首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on large-scale geographic patterns of aquatic plant diversity can promote research on the generality of macroecological patterns in different ecosystems. Here, we compiled a checklist of 889 aquatic angiosperms in China, including 738 helophytes (emergent and marshy plants) and 151 hydrophytes (submerged, free-floating, and floating-leaved plants). We explore the geographic patterns and environmental correlates of aquatic plant diversity based on six metrics including species richness (SR), weighted endemism (WE), phylogenetic diversity (PD), phylogenetic endemism (PE), the standardized effect size of phylogenetic diversity (PDses), and the standardized effect size of mean phylogenetic distance (MPDses). Our results show that the diversity of aquatic plants in China is extremely uneven, with high diversity in southeastern China and low diversity in northwestern China, and the geographic patterns of taxonomic and PD are generally consistent. The pattern of helophytes differs from that of hydrophytes. Notably, the wavy-shaped pattern of aquatic plant diversity (especially SR and PD for hydrophytes) across the latitude observed in this study is not consistent with those previously observed for aquatic plants in other continents. Climatic variables and water environmental variables are the main drivers of aquatic plant diversity in China; however, the effects of individual variables differ between helophytes and hydrophytes. Water environmental variables have a greater impact on PDses and MPDses of hydrophytes than those of helophytes. Overall, our work provides insight into understanding the large-scale patterns of aquatic plant diversity and is a critical addition to previous studies on the macroecological pattern of terrestrial organisms.  相似文献   

2.
Habitat restoration is critical to the conservation of rare species. However, restoration efforts often proceed without knowledge of their effects on these species. We investigated the reproductive response of federally endangered Fender’s blue butterfly (Plebejus icarioides fenderi) to prairie restoration in Willamette Valley, Oregon, USA. In 2009 and 2010, we quantified availability of larval host plant, Kincaid’s lupine (Lupinus oreganus), and butterfly oviposition in three restored areas (1–10 years old) and adjacent intact habitat. Oviposition measures in restored areas reached or exceeded intact habitat (0.1 eggs/leaf of host plant and 12 % of time ovipositing) within five years post-restoration. However, none of the restorations provided an equivalent host plant density to intact areas (55 leaves/m2). The different response time of host plants and butterflies to restoration highlights the importance of monitoring both vegetation and oviposition over an ecologically relevant timescale (at least 10 years). For imperiled species, quantifying reproductive response to restoration is critical for adaptive management and successful conservation of the species which restoration efforts are intended to benefit.  相似文献   

3.
All vascular plants, classified by life and growth form into six groups, four groups of hydrophytes (lemnids, nymphaeids, elodeids and isoetids), helophytes, and terrestrial species of pond margins, were inventoried in 64 SE Norwegian agricultural landscape ponds and their adjacent margins. The study sites varied considerably with respect to species richness; 0–4 for each hydrophyte group, 0–9 for helophytes, and 13–77 for terrestrial species. A total of 56 explanatory variables were recorded for each pond and adjacent margin to explain the observed richness variability.  相似文献   

4.
In order to preserve endangered plant populations and recover their evolutionary potential and ecological behavior, some restoration measures generally involve the reinforcement of the population size in existing natural populations or the reintroduction of new populations. Genetic monitoring of both natural and restored populations can provide an assessment of restoration protocol success in establishing populations that maintain levels of genetic diversity similar to those in natural populations. The highly threatened Spanish species Silene hifacensis (Caryophyllaceae) has only three natural reduced mainland populations in the Iberian Peninsula, following decline and extinction that occurred during the late 20th century. Preterit restoration strategies were essentially based on the implantation of new populations and reinforcement of certain existing populations using transplants mostly cultivated in greenhouses. In the present contribution, levels and patterns of genetic variability within natural and restored populations of Silene hifacensis were assessed using the molecular technique AFLP. Our results pointed out significant genetic diversity differences across the three existing natural populations though their population fragmentation and progressive loss of individuals have not had an impact on the global genetic diversity of this species. For restored populations, their levels of genetic diversity were similar and even higher than in natural populations. As a result, the past restoration protocols were successful in capturing similar and even higher levels of genetic diversity than those observed within natural pools. However, inbreeding processes have been detected for two restored populations. Finally, the main source of plant material for the long-time restored transplants appears to be the natural population of Cova de les Cendres. This study demonstrates, once again, how genetic markers are useful tools to be taken in consideration for endangered plant species conservation plans.  相似文献   

5.
All vascular plants, classified by life and growth form into aquatic species (hydrophytes and helophytes) and terrestrial species of pond margins, were inventoried in 64 SE Norwegian agricultural landscape ponds and their adjacent margins for which also 56 explanatory variables were recorded. Gradients in species composition, found separately for aquatic and terrestrial species by parallel DCA and GNMDS ordinations, were interpreted by correlation and geostatistical analyses.  相似文献   

6.
Rewilding and translocations of large herbivores for conservation purposes have increased in recent times, with numerous introductions inside and outside their native range. This study aims to analyze the use of threatened plant taxa as a possible ecological indicator of large herbivore introductions. We examined the effects of a threatened large ungulate, the Barbary sheep (Ammotragus lervia), on both endangered and vulnerable woody taxa after its introduction in 1970. Contrary to our hypothesis, the herbivore impact on threatened woody species was higher than that found on widespread woody plants. The results reveal that 35.7% of the threatened species showed the highest possible level of herbivore damage in contrast to 6.5% for the widespread species. Threatened species were preferred over common plants, probably due to their greater palatability. Overall plant cover, including neighboring species, was also an important factor determining browsing damage and, thus, habitats with low ground cover should be particularly considered in conservation plans. Herbivore damage on common taxa should be taken with caution since they could mask unsustainable herbivore densities for threatened woody taxa or protected habitats. The use of threatened woody taxa through the studied ecological indicators (herbivore damage, plant preferences, habitat use and regeneration success) represented a useful tool to assess the sustainability of large herbivores introductions and to establish a priority conservation ranking for threatened plant species. These findings highlight the deleterious effects of overabundant ungulate populations regardless its origin (exotic or native) and the need of monitoring threatened woody taxa to better estimate the suitability and sustainability of large herbivore introductions.  相似文献   

7.
Abernethy  V.J.  Willby  N.J. 《Plant Ecology》1999,140(2):177-190
This study used germination methods to examine the density, species composition and functional composition of propagule banks in a series of riverine wetland aquatic habitats subject to varying degrees of hydrological and management-related disturbance. Under permanent inundation (the conditions prevailing at most sites during the growing season) propagule germination and species richness was low, with floodplain perennials and helophytes particularly affected. Densities of floodplain annuals were largely maintained through continued germination of a few flooding tolerant species. On damp mud (conditions associated with hydrological instability) total seedling number and species richness increased significantly, but species richness of germinating hydrophytes declined. Mean seedling density at 0–0.1m depth was 15450 ± 4400 m–2, reaching a maximum (162 050 m–2) in temporary backwaters. Annual (e.g., Lindernia dubia, Cyperus fuscus) and facultative ruderal species (e.g., Lythrum salicaria and Alisma plantago-aquatica) predominated. Vertical zonation of the propagule bank was weakly developed. The numbers of individuals and species germinating varied significantly between sites. The seasonal, most intensely disturbed sites (temporary backwaters) supported a numerically large, species-rich propagule bank based on floodplain annuals, while the permanent, less disturbed sites (ditches and an oxbow pond) had a small, species-poor propagule bank composed of hydrophytes and helophytes supplemented by allochthonous seed inputs. Sites intermediate on the gradient had a propagule bank dominated by facultative amphibious, ruderal hydrophytes. The composition of the seed bank and the established vegetation was most similar at the heavily disturbed sites where the seed bank was maintained by vigorously fruiting annuals and supplemented by inputs from temporary habitats upstream. At permanent sites much of the propagule bank composition could be accounted for by inputs of floodborne seed from the immediately adjacent floodplain. The established vegetation at such sites appeared to be maintained mainly by vegetative propagation with recruitment from the propagule bank likely only after severe disturbance. The potential contribution of functionally diverse propagule banks to sucessional processes within fluvially dynamic floodplain aquatic habitats is emphasised.  相似文献   

8.
Habitat fragmentation can have severe effects on plant pollinator interactions, for example changing the foraging behaviour of pollinators. To date, the impact of plant population size on pollen collection by pollinators has not yet been investigated. From 2008 to 2010, we monitored nine bumble bee species (Bombus campestris, Bombus hortorum s.l., Bombus hypnorum, Bombus lapidarius, Bombus pascuorum, Bombus pratorum, Bombus soroensis, Bombus terrestris s.l., Bombus vestalis s.l.) on Vaccinium uliginosum (Ericaceae) in up to nine populations in Belgium ranging in size from 80 m2 to over 3.1 ha. Bumble bee abundance declined with decreasing plant population size, and especially the proportion of individuals of large bumble bee species diminished in smaller populations. The most remarkable and novel observation was that bumble bees seemed to switch foraging behaviour according to population size: while they collected both pollen and nectar in large populations, they largely neglected pollen collection in small populations. This pattern was due to large bumble bee species, which seem thus to be more likely to suffer from pollen shortages in smaller habitat fragments. Comparing pollen loads of bumble bees we found that fidelity to V. uliginosum pollen did not depend on plant population size but rather on the extent shrub cover and/or openness of the site. Bumble bees collected pollen only from three plant species (V. uliginosum, Sorbus aucuparia and Cytisus scoparius). We also did not discover any pollination limitation of V. uliginosum in small populations. We conclude that habitat fragmentation might not immediately threaten the pollination of V. uliginosum, nevertheless, it provides important nectar and pollen resources for bumble bees and declining populations of this plant could have negative effects for its pollinators. The finding that large bumble bee species abandon pollen collection when plant populations become small is of interest when considering plant and bumble bee conservation.  相似文献   

9.
Many studies have attempted to assess the ability of created wetlands to replace the ecological structure and functions of natural wetlands over short time periods (<5 years). Few studies have repeatedly monitored vegetative community development of created depressional wetlands over longer time frames or assessed the return on the level of initial restoration efforts. Here, the vegetation communities of 17 created freshwater marshes in two different geographic regions of the U.S., Ohio and Colorado, ranging from 5 to 19 years old, were monitored over multiple years and compared to natural reference sites. Findings suggest that created marshes in Ohio achieved floristic equivalency with natural reference sites for measures of plant species richness, number of native plant species, number of hydrophytes, and percent plant cover within a decade. Yet, created marshes in Ohio contained double the amount of non-native plant species observed in natural reference sites. In Colorado, created marshes were less successful, failing to achieve floristic equivalency for plant species richness, number of native plant species, and number and percent hydrophytes given more than a decade of restoration. Soil chemistry data suggest that although created marshes achieve certain hydric soil characteristics, they were significantly lower in organic matter, cation exchange capacity, and extractable phosphorus than natural wetlands. Equivalency for soil chemistry will require longer time periods (>14 years). Data suggest that created marshes that seem to be approaching floristic equivalency in early years following construction may level off or even dramatically decline over longer time periods (10–20 years) for certain floristic indicators. Restoration trajectories for Ohio created marshes with strong initial restoration efforts predict floristic equivalency in a median of 14 years compared to 24 years for sites with weak initial efforts. Created marshes with strong initial restoration efforts displayed significantly greater plant species richness, number of native plant species, and number of hydrophytes than sites with low initial efforts, indicating the importance of planting, soil transport and/or contouring in establishing a wetland's restoration trajectory.  相似文献   

10.
The severely threatened Chinese flora urgently needs a new, well adapted to China and properly formulated conservation strategy. The present review provides a detailed conservation methodology that complements previously described guidelines for preservation of plant species with extremely small populations (PSESP) in China. This review adds to the above concept in several aspects, making it relevant to all threatened Chinese plant species. The proposed integral conservation strategy has the following crucial components: -ecoregional basis for conservation planning and implementation; -a unified scoring system that is used in regional systematic planning for reserve design, monitoring and assessment of efficiency of a reserve network, and creation of seed banks and living collections; -a focus on population demography and the presence of naturally occurring regeneration as the key criteria for defining the conservation status of a species and the appropriate major focus of the species recovery plan; -creation of multi-species living collections that preserve species genetic variation and provide material for in situ actions; -experimental translocation of threatened species into multiple locations within and outside their known range. Adopting and implementing these strategies successfully and more fully in China requires that the country changes PA legislation and improves PA management, the National Science Foundation of China (NSFC) re-prioritizes the type of research that receives research funds, and local scientists improve their approach toward information sharing.  相似文献   

11.
Ten years of vegetation dynamics in two rivulets in Lower Saxony (FRG)   总被引:1,自引:0,他引:1  
The vegetation dynamics in six permanent plots in two lowland rivulets of the Federal Republic of Germany are analyzed. The year-to-year change in species cover is displayed by means of tables. In each site there are core species (both hydrophytes and helophytes) which have been able to successfully reproduce within the sampling plots over the total observation period. There are also transient hydrophytes which regularly become washed in from the upper course, and transient helophytes growing permanently into the river from the banks.A numerical analysis of the performance of the 12 most frequent and abundant hydrophytes in relation to various independent variables was carried out using canonical correspondence analysis. There is no directional temporal variation within the vegetation data set. The hydrochemical variables were almost constant within the observation period. Rainfall in summer has some influence via discharge and turbidity. Most of the variance in the data set is explained by the position of the sites along the rivers. Most of the residual variance can be explained by a binary disturbance variable. The processes observed can mostly be explained from life history characteristics of the dominant species, particularySparganium emersum, Ranunculus peltatus andPotamogeton natans. The spatial scale of the study site was relatively adequate. A smaller size would have produced noisy data (suggesting erratic change), while a greater size would have produced no change at all. The adequate temporal scale for observation is the comparison of the yearly maxima because of the seasonality of most of the species. An exact prediction of dominance and species composition of the following year is impossible.  相似文献   

12.
Restoration of species‐rich grasslands is a key issue of conservation. The transfer of seed‐containing local plant material is a proven technique to restore species‐rich grassland, since it potentially allows to establish genetically variable and locally adapted populations. In our study, we tested how the transfer of local plant material affected the species diversity and composition of restored grasslands and the genetic variation of the typical grassland plant species Knautia arvensis and Plantago lanceolata.For our study, we selected fifteen study sites in southeastern Germany. We analyzed species diversity and composition and used molecular markers to investigate genetic variation within and among populations of the study species from grasslands that served as source sites for restoration and grasslands, which were restored by transfer of green hay and threshed local plant material.The results revealed no significant differences in species diversity and composition between grasslands at source and restoration sites. Levels of genetic variation within populations of the study species Knautia arvensis and Plantago lanceolata were comparable at source and restoration sites and genetic variation among populations at source and their corresponding restoration sites were only marginal different.Our study suggests that the transfer of local plant material is a restoration approach highly suited to preserve the composition of species‐rich grasslands and the natural genetic pattern of typical grassland plant species.  相似文献   

13.
This paper is based on research of the restoration of species‐rich calcareous grasslands in The Netherlands, over the last 30 years. Chalk grassland is a semi‐natural vegetation with a high density of species at a small scale. This type of vegetation was once widespread in Western Europe as common grazing land, mainly for flocks of sheep for which the main function was dung production. In some regions of Central Europe, these grasslands were also used for hay production. The dung was used to maintain arable field production at a reasonable level. In the chalk district in the southernmost part of The Netherlands some 25 sites of this vegetation, varying in area from 0.05–4.5 ha, are still present. Chalk grassland completely lost its significance for modern agricultural production after the wide application of artificial fertilizer following World War II. This grassland has a high conservation value both for plants and animal species, of which a large number of species are exclusively restricted to this biotope. When conservation activities started at a large scale in the early 1960s, three different types of restoration activities could be distinguished: (1) restoration of fertilized sites; (2) restoration of abandoned grasslands; and (3) recreation of chalk grassland on former arable fields. The main aim of the restoration attempt is to create and/or improve sustainable conditions for both plant and animal species characteristic of the chalk grassland ecosystem. In the process of restoration, several phases of different activities can be distinguished: (1) pre‐restoration phase, during which information of the land use history is collected and, based on these data, clear restoration goals are established; (2) initial restoration phase, during which effects of former, non‐conservational land use has to be undone in order to stimulate germination and establishment of target species originating from soil seed bank and species pool; (3) consolidation phase, including the introduction and continuation of a regular management system for sustainable conservation; and (4) long‐term conservation strategy, including measures to prevent disturbance from the outside and genetic erosion and extinction of locally endangered plant populations.  相似文献   

14.
Questions: What are the effects of raised water levels on wet grassland plant communities and dynamics? To what extent do time since raised water levels, vegetation management and water regime influence community composition? Location: Pevensey Levels, southeast England, UK. Methods: Plant communities and hydrology were monitored during 2001‐03 within 23 wet grassland meadows and pastures where water levels had been raised for nature conservation at different times over 21 years. Community variations were examined using species abundance and ecological traits. Results: Water regime, measured as duration of flooding, groundwater level and soil moisture was significantly related to plant community variation. Communities were divided into grasslands where inundation was shallow (≤8 cm) and relatively short (≤3 months) and sites where deeper flooding was prolonged (≥5 months), supporting a variety of wetland vegetation. With increasing wetness, sites were characterised by more bare ground and wetland plants such as sedges, helophytes and hydrophytes, and species with a stress‐tolerating competitive strategy. All sites showed considerable annual dynamics, especially those with substantially raised water levels. There were no significant relationships between time since water levels were raised and plant community composition. Grassland management exerted a limited influence upon vegetation compared to water regime. Conclusions: Grassland plant communities are responsive to raised water levels and have potential for a rapid transition to wetland vegetation, irrespective of grazing or cutting management. Creation or restoration of wet grasslands by (re)wetting is feasible but challenging due to the high dynamism of wetland plant communities and the need for substantially raised water levels and prolonged flooding to produce significant community changes.  相似文献   

15.
Reliable population and density estimates are the cornerstone of effective conservation and management planning, as conservation priorities often arise in relation to population numbers. Despite increased public interest and costly conservation programs limited information on brown bear (Ursus arctos, Linnaeus, 1758) abundance and density in Greece exists. We carried out systematic non-invasive genetic sampling using hair traps on power poles, as part of a capture-mark-recapture study design in order to rigorously estimate abundance and density of the Pindos bear population in Greece. From 2007–2010 we identified 211 and estimated a mean of 182.3 individuals in four sampling areas; bear densities ranged from 10.0 to 54 bears/1000 km2. These results indicate an important population recovery of this large carnivore in Greece in recent years; a conservative population estimate would place the population size in the entire country >450 individuals. Considering the results of the study and the increased negative interactions between humans and bears recorded currently in Greece, we suggest that systematic genetic monitoring using power poles should continue in order to collect the necessary information that will enable the definition of an effective Action Plan for the long-term conservation of this species.  相似文献   

16.
Loch Flemington is a shallow lake of international conservation and scientific importance. In recent decades, its status has declined as a result of eutrophication and the establishment of non-native invasive aquatic macrophytes. As previous research had identified the lake bed sediments as an important source of phosphorus (P), the P-capping material Phoslock® was applied to improve water quality. This article documents the responses of the aquatic macrophyte community by comparing data collected between 1988 and 2011. Summer water-column total P concentrations decreased significantly and water clarity increased following treatment. Aquatic plant colonisation depth increased and plant coverage of the lake bed extended. However, the submerged vegetation remained dominated by the non-native Elodea canadensis Michx. Aquatic macrophyte community metrics indicated no significant change in trophic status. Species richness and the number of ‘natural’ eutrophic characteristic species remained broadly similar with no records of rare species of conservation interest. Loch Flemington is still classified as being in ‘unfavourable no change’ condition based on its aquatic macrophytes despite the water quality improvements. The implications of these results are discussed in relation to the future management of Loch Flemington and in the wider context of trying to improve our understanding of lake restoration processes.  相似文献   

17.
The restoration of endangered relict populations is challenging in conservation biology because they require specific environmental conditions within an inhospitable regional climate. Urothemis edwardsii Selys is the most endangered dragonfly in the Mediterranean with only one known relict small population (Lac Bleu) left in Northeast Algeria. With the absence of successful (re-)colonization over the last two decades, the restoration of the species became a top priority. To improve the status of the species in Northeast Algeria, we carried out a reintroduction and translocation scheme during 2011–2015 and assessed the changes in distribution and population size. Our restoration plan led to the emergence of three populations of which one was restored (Lac Noir), one resulted from successful translocation (Lac Tonga Northeast), and one established after successful colonization (Lac Tonga Southwest). In three localities (Lac Noir, Lac Tonga Northeast, and Lac Tonga Southwest), signs of population growth were observed, whereas no significant trend in the source population (Lac Bleu) was detected. A new population (El Graeate) was also recorded in 2015, but its origin is uncertain. Capture-mark-recapture on adults conducted in 2015 in two sites (Lac Bleu and Lac Noir) showed low recapture rates and no sign of dispersal between the two sites. Dispersal capacity of the species and conservation implications of adult distribution are discussed. This study highlights the importance of using biological indicators in selecting host habitats for the restoration of critically threatened populations.  相似文献   

18.
  • 1 European rabbits are considered a keystone species in the Iberian Peninsula. Their populations have sharply declined over the past century, mainly due to habitat loss and the arrival of two viral diseases: myxomatosis in the 1950s and rabbit haemorrhagic disease (RHD) at the end of the 1980s. For the conservation of the Iberian Mediterranean ecosystem, it is important to determine whether rabbit populations are recovering two decades after the RHD outbreak, and to identify the factors associated with population recovery.
  • 2 Here, we review the current knowledge on recent rabbit population trends in the Iberian Peninsula and the factors associated with these trends.
  • 3 Although most rabbit populations are still declining in the Iberian Peninsula, a few seem to have recovered. In general, positive trends have been recorded in species‐friendly habitats characterized by non‐fragmented landscapes, interspersed patches of Mediterranean scrubland, good pastures and/or crops, soft soils that are suitable for warren construction and a Mediterranean climate with relatively high rainfall. Additionally, rabbits seem to be recovering better in areas where management practices (e.g. low hunting pressure, habitat management and predator control) are applied to increase their numbers.
  • 4 From these findings, it is possible to identify five broad objectives for rabbit conservation in the Iberian Peninsula. First, it is clearly necessary to establish a long‐term programme for monitoring rabbit abundance and trends on a large scale. Second, the conservation and restoration of open Mediterranean scrubland should be a priority for stabilizing and maintaining existing healthy rabbit populations. Third, despite the lack of experimental evidence, management activities aimed at increasing the quantity and quality of both refuge and food should continue to be implemented. Fourth, legislation on the timing of the hunting season should be revisited following recommendations made by scientists. Finally, experimental approaches are required to investigate whether the control of generalist predators is a successful strategy to allow rabbit populations to recover.
  相似文献   

19.
Madagascar has 59 described species of Coffea, of which 42 are listed as critically endangered, endangered, or vulnerable by the criteria of the Red List Category system of the World Conservation Union (IUCN). The littoral forest of Madagascar is a distinctive type of humid evergreen forest restricted to unconsolidated sand located within a few kilometers of the Indian Ocean, now persisting only as small fragments with ca. 10 % of its original range remaining. In an attempt to understand the genetic diversity of Madagascan coffee species, we studied ex situ and in situ populations of Coffea commersoniana, an endemic species of the littoral forests of southeastern Madagascar and soon to be impacted by mining activities in that region. The in situ populations studied showed higher genetic diversity than the ex situ population. The genetic partitioning among the two in situ populations of C. commersoniana was high enough to necessitate keeping the two populations separate for restoration purposes. Based on these findings, recommendations for conservation management (in situ and ex situ) are made.  相似文献   

20.
In most landscapes the success of habitat restoration is largely dependent on spontaneous colonization of plant species. This colonization process, and the outcome of restoration practices, can only be considered successful if the genetic makeup of founding populations is not eroded through founder effects and subsequent genetic drift. Here we used 10 microsatellite markers to investigate the genetic effects of recent colonization of the long-lived gynodioecious species Origanum vulgare in restored semi-natural grassland patches. We compared the genetic diversity and differentiation of fourteen recent populations with that of thirteen old, putative source populations, and we evaluated the effects of spatial configuration of the populations on colonization patterns. We did not observe decreased genetic diversity in recent populations, or inflated genetic differentiation among them. Nevertheless, a significantly higher inbreeding coefficient was observed in recent populations, although this was not associated with negative fitness effects. Overall population genetic differentiation was low (FST = 0.040). Individuals of restored populations were assigned to on average 6.1 different source populations (likely following the ‘migrant pool’ model). Gene flow was, however, affected by the spatial configuration of the grasslands, with gene flow into the recent populations mainly originating from nearby source populations. This study demonstrates how spontaneous colonization after habitat restoration can lead to viable populations in a relatively short time, overcoming pronounced founder effects, when several source populations are nearby. Restored populations can therefore rapidly act as stepping stones and sources of genetic diversity, likely increasing overall metapopulation viability of the study species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号