首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multituberculate petrosals with well-preserved, three-dimensional internal anatomy from the Late Cretaceous/early Paleocene Bug Creek Anthills, Montana, U.S.A., are described from X-radiographic and SEM images, as well as from conventional visual observations, and are compared with the anatomy of the osseous inner ear in monotremes and in primitive non-therian and therian mammals. Results of this study indicate that: (1) the cochlea of at least some multituberculates retained a lagena, previously known only in monotremes among mammals; (2) an enlarged vestibule evolved in several lineages of multituberculates independently, and hence is not a synapomorphy of the order; (3) the cochlear canal lacks osseous laminae in support of the short, wide basilar membrane, which was probably inefficient in responding to high-frequency airborne vibrations; and (4) consequently, bone-conducted hearing in some multituberculate species may have been important in interpretation of their surroundings. Comparisons with the inner ear of monotremes and primitive therians indicate that curvature of the cochlea and cribriform plates for passage of vestibulocochlear nerve branches through the petrosal are unlikely homologues between monotremes and therians. From non-therian to therian mammals, there is a distinct morphological gap in the inner ear transition, characterized by acquisition of a number of neomorphs in the therian inner ear; an intermediate stage has yet to be discovered.  相似文献   

2.
3.
We describe three previously unreported specimens of petrosal bones of paulchoffatiid multituberculate mammals, collected from strata of Late Jurassic age in the Guimarota lignite mine of Leiria, west-central Portugal. The new fossils allow correction, supplementation, and confirmation of anatomical details, thus refining knowledge of general adaptation in the ear region among Jurassic multituberculates. Virtually all observed characters in the paulchoffatiid otic region are primitive relative to homologous features seen among Late Cretaceous and younger representatives of the Multituberculata; we recognize few unique otic specializations in paulchoffatiids that would preclude ancestry to later multituberculates. The plesiomorphic nature of paulchoffatiid ear regions provides no evidence in support of the hypothesis of a special, sister-group relationship between multituberculates and Late Cretaceous/Cenozoic marsupials plus placentals. Used in isolation, objective evidence derived from paulchoffatiid ear regions is consistent with interpretation of multituberculate divergence from other mammals predating the stem to living monotremes and postdating the stem to extinct morganucodontids. More broadly based comparative studies among Mesozoic mammals, however, suggest that independent acquisition of similarly advanced mammalian features was a pervasive theme among evolutionary histories of early mammals, probably including multituberculates. Although the phylogenetic position of multituberculates relative to other mammalian groups has yet to be unequivocally resolved, we suggest that a very early divergence of the group remains a distinct possibility.  相似文献   

4.
The middle ear bones of Mesozoic mammals are rarely preserved as fossils and the morphology of these ossicles in the earliest mammals remains poorly known. Here, we report the stapes and incus of the euharamiyidan Arboroharamiya from the lower Upper Jurassic (~160 Ma) of northern China, which represent the earliest known mammalian middle ear ossicles. Both bones are miniscule in relation to those in non‐mammalian cynodonts. The skull length/stapedial footplate diameter ratio is estimated as 51.74 and the stapes length as the percentage of the skull length is 4%; both numbers fall into the stapes size ranges of mammals. The stapes is “rod‐like” and has a large stapedial foramen. It is unique among mammaliaforms in having a distinct posterior process that is interpreted as for insertion of the stapedius muscle and homologized to the ossified proximal (stapedial) end of the interhyal, on which the stapedius muscle attached. The incus differs from the quadrate of non‐mammalian cynodonts such as morganucodontids in having small size and a slim short process. Along with lack of the postdentary trough and Meckelian groove on the medial surface of the dentary, the ossicles suggest development of the definitive mammalian middle ear (DMME) in Arboroharamiya. Among various higher‐level phylogenetic hypotheses of mammals, the one we preferred places “haramiyidans” within Mammalia. Given this phylogeny, development of the DMME took place once in the allotherian clade containing euharamiyidans and multituberculates, probably independent to those of monotremes and therians. Thus, the DMME has evolved at least three times independently in mammals. Alternative hypothesis that placed “haramiyidans” outside of Mammalia would require independent acquisition of the DMME in multituberculates and euharamiyidans as well as parallel evolution of numerous derived similarities in the dentition, occlusion pattern, mandibles, cranium, and postcranium between the two groups and between “haramiyidans” and other mammals. J. Morphol. 279:441–457, 2018. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
The relationships of mammals   总被引:2,自引:0,他引:2  
A cladistic analysis generates alternative hypotheses regarding both the origin and the interrelationships of mammals to those most widely accepted at the present time. It is proposed that the tritylodontids are more closely related to mammals than is Probainognathus ; that the non-therian mammals do not constitute a monophyletic group; and that the monotremes are related to the modern therians, the ear ossicles among other characters having evolved only once. The multituberculates may be related to the monotremes.
It is argued that the current views are variously based on an overemphasis of superficial dental similarities, misinterpretation of the structure of the mammalianbraincaseand too readyacceptance of parallel evolution amongstthe groups concerned. The hypotheses proposed here are apparently much more parsimonious.  相似文献   

6.

Background

The minute, finely-tuned ear ossicles of mammals arose through a spectacular evolutionary transformation from their origins as a load-bearing jaw joint. This involved detachment from the postdentary trough of the mandible, and final separation from the dentary through resorption of Meckel’s cartilage. Recent parsimony analyses of modern and fossil mammals imply up to seven independent postdentary trough losses or even reversals, which is unexpected given the complexity of these transformations. Here we employ the first model-based, probabilistic analysis of the evolution of the definitive mammalian middle ear, supported by virtual 3D erosion simulations to assess for potential fossil preservation artifacts.

Results

Our results support a simple, biologically plausible scenario without reversals. The middle ear bones detach from the postdentary trough only twice among mammals, once each in the ancestors of therians and monotremes. Disappearance of Meckel’s cartilage occurred independently in numerous lineages from the Late Jurassic to the Late Cretaceous. This final separation is recapitulated during early development of extant mammals, while the earlier-occurring disappearance of a postdentary trough is not.

Conclusions

Our results therefore suggest a developmentally congruent and directional two-step scenario, in which the parallel uncoupling of the auditory and feeding systems in northern and southern hemisphere mammals underpinned further specialization in both lineages. Until ~168 Ma, all known mammals retained attached middle ear bones, yet all groups that diversified from ~163 Ma onwards had lost the postdentary trough, emphasizing the adaptive significance of this transformation.
  相似文献   

7.
Multituberculate anatomy is compared with that of other mammals, with an emphasis on the characters that have either been neglected or misinterpreted in previous analyses of early mam mal relationships. These are: brain structure, backward masticatory power stroke (along with aspects of cranial design), and foot structure. New data on ear ossicles and a controversy con cerning multituberculate posture are also discussed. The following characters of multitubercu late skull and lower jaw are interpreted to be related to the backward masticatory power stroke: anterior orbital area roofed dorsally and without a floor (characteristic of advanced multituber culates), parietal postorbital process, lack of the angular process and a more anterior position of the coronoid process and masseteric fossa than in all other mammals. It is argued that the parallel development in the cranial structure of multituberculates and other mammals was lim ited by the backward masticatory power stroke of multituberculates that resulted in different configuration of the masticatory musculature and related osteology. In the postcranial skeleton the parallelism was limited by the structure of the multituberculate foot, in which the calca-neum contacts the fifth metatarsal (MtV) and the middle metatarsal (MtIII) is abducted 30° from the longitudinal axis of the tuber calcanei. Backward masticatory power stroke and related skull design do not show unequivocally whether multituberculates originated from some ‘tri-conodonts’ (a polyphyletic group), or independently from all other mammals from cynodonts. The foot structure refutes the origin of multituberculates from the Morganucodontidae. The brain structure allies the multituberculates with the Triconodontidae, the postcranial skeleton of which remains unknown. New data on ear ossicles suggest close relationships of multituber culates to all modern mammals. Lack of uncontested pre-Kimmeridgian multituberculates dis proves the separate origin of multituberculates from cynodonts.  相似文献   

8.

Background

Theria (marsupials and placental mammals) are characterized by a highly mobile pectoral girdle in which the scapula has been shown to be an important propulsive element during locomotion. Shoulder function and kinematics are highly conservative during locomotion within quadrupedal therian mammals. In order to gain insight into the functional morphology and evolution of the pectoral girdle of the two-toed sloth we here analyze the anatomy and the three-dimensional (3D) pattern of shoulder kinematics during quadrupedal suspensory ('upside-down') locomotion.

Methods

We use scientific rotoscoping, a new, non-invasive, markerless approach for x-ray reconstruction of moving morphology (XROMM), to quantify in vivo the 3D movements of all constituent skeletal elements of the shoulder girdle. Additionally we use histologic staining to analyze the configuration of the sterno-clavicular articulation (SCA).

Results

Despite the inverse orientation of the body towards gravity, sloths display a 3D kinematic pattern and an orientation of the scapula relative to the thorax similar to pronograde claviculate mammalian species that differs from that of aclaviculate as well as brachiating mammals. Reduction of the relative length of the scapula alters its displacing effect on limb excursions. The configuration of the SCA maximizes mobility at this joint and demonstrates a tensile loading regime between thorax and limbs.

Conclusions

The morphological characteristics of the scapula and the SCA allow maximal mobility of the forelimb to facilitate effective locomotion within a discontinuous habitat. These evolutionary changes associated with the adoption of the suspensory posture emphasized humeral influence on forelimb motion, but allowed the retention of the plesiomorphic 3D kinematic pattern.  相似文献   

9.
The extant mammalian groups Monotremata, Marsupialia and Placentalia are, according to the 'Theria' hypothesis, traditionally classified into two subclasses. The subclass Prototheria includes the monotremes and subclass Theria marsupials and placental mammals. Based on some morphological and molecular data, an alternative proposition, the Marsupionta hypothesis, favours a sister group relationship between monotremes and marsupials to the exclusion of placental mammals. Phylogenetic analyses of single genes and even multiple gene alignments have not yet been able to conclusively resolve this basal mammalian divergence. We have examined this problem using one data set composed of expressed sequence tags (EST) and another containing 1 510 509 nucleotide (nt) sites from 1358 inferred cDNA genomic sequences. All analyses of the concatenated sequences unambiguously supported the Theria hypothesis. The Marsupionta hypothesis was rejected with high statistical confidence from both data sets. In spite of the strong support for Theria, a non-negligible number of single genes supported either of the two alternative hypotheses. The divergence between monotremes and therian mammals was estimated to have taken place 168–178 Mya, a dating compatible with the fossil record. Considering the long common evolutionary branch of therians, it is surprising that sequence data from many thousand amino acid sites were needed to conclusively resolve their relationship to monotremes. This finding draws attention to other mammalian divergences that have been taken as unequivocally settled based on much smaller alignments. EST data provide a comprehensive random sample of protein coding sequences and an economic way to produce large amounts of data for phylogenetic analysis of species for which genomic sequences are not yet available.  相似文献   

10.
Monotreme IGF2 expression and ancestral origin of genomic imprinting   总被引:8,自引:0,他引:8  
IGF2 (insulin-like growth factor 2) and M6P/IGF2R (mannose 6-phosphate/insulin-like growth factor 2 receptor) are imprinted in marsupials and eutherians but not in birds. These results along with the absence of M6P/IGF2R imprinting in the egg-laying monotremes indicate that the parental imprinting of fetal growth-regulatory genes may be unique to viviparous mammals. In this investigation, we have cloned IGF2 from two monotreme mammals, the platypus and echidna, to further investigate the origin of imprinting. We report herein that like M6P/IGF2R, IGF2 is not imprinted in monotremes. Thus, although IGF2 encodes for a highly conserved growth factor in chordates, it is only imprinted in therian mammals. These findings support a concurrent origin of IGF2 and M6P/IGF2R imprinting in the late Jurassic/early Cretaceous period. The absence of imprinting in monotremes, despite apparent interparental conflicts over maternal-offspring exchange, argues that a fortuitous congruency of genetic and epigenetic events may have limited the phylogenetic breadth of genomic imprinting to therian mammals. J. Exp. Zool. (Mol. Dev. Evol.) 291:205-212, 2001.  相似文献   

11.
The ossified Meckel's cartilage is described in detail from three adult individuals of two triconodont mammals, Repenomamus and Gobiconodon , which have been discovered in the Lower Cretaceous of Liaoning, China. A possible ossified Meckel's cartilage has also been recognized in the Early Cretaceous symmetrodont Zhangheotherium from Liaoning. The rod-like ossified Meckel's cartilage in Repenomamus bridges the dentary and the ear region of the cranium. Its shape and position are similar to those of Meckel's cartilage in prenatal and in some postnatal extant mammals. The ossified Meckel's cartilage may have functioned as an attachment site for the medial pterygoid muscle. These specimens provide direct evidence for the function of the internal groove which is commonly present in the dentary of early mammals and their relatives. The evidence weakens the hypothesis of multiple origins for the definitive mammalian middle ear. It supports the assumption that a persistent or ossified Meckel's cartilage has been present in adults of the common ancestor of mammals. The new evidence of Repenomamus does not support the model in which brain expansion and negative allometry of the auditory chain are primarily responsible for the detachment of ear ossicles in mammalian ontogeny and evolution. An alternative hypothesis is proposed which does not require brain expansion as the initial factor for the detachment of ear ossicles during mammalian evolution. © 2003 The Linnean Society of London. Zoological Journal of the Linnean Society , 2003, 138 , 431–448.  相似文献   

12.
Attention is drawn to the presence of a constant, though commonly ignored, element (the "pro-osteon" of Parker, 1868) in the constitution of the monotreme interclavicle (episternum) The probable nature and the fate of this element, peculiar to the immature interclavicle only, are described and its morphological significance is demonstrated to be epiphyseal. The epiphyses of the monotreme shoulder girdle are reviewed as to number, arrangement and fate. The occurrence is reported in a Tachyglossus skeleton of supernumerary (para-pre-coracoid) ossicles of which a possible interpretation is given.  相似文献   

13.
四川侏罗纪三列齿类头后骨骼   总被引:1,自引:1,他引:0  
本文记述了最晚期的三列齿类——似卞氏兽 (Bienotheroides) 的头后骨骼,并和其他三列齿类以及原始哺乳动物作了对比.肩胛骨上雏型岗上窝的出现,证明三列齿类与原始哺乳类的关系要比以往想象的更为密切.  相似文献   

14.
The derived middle and inner ears of mammals are the major features distinguishing them from non-mammalian vertebrates. Among them, multituberculate mammals represent an important transitional stage and a groundplan for further therian ear evolution. We present the reconstruction of petrosal features of a new multituberculate from the Late Cretaceous of Inner Mongolia (China) based on high resolution computed tomography and three-dimensional imaging analysis. Besides questioning some aspects of previous interpretations, this study reveals a combination of derived and primitive characters, such as a therian-like vascular and nervous pattern and internal acoustic meatus, and a monotreme-like inner ear, but with a derived semicircular canal planarity. The possible presence of a primary bony lamina for the basilar membrane could demonstrate that the first step in the elaboration of a coiled cochlea was already present in multituberculates. Auditory capabilities can be deduced for this animal, which was certainly terrestrial and possibly fossorial.  相似文献   

15.
16.
The root of the mammalian tree inferred from whole mitochondrial genomes   总被引:14,自引:0,他引:14  
Morphological and molecular data are currently contradictory over the position of monotremes with respect to marsupial and placental mammals. As part of a re-evaluation of both forms of data we examine complete mitochondrial genomes in more detail. There is a particularly large discrepancy in the frequencies of thymine and cytosine (T-C) between mitochondrial genomes that appears to affect some deep divergences in the mammalian tree. We report that recoding nucleotides to RY-characters, and partitioning maximum-likelihood analyses among subsets of data reduces such biases, and improves the fit of models to the data, respectively. RY-coding also increases the signal on the internal branches relative to external, and thus increases the phylogenetic signal. In contrast to previous analyses of mitochondrial data, our analyses favor Theria (marsupials plus placentals) over Marsupionta (monotremes plus marsupials). However, a short therian stem lineage is inferred, which is at variance with the traditionally deep placement of monotremes on morphological data.  相似文献   

17.
The marsupial middle ear performs an anatomical impedance matching for acoustic energy travelling in air to reach the cochlea. The size of the middle ear sets constraints for the frequencies transmitted. For generalized placental mammals, it has been shown that the limit for high-frequency hearing can be predicted on the basis of middle ear ossicle mass, provided that the ears fulfil requirements of isometry. We studied the interspecific size variation of the middle ear in 23 marsupial species, with the following measurable parameters: skull mass, condylobasal length, ossicular masses for malleus, incus and stapes, tympanic membrane area, oval window area, and lever arm lengths for malleus and incus. Our results show that the middle ear size grows with negative allometry in relation to body size and that the internal proportions of the marsupial middle ear are largely isometric. This resembles the situation in placental mammals and allows us to use their isometric middle ear model to predict the high-frequency hearing limit for marsupials. We found that the isometry model predicts the high-frequency hearing limit for different marsupials well, indicating that marsupials can be used as auditory models for general therian mammalian hearing. At very high frequencies, other factors, such as the inner ear, seem to constrain mammalian hearing.  相似文献   

18.
The first steps in the formation of the middle ear of the mammalian type, with the tympanum and three auditory ossicles, have only been passed by higher cynodonts. They have an incipient malleus, which developed from the anterior process of the articulare rather than the retroarticular process, which is rudimentary in cynodonts. The tympanic bone is formed of the anterior projections of the angulare. In some gorgonopians, the retroarticular process is elongated and curved anteriorly, resembling the malleus of mammals; however, this is only convergent similarity.  相似文献   

19.
20.
Controversies remain over the relationships among several of the marsupial families and between the three major extant lineages of mammals: Eutheria (placentals), Metatheria (marsupials), and Prototheria (monotremes). Two opposing hypotheses place the marsupials as either sister to the placental mammals (Theria hypothesis) or sister to the monotremes (Palimpsest or Marsupionta hypothesis). A nuclear gene that has proved useful for analyzing phylogenies of vertebrates is the recombination activation gene-1 (RAG1). RAG1 is a highly conserved gene in vertebrates and likely entered the genome by horizontal transfer early in the evolution of jawed vertebrates. Phylogenetic analyses were performed on RAG1 sequences from seven placentals, 28 marsupials, and all three living monotreme species. Phylogenetic analyses of RAG1 sequences support many of the traditional relationships among the marsupials and suggest a relationship between bandicoots (order Peramelina) and the marsupial mole (order Notoryctemorphia), two lineages whose position in the phylogenetic tree has been enigmatic. A sister relationship between South American shrew opossums (order Paucituberculata) and all other living marsupial orders is also suggested by RAG1. The relationship between the three major groups of mammals is consistent with the Theria hypothesis, with the monotremes as the sister group to a clade containing marsupials and placentals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号