) model. This resulted in parakeratosis and a compact stratum corneum, presence of abnormal vesicles inside the corneocytes, increased pH and reduced amounts of free amino acids at the RHE surface, leading to increased sensitivity to UVB radiations. The expression of differentiation markers was slightly modified. However, we observed reduced proteolytic processing of corneodesmosin, hornerin and filaggrin in parallel with reduced amounts of caspase-14 and bleomycin hydrolase. Our data demonstrated that filaggrin-2 is important for a proper cornification and a functional stratum corneum. Its downregulation in atopic patients may be involved in the disease-associated epidermis impairment.Atopic dermatitis (AD; OMIM #603165), also known as atopic eczema, is a very common inflammatory skin disease.1, 2 It is the result of complex interactions between genetic and environmental factors. The most robust and widely replicated genetic risk factor for the disease corresponds to nonsense mutations of the gene FLG.3, 4 This gene encodes filaggrin, an S100 fused-type protein essential for the epidermal barrier functions.3, 4, 5 Filaggrin deficiency is responsible for decreased amounts of free amino acids in the stratum corneum (SC),6, 7, 8, 9 abnormal keratinocyte differentiation,6, 10 epidermal barrier defects and enhanced percutaneous sensitization,6, 7, 9 all characteristics of the atopic skin. However, a significant number of Asian and European patients with AD do not display any of the numerous known FLG mutations,3, 4 in particular in the South of Europe.11, 12 In addition, FLG nonsense mutations have not been detected in Ethiopian and South African populations,13, 14 and are not associated with AD in African-American patients.15, 16 Hence, the defect in epidermal barrier functions of patients without FLG mutations, including those of African ancestry, may be associated with other inherited/acquired abnormalities that compromise keratinocyte differentiation.17Recently, mutations in the FLG2 gene, in particular a nonsense mutation, were shown to be associated with persistent AD in a cohort of 60 US patients of African ancestry.18 FLG2 encodes filaggrin-2, another S100 fused-type protein.19 Filaggrin-2 is very similar to filaggrin in terms of protein structure, amino-acid composition, pattern of expression and of biochemical properties. It is synthetized by granular keratinocytes as a large precursor consisting of 23 homologous repeats and a S100-homologous N-terminal domain. Filaggrin-2 and filaggrin are colocalized in keratohyalin granules in granular keratinocytes, and in the cytoplasmic matrix of the lower corneocytes.20, 21 In the upper SC, filaggrin-2 is deiminated and degraded by calpain 1.20 The role of filaggrin-2 in the SC remains to be discovered, but it may be similar to that of filaggrin.22 In addition, FLG2 is one of the genes that are the most downregulated after cholesterol depletion of keratinocytes, an experimental model of AD.23 Importantly, we and others have shown that filaggrin-2 expression is reduced, probably by pro-inflammatory cytokines, in the epidermis of European patients.12, 24To analyze the function of filaggrin-2 and understand the effect of its deficiency in AD in an immunological cell-free context, we downregulated its expression with shRNA technology in reconstructed human epidermis (RHE). This technology has previously been used with success to demonstrate the importance of filaggrin in the human epidermis.6 The research focused particularly on epidermal differentiation, SC properties and permeability barrier.  相似文献   

17.
Pigmentation of the skin, hair, and eyes varies both within and between human populations. Identifying the genes and alleles underlying this variation has been the goal of many candidate gene and several genome-wide association studies (GWAS). Most GWAS for pigmentary traits to date have been based on subjective phenotypes using categorical scales. But skin, hair, and eye pigmentation vary continuously. Here, we seek to characterize quantitative variation in these traits objectively and accurately and to determine their genetic basis. Objective and quantitative measures of skin, hair, and eye color were made using reflectance or digital spectroscopy in Europeans from Ireland, Poland, Italy, and Portugal. A GWAS was conducted for the three quantitative pigmentation phenotypes in 176 women across 313,763 SNP loci, and replication of the most significant associations was attempted in a sample of 294 European men and women from the same countries. We find that the pigmentation phenotypes are highly stratified along axes of European genetic differentiation. The country of sampling explains approximately 35% of the variation in skin pigmentation, 31% of the variation in hair pigmentation, and 40% of the variation in eye pigmentation. All three quantitative phenotypes are correlated with each other. In our two-stage association study, we reproduce the association of rs1667394 at the OCA2/HERC2 locus with eye color but we do not identify new genetic determinants of skin and hair pigmentation supporting the lack of major genes affecting skin and hair color variation within Europe and suggesting that not only careful phenotyping but also larger cohorts are required to understand the genetic architecture of these complex quantitative traits. Interestingly, we also see that in each of these four populations, men are more lightly pigmented in the unexposed skin of the inner arm than women, a fact that is underappreciated and may vary across the world.  相似文献   

18.

Background

Filaggrin gene (FLG) mutations have been identified as the cause of ichthyosis vulgaris (IV) and major predisposing factors for atopic dermatitis (AD). The relationship among AD, IV and FLG mutations has not been clarified yet. Mutations 3321delA and K4671X, two of the most common mutations in Chinese patients, were both statistically associated with AD in case-control studies.

Materials and Methods

A group of 100 family trios (a total of 300 members with one affected AD proband and both parents) were recruited and screened for three filaggrin null mutations (3222del4, 3321delA and K4671X). The subjects’ manifestations of AD and IV were assessed by two experienced dermatologists and recorded in detail. The relationship of common mutations to AD were assessed using both case-control and family-based tests of association. Filaggrin expression was measured in skin of 3 subjects with K4671X heterozygote and the normal control using quantitative real-time RT-PCR and immunohistochemistry.

Results

Of 100 probands for AD, 22 were carriers for common FLG mutations and only 2 of them were from 40 none-IV family trios (5.00%), consistent with that of the healthy control group (3.99%, P>0.05). Significant statistical associations were revealed between AD and 3321delA (P<0.001, odds ratio 12.28, 95% confidence interval 3.35–44.98) as well as K4671X (P = 0.002, odds ratio 4.53, 95% confidence interval 1.77–11.60). The family-based approach revealed that 3321delA was over-transmitted to AD offspring from parents (T:U = 12∶1, P = 0.003) but failed to demonstrate transmission disequilibrium between K4671X and AD (T:U = 10∶8, P = 0.815). Moreover, compared to the normal control, filaggrin expression at both mRNA and protein levels in epidermis of subjects with K4671Xheter was not reduced.

Conclusions

AD patients from none-IV family trios have low probability of carrying FLG mutations. The present family samples confirmed the susceptibility of mutation 3321delA to AD in Han Chinese. K4671X was not a pathogenic mutation.  相似文献   

19.
Demography impacts the observed standing level of genetic diversity present in populations. Distinguishing the relative impacts of demography from selection requires a baseline of expressed gene variation in naturally occurring populations. Six nuclear genes were sequenced to estimate the patterns and levels of genetic diversity in natural Arabidopsis lyrata subsp. petraea populations that differ in demographic histories since the Pleistocene. As expected, northern European populations have genetic signatures of a strong population bottleneck likely due to glaciation during the Pleistocene. Levels of diversity in the northern populations are about half of that in central European populations. Bayesian estimates of historical population size changes indicate that central European populations also have signatures of population size change since the last glacial maxima, suggesting that these populations are not as stable as previously thought. Time since divergence amongst northern European populations is higher than amongst central European populations, suggesting that the northern European populations were established before the Pleistocene and survived glaciation in small separated refugia. Estimates of demography based on expressed genes are complementary to estimates based on microsatellites and transposable elements, elucidating temporal shifts in population dynamics and confirming the importance of marker selection for tests of demography.  相似文献   

20.
The last decade has witnessed important advances in our understanding of the genetics of pigmentation in European populations, but very little is known about the genes involved in skin pigmentation variation in East Asian populations. Here, we present the results of a study evaluating the association of 10 Single Nucleotide Polymorphisms (SNPs) located within 5 pigmentation candidate genes (OCA2, DCT, ADAM17, ADAMTS20, and TYRP1) with skin pigmentation measured quantitatively in a sample of individuals of East Asian ancestry living in Canada. We show that the non-synonymous polymorphism rs1800414 (His615Arg) located within the OCA2 gene is significantly associated with skin pigmentation in this sample. We replicated this result in an independent sample of Chinese individuals of Han ancestry. This polymorphism is characterized by a derived allele that is present at a high frequency in East Asian populations, but is absent in other population groups. In both samples, individuals with the derived G allele, which codes for the amino acid arginine, show lower melanin levels than those with the ancestral A allele, which codes for the amino acid histidine. An analysis of this non-synonymous polymorphism using several programs to predict potential functional effects provides additional support for the role of this SNP in skin pigmentation variation in East Asian populations. Our results are consistent with previous research indicating that evolution to lightly-pigmented skin occurred, at least in part, independently in Europe and East Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号