首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A discrete time model was built to understand the origin of the sex-specific population structure of the human blood fluke, Schistosoma mansoni. We have estimated both male/female individual ratio and male/female genotype ratio of this parasite taking into account all the experimental published values on differential male and female life-history traits all along the life cycle. We considered in our model male and female life-history traits when both separated and together. The model showed that both male/female individual ratio and male/female genotype ratio of S. mansoni adults are biased toward males in each combination. This bias was more important in male/female genotype ratio than in the male/female individual ratio for the same initial values of cercarial development success. This model could explain the sex specific population structure of this parasite. Firstly, we showed that the male-biased individual ratio finds its origin in the vertebrate host. Secondly, we showed that the male-biased genotype ratio originates prior to any interrelationship between adult worms and could generate by itself a sex-specific genetic structure.  相似文献   

2.
Play behavior in juvenile primates, rats and other species is sexually dimorphic, with males showing more play than females. In mice, sex differences in juvenile play have only been examined in out-bred CD-1 mice. In this strain, contrary to other animals, male mice display less play soliciting than females. Using an established same-sex dyadic interaction test, we examined play in in-bred C57BL/6J (B6) 21-day-old mice. When paired with non-siblings, males tended to be more social than females, spending more time exploring the test cage. Females displayed significantly more anogenital sniffing and solicited play more frequently than did males. To determine if the origin of the sex difference was sex chromosome genes or gonadal sex, next we used the four core genotype mouse. We found significant interactions between gonadal sex and genotype for several behaviors. Finally, we asked if sibling pairs (as compared to non-siblings) would display qualitatively or quantitatively different behavior. In fact, XX females paired with a sibling were more social and less exploratory or investigative, whereas XY males exhibited less investigative and play soliciting behaviors in tests with siblings. Many neurobehavioral disorders, like autism spectrum disorder (ASD), are sexually dimorphic in incidence and patients interact less than normal with other children. Our results suggest that sex chromosome genes interact with gonadal hormones to shape the development of juvenile social behavior, and that social context can drastically alter sex differences. These data may have relevance for understanding the etiology of sexually dimorphic disorders such as ASD.  相似文献   

3.
Within short-terms after exposure to ionizing radiation, CBA and C57Bl/6 male mice were found not only to retain but also to enhance their attractiveness to chemosignals of intact males of the same genotype (syngenic). It was shown that the time period of higher attractiveness increased with the absorbed dose (from 1 to 6 Gy). Within several days after exposure to 6-Gy irradiation, male mice were temporarily unable to discriminate between chemosignals of syngenic and allogenic (alien genotype) individuals. Unlike male mice of the CBA strain, male mice of the C57Bl/6 strain displayed no changes after exposure to 1-Gy irradiation, but the effect of 2-6 Gy was more persistent. These phenomena can be explained by the lower olfactory reactivity combined with higher radiosensitivity of C57Bl/6 mice. Irradiated male mice temporarily lost their olfactory ability to discriminate the genotype of females' volatile secretions and to distinguish between females' and males' volatile secretions.  相似文献   

4.
The male mice of two strains with experience of 2 or 10 defeats in intermale agonistic confrontations significantly differ in pattern of submissive behavior (balance of upright and sideways defensive postures, withdrawal, freezing, "on the back" posture). In mice with experience of 20 defeats genetic differences have not been found. The acquisition of consequent experience of defeats does not change the pattern of CBA mice submissive behavior, but significantly increases the share of immobile submissive postures in behavior of C57BL mice. Among submissive males of C57BL strain animals with more active strategy of behavior keep capability for aggressive response to weaker partner. The influence of genotype and previous social contact experience on formation of adaptive in experimental situation strategy of submissive behavior is discussed.  相似文献   

5.
Micropopulations consisting of six male mice of different genotypes were studied (each of lines A/He, CBA/Lac, C57BL/6J, DD, YT, and PT was represented by one male). Interlinear differences in the level of social dominance and the effects of genotype, social hierarchy, and season on in vitro testosterone production by testes were examined under different incubation conditions. The testosterone production was estimated under control conditions and under stimulation with human chorionic gonadotropin (CG). Significant genetic differences in the initial and CG-stimulated testosterone production by testes incubated in vitro were found. By the control production, the genotypes fell into two groups: lines C57BL/6J, A/He, and CBA/Lac had low production of the hormone; lines YT, PT, and DD, high production. By responsiveness of gonads to CG, the genotypes fell into three groups: line CBA/Lac had low testosterone production by testes; lines C57BL/6J, A/He, YT, and DD, line PT, intermediate production; and line PT, high production. The obtained data indicate stability of genetic polymorphism for the responsiveness of testes to gonadotropins, because neither season nor the formation of social hierarchy could significantly change the interlinear differences. In line PT characterized by high hormonal activity of gonads in the control and under stimulation with gonadotropins, males became dominant in a significantly greater number of cases studied during the formation of hierarchy in micropopulations. The dynamics of both control production of a male sex hormone and responsiveness of testes to CG was established in vitro during the formation of social hierarchy; the effects of season on this dynamics were revealed. Specific characteristics of secretory activity of testes were detected in the control and under stimulation with gonadotropins, depending on incubation conditions. Seasonal and genotypic characteristics of the responsiveness of testes to CG were revealed under different incubation conditions. Genotypic characteristics indicate interlinear differences in the degree of inertia of testosterone biosynthesis on exposure to gonadotropins.  相似文献   

6.
Busygina TV  Osadchuk AV 《Genetika》2001,37(1):97-106
Micropopulations consisting of six male mice of different genotypes were studied (each of lines A/He, CBA/Lac, C57BL/6J, DD, YT, and PT was represented by one male). Interlinear differences in the level of social dominance and the effects of genotype, social hierarchy, and season on in vitro testosterone production by testes were examined under different incubation conditions. The testosterone production was estimated under control conditions and under stimulation with human chorionic gonadotropin (CG). Significant genetic differences in the initial and CG-stimulated testosterone production by testes incubated in vitro were found. By the control production, the genotypes fell into two groups: lines C57BL/6J, A/He, and CBA/Lac had low production of the hormone; lines YT, PT, and DD, high production. By responsiveness of gonads to CG, the genotypes fell into three groups: line CBA/Lac had low testosterone production by testes; lines C57BL/6J, A/He, YT, and DD, line PT, intermediate production; and line PT, high production. The obtained data indicate stability of genetic polymorphism for the responsiveness of testes to gonadotropins, because neither season nor the formation of social hierarchy could significantly change the interlinear differences. In line PT characterized by high hormonal activity of gonads in the control and under stimulation with gonadotropins, males became dominant in a significantly greater number of cases studied during the formation of hierarchy in micropopulations. The dynamics of both control production of a male sex hormone and responsiveness of testes to CG was established in vitro during the formation of social hierarchy; the effects of season on this dynamics were revealed. Specific characteristics of secretory activity of testes were detected in the control and under stimulation with gonadotropins, depending on incubation conditions. Seasonal and genotypic characteristics of the responsiveness of testes to CG were revealed under different incubation conditions. Genotypic characteristics indicate interlinear differences in the degree of inertia of testosterone biosynthesis on exposure to gonadotropins.  相似文献   

7.
The influence of repeated experience of social defeats in daily agonistic interactions on voluntary consumption of 1% sucrose solution supplemented with vanillin (0.2%) was studied in male mice of CBA/Lac strain with genetic predisposition to catalepsy as compared to depression-predisposed C57BL/6J mice. Intact mice of both strains prefered sucrose solution to water under conditions of two-bottle free choice. Sucrose solution intake was shown to decrease in losers of both strains exposed to social confrontations as compared to controls. It was suggested that the high level of anxiety revealed in mice of both strains can be the determining factor of the decrease in sucrose solution consumption under conditions of chronic social stress.  相似文献   

8.
Objectives:  The key to fertility in adult males is production of mature spermatogenic cells. Spermatogonial stem cells (SSC) have the dual capacity of self-renewal and of differentiation into mature sperm. SSC transplantation may provide potential treatment for specific male infertilities. However, until now, there has been no evidence of offspring produced by transplantation of adult SSC line cells in humans or other mammals.
Materials and methods:  A new line of SSCs from adult C57BL/6 mouse was established by using magnetic-activated cell sorting. The cell line was characterized by immunocytochemistry, karyotype analysis and telomeric repeat amplification protocol (TRAP) telomerase activity assay. Spermatogenic function was examined by allograft into germ cell-ablated recipient mice.
Results:  For more than 14 months with more than 65 maintenance passages, the cell line showed a normal karyotype (40, XY) and high telomerase activity. It represented a Thy-1+, Oct4+, SSEA-1-, c-kit- (99 ± 1%) cell subpopulation. We cryopreserved these SSCs and successfully produced normal offspring after transplanting them into testes of busulphan-sterilized mice.
Conclusions:  We established and long-term maintained an adult SSC line with normal spermatogenic function, without the need of genetic modification; thus, this study provides a model system for basic research and clinical application.  相似文献   

9.
One of the best examples of a natural behavioral syndrome is the pollen-hoarding syndrome in honeybees that ties together multiple behavioral phenotypes, ranging from foraging behavior to behavioral ontogeny and learning performance. A central behavioral factor is the bees' responsiveness to sucrose, measured as their proboscis extension reflex. This study examines the genetics of this trait in diploid worker and haploid male honeybees (drones) to learn more about the genetic architecture of the overall behavioral syndrome, using original strains selected for pollen-hoarding behavior. We show that a significant proportion of the phenotypic variability is determined by genotype in males and workers. Second, our data present overwhelming evidence for pleiotropic effects of previously identified quantitative trait loci for foraging behavior (pln-QTL) and epistatic interactions among them. Furthermore, we report on three genomic QTL scans (two reciprocal worker backcrosses and one drone hybrid population) derived from our selection strains. We present at least one significant and two putative new QTL directly affecting the sucrose response of honeybees. Thus, this study demonstrates the modular genetic architecture of behavioral syndromes in general, and elucidates the genetic architecture of the pollen-hoarding behavioral syndrome in particular. Understanding this behavioral syndrome is important for understanding the division of labor in social insects and social evolution itself.  相似文献   

10.
The developing fetus and neonate are highly sensitive to maternal environment. Besides the well‐documented effects of maternal stress, nutrition and infections, maternal mutations, by altering the fetal, perinatal and/or early postnatal environment, can impact the behavior of genetically normal offspring. Mutation/premutation in the X‐linked FMR1 (encoding the translational regulator FMRP) in females, although primarily responsible for causing fragile X syndrome (FXS) in their children, may also elicit such maternal effects. We showed that a deficit in maternal FMRP in mice results in hyperactivity in the genetically normal offspring. To test if maternal FMRP has a broader intergenerational effect, we measured social behavior, a core dimension of neurodevelopmental disorders, in offspring of FMRP‐deficient dams. We found that male offspring of Fmr1+/? mothers, independent of their own Fmr1 genotype, exhibit increased approach and reduced avoidance toward conspecific strangers, reminiscent of ‘indiscriminate friendliness’ or the lack of stranger anxiety, diagnosed in neglected children and in patients with Asperger's and Williams syndrome. Furthermore, social interaction failed to activate mesolimbic/amygdala regions, encoding social aversion, in these mice, providing a neurobiological basis for the behavioral abnormality. This work identifies a novel role for FMRP that extends its function beyond the well‐established genetic function into intergenerational non‐genetic inheritance/programming of social behavior and the corresponding neuronal circuit. As FXS premutation and some psychiatric conditions that can be associated with reduced FMRP expression are more prevalent in mothers than full FMR1 mutation, our findings potentially broaden the significance of FMRP‐dependent programming of social behavior beyond the FXS population.  相似文献   

11.
Expression Quantitative Trait Locus (eQTL) analysis is a powerful tool to study the biological mechanisms linking the genotype with gene expression. Such analyses can identify genomic locations where genotypic variants influence the expression of genes, both in close proximity to the variant (cis-eQTL), and on other chromosomes (trans-eQTL). Many traditional eQTL methods are based on a linear regression model. In this study, we propose a novel method by which to identify eQTL associations with information theory and machine learning approaches. Mutual Information (MI) is used to describe the association between genetic marker and gene expression. MI can detect both linear and non-linear associations. What’s more, it can capture the heterogeneity of the population. Advanced feature selection methods, Maximum Relevance Minimum Redundancy (mRMR) and Incremental Feature Selection (IFS), were applied to optimize the selection of the affected genes by the genetic marker. When we applied our method to a study of apoE-deficient mice, it was found that the cis-acting eQTLs are stronger than trans-acting eQTLs but there are more trans-acting eQTLs than cis-acting eQTLs. We compared our results (mRMR.eQTL) with R/qtl, and MatrixEQTL (modelLINEAR and modelANOVA). In female mice, 67.9% of mRMR.eQTL results can be confirmed by at least two other methods while only 14.4% of R/qtl result can be confirmed by at least two other methods. In male mice, 74.1% of mRMR.eQTL results can be confirmed by at least two other methods while only 18.2% of R/qtl result can be confirmed by at least two other methods. Our methods provide a new way to identify the association between genetic markers and gene expression. Our software is available from supporting information.  相似文献   

12.
Sexual selection is measured between two strains of Drosophila melanogaster: a wild strain and a strain mutant at the sepia locus. Frequency-dependent male mating was found to be successful, whereas the female genotype exerted no influence. The rarer the male genotype becomes, the greater is its mating success. A selection model is built for this behavior characteristic in which selection operates differently in the two sexes. The genetic consequencies of this model upon the maintenance of genetic polymorphism at the sepia locus are compared to experimental data from previous population cage studies. The fit obtained with this sexual selection model is compared to that of the larvel selection model previously investigated. A model composed of both sexual and larval components of fitness is presented. The role that each major selection component is expected to play in experimental populations as the gene frequency changes is discussed. Sexual selection leads to an equilibrium level higher than larval selection, and the combined model is very close to the experimental values.  相似文献   

13.
Comparative genetic analysis of social dominance in micropopulations of male mice as well as noradrenaline and dopamine levels in brain was carried out. The RT male mice had maximal level of social dominance and the greatest content of brain catecholamines. It is suggested that the capacity for social dominance may depend on the function of the central catecholamine neurons. This suggestion has been confirmed by the data obtained both for interstrain and intrastrain relations between social dominance and catecholamine levels.  相似文献   

14.
Trp53 is a protein which is able to control semen parameters in mice, but the extent of that control depends on the genetic background of the mouse strain. Males from C57BL/6Kw, 129/Sv, C57BL×129 -p53+/+ (wild type controls) and C57BL×129-p53-/- (mutants) strains were used in the study, and histology and light microscopy were applied to evaluate the influence of genetic background and Trp53 (p53) genotype on testes morphology and semen quality in male mice. We showed that sperm head morphology, maturity and tail membrane integrity were controlled only by the genetic background of C57BL/6Kw and 129/Sv males, while testes weight and sperm concentration depended on both the genetic background and p53 genotype. Cell accumulation in seminiferous tubules may be responsible for heavier testes of p53-deficient males. In addition, to examine the effect of sex and p53 genotype on embryo lethality, pairs of control (C57BL×129-p53+/+) and heterozygous (C57BL×129-p53+/-) mice were examined. Before day 7 post coitum (dpc), female and male embryos were equally resorbed in both crosses types. After 7 dpc, preferential female embryo lethality in the heterozygote pairs was responsible for the skewed sex ratio in their progeny. Also, mutant female and male newborns were underrepresented in the litters of the heterozygous breeding pairs.  相似文献   

15.
Analysis of genetic interactions in the F2 of an intercross of (C57BL/6 x DBA/2) F1J revealed influences of genetic factors on life span. Females lived longer than males. Dilute brown females died sooner than females of other colors. H-2b/H-2b males died sooner than H-2b/H-2d or H-2d/H-2d males, except that among dilute brown males those of typeH-2b/H-2d died sooner. Cluster analysis suggested that male and female genotypes each fall into two groups, with female dilute brown mice having shorter lives than other females, and male H-2b/H-2b mice except dilute brown and dilute brown H-2b/H-2d mice having shorter lives than other males. The association of heterozygosity with life span was clearer in females than in males, yet the longest-lived female genotype was homozygous H-2d/H-2d, of dominant Black phenotype at the Brown locus of chromosome 4, and homozygous dd at the Dilute locus of chromosome 9. The shortest-lived females were dilute brown H-2b/H-2b. The longest-lived and shortest-lived male genotypes were dilute brown H-2d/H-2d and dilute brown H-2b/H-2d, respectively. Although histological findings at postmortem differed between the sexes, there was no association of particular disorders with other genetic markers. The importance of H-2 in males was confirmed, but the allelic effects were perturbed, possibly by the absence of Sendai infection in this experiment. Overall our studies suggest that genetic influences on life span involve interactions between loci, and allelic interactions may change with viral infections or other environmental factors.  相似文献   

16.
Expansion of a tandem repeat tract is responsible for the Repeat Expansion diseases, a group of more than 20 human genetic disorders that includes those like Fragile X (FX) syndrome that result from repeat expansion in the FMR1 gene. We have previously shown that the ATM and Rad3-related (ATR) checkpoint kinase protects the genome against one type of repeat expansion in a FX premutation mouse model. By crossing the FX premutation mice to Ataxia Telangiectasia-Mutated (Atm) mutant mice, we show here that ATM also prevents repeat expansion. However, our data suggest that the ATM-sensitive mechanism is different from the ATR-sensitive one. Specifically, the effect of the ATM deficiency is more marked when the premutation allele is paternally transmitted and expansions occur more frequently in male offspring regardless of the Atm genotype of the offspring. The gender effect is most consistent with a repair event occurring in the early embryo that is more efficient in females, perhaps as a result of the action of an X-linked DNA repair gene. Our data thus support the hypothesis that two different mechanisms of FX repeat expansion exist, an ATR-sensitive mechanism seen on maternal transmission and an ATM-sensitive mechanism that shows a male expansion bias.  相似文献   

17.
Emotions, such as fear and anxiety, can be modulated by both environmental and genetic factors. One genetic factor is for example the genetically encoded variation of the serotonin transporter (5-HTT) expression. In this context, the 5-HTT plays a key role in the regulation of central 5-HT neurotransmission, which is critically involved in the physiological regulation of emotions including fear and anxiety. However, a systematic study which examines the combined influence of environmental and genetic factors on fear-related behavior and the underlying neurophysiological basis is missing. Therefore, in this study we used the 5-HTT-deficient mouse model for studying emotional dysregulation to evaluate consequences of genotype specific disruption of 5-HTT function and repeated social defeat for fear-related behaviors and corresponding neurophysiological activities in the lateral amygdala (LA) and infralimbic region of the medial prefrontal cortex (mPFC) in male 5-HTT wild-type (+/+), homo- (-/-) and heterozygous (+/-) mice. Naive males and experienced losers (generated in a resident-intruder paradigm) of all three genotypes, unilaterally equipped with recording electrodes in LA and mPFC, underwent a Pavlovian fear conditioning. Fear memory and extinction of conditioned fear was examined while recording neuronal activity simultaneously with fear-related behavior. Compared to naive 5-HTT+/+ and +/- mice, 5-HTT-/- mice showed impaired recall of extinction. In addition, 5-HTT-/- and +/- experienced losers showed delayed extinction learning and impaired recall of extinction. Impaired behavioral responses were accompanied by increased theta synchronization between the LA and mPFC during extinction learning in 5-HTT-/- and +/- losers. Furthermore, impaired extinction recall was accompanied with increased theta synchronization in 5-HTT-/- naive and in 5-HTT-/- and +/- loser mice. In conclusion, extinction learning and memory of conditioned fear can be modulated by both the 5-HTT gene activity and social experiences in adulthood, accompanied by corresponding alterations of the theta activity in the amygdala-prefrontal cortex network.  相似文献   

18.
《Life sciences》1996,58(12):PL223-PL229
Genetic differences in nicotine-induced conditioned taste aversion were examined using inbred mice. Adult male C57BL/6J, DBA/2J, BALB/cJ and C3H/heJ mice were adapted to a 2-h per day water access regimen. Subsequently, mice received nicotine injections (0.5, 1.0 or 2.0 mg/kg) immediately after 1-h access to a NaCl flavored solution. DBA and C3H mice developed dosedependent aversions to the nicotine-paired flavor. BALB mice showed only minor reductions in intake with no difference between the nicotine dose groups. C57BL mice did not show development of nicotine-induced conditioned taste aversion. These results demonstrate that nicotine's aversive motivational effect is strongly influenced by genotype. Further, genetic sensitivity (DBA mice) or insensitivity (C57BL mice) to nicotine-induced conditioned taste aversion was similar to reports of genetic sensitivity to ethanol's aversive effect measured in this design.  相似文献   

19.
It was reported recently that male mice lacking brain serotonin (5-HT) lose their preference for females (Liu et al., 2011, Nature, 472, 95–100), suggesting a role for 5-HT signaling in sexual preference. Regulation of sex preference by 5-HT lies outside of the well established roles in this behavior established for the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). Presently, mice with a null mutation in the gene for tryptophan hydroxylase 2 (TPH2), which are depleted of brain 5-HT, were tested for sexual preference. When presented with inanimate (urine scents from male or estrous female) or animate (male or female mouse in estrus) sexual stimuli, TPH2-/- males show a clear preference for female over male stimuli. When a TPH2-/- male is offered the simultaneous choice between an estrous female and a male mouse, no sexual preference is expressed. However, when confounding behaviors that are seen among 3 mice in the same cage are controlled, TPH2-/- mice, like their TPH2+/+ counterparts, express a clear preference for female mice. Female TPH2-/- mice are preferred by males over TPH2+/+ females but this does not lead to increased pregnancy success. In fact, if one or both partners in a mating pair are TPH2-/- in genotype, pregnancy success rates are significantly decreased. Finally, expression of the VNO-specific cation channel TRPC2 and of CNGA2 in the MOE of TPH2-/- mice is normal, consistent with behavioral findings that sexual preference of TPH2-/- males for females is intact. In conclusion, 5-HT signaling in brain does not determine sexual preference in male mice. The use of pharmacological agents that are non-selective for the 5-HT neuronal system and that have serious adverse effects may have contributed historically to the stance that 5-HT regulates sexual behavior, including sex partner preference.  相似文献   

20.

Background

Opportunistic Mycobacterium avium typically causes disease in immunocompromised patients and in some groups of apparently healthy individuals. The high virulence of some bacterial lineages increases the disease risk. High-resolution molecular genotyping studies of M. avium clinical isolates demonstrated that some genotype patterns were more prevalent than others, suggesting that close genetic relatedness of these successful isolates sharing a similar genotype could determine similar biological properties associated with high virulence.

Methods and Findings

In this study, we aimed to compare the virulence and pathogenic properties of two epidemiologically unrelated M. avium isolates sharing an indistinguishable DNA fingerprint in a well-characterized model of pulmonary infection in mice, resistant or susceptible to mycobacteria. The mice, C57BL/6 wild- type or IFN-gamma gene disrupted (GKO), respectively, were intratracheally infected with two isolates, H27 (human blood isolate) and P104 (pig lymph node isolate), and the lungs were examined for bacterial loads, histopathology and cytokine gene expression. The obtained data demonstrated significant differences in the virulence properties of these strains. Although the H27 strain grew significantly faster than P104 in the early stage of infection, this bacterium induced protective immunity that started to reduce bacterial numbers in the wild- type mice, whereas the P104 strain established a chronic infection. In the GKO mice, both strains were capable of causing a chronic infection, associated with higher bacterial burdens and severe lung pathology, in a similar manner.

Conclusions/Significance

The results demonstrated that the studied isolates differed in the pathogenic properties although were indistinguishable by actually widely used genotyping techniques demonstrating that the genotype similarity does not predict similarity in virulence of M. avium isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号