首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection of citrus seedlings by Tylenchulus semipenetrans was shown to reduce subsequent infection of roots by Phytophthora nicotianae and to increase plant growth compared to plants infected by only the fungus. Hypothetical mechanisms by which the nematode suppresses fungal development include nutrient competition, direct antibiosis, or alteration of the microbial community in the rhizosphere to favor microorganisms antagonistic to P. nicotianae. A test of the last hypothesis was conducted via surveys of five sites in each of three citrus orchards infested with both organisms. A total of 180 2-cm-long fibrous root segments, half with a female T. semipenetrans egg mass on the root surface and half without, were obtained from each orchard site. The samples were macerated in water, and fungi and bacteria in the suspensions were isolated, quantified, and identified. No differences were detected in the numbers of microorganism species isolated from nematode-infected and uninfected root segments. However, nematode-infected root segments had significantly more propagules of bacteria at all orchard sites. Bacillus megaterium and Burkholderia cepacia were the dominant bacterial species recovered. Bacteria belonging to the genera Arthrobacter and Stenotrophomonas were encountered less frequently. The fungus community was dominated by Fusarium solani, but Trichoderma, Verticillum, Phythophthora, and Penicillium spp. also were recovered. All isolated bacteria equally inhibited the growth of P. nicotianae in vitro. Experiments using selected bacteria, T. semipenetrans, and P. nicotianae, alone or in combination, were conducted in both the laboratory and greenhouse. Root and stem fresh weights of P. nicotianae-infected plants treated with T. semipenetrans, B. cepacia, or B. megaterium were greater than for plants treated only with the fungus. Phytophthora nicotianae protein in roots of fungus-infected plants was reduced by nematodes (P ≤ 0.001), either alone or in combination with either bacterium. However, treatment with bacteria did not affect P. nicotianae development in roots. The results suggest different mechanisms by which T. semipenetrans, B. cepacia, and B. megaterium may mitigate virulence of P. nicotianae.  相似文献   

2.
Michael J. Hynes 《Genetics》1982,102(2):139-147
A mutant producing very high levels of the acetamidase enzyme encoded by the amdS gene has been isolated in a strain containing the amdA7 mutation, which itself causes high levels of this enzyme. Genetic analysis has shown that this mutation, designated amdI66, is adjacent to the amdS gene and is cis-dominant in its effect. The amdI66 mutation has little effect on amdS expression when present in strains not containing the amdA7 mutation. Two other amdA mutations investigated also interact with the amdI66 mutation to result in high acetamidase levels. No interaction between amdI66 and any of the other putative regulatory genes affecting amdS expression has been observed. The amdI66 mutation has been located by fine structure mapping at the extreme end of the controlling region, which has previously been defined by genetic mapping (Hynes 1979). Analysis of this region has been extended by mapping new mutations resulting in loss of amdS expression. One of these defines the most extreme site capable of mutation to loss of gene function found so far.  相似文献   

3.
Several dinoflagellate species form nonmotile, thick-walled resting cysts in their life cycle. Cysts can be ingested by planktonic and benthic organisms, but there is scarce information concerning their survival after the passage through the digestive apparatus of the grazers. We tested the germination capability of cysts produced by two neritic dinoflagellates, Scrippsiella trochoidea (F. Stein) A.R. Loeblich and Scrippsiella ramonii Montresor, after their ingestion by four copepod species. Experiments have been carried out with four species: Acartia clausi Giesbrecht, 1889; Centropages typicus Kröyer, 1849; Temora stylifera Dana, 1849; and Clausocalanus lividus Frost and Fleminger, 1968. Copepods were fed either with motile cells or cysts, and feeding and clearance rates were estimated for A. clausi, C. lividus and T. stylifera. Grazing rates on both dinoflagellates was much higher for vegetative cells than for cysts. Resting cysts were isolated from the faecal pellets and incubated to test their germination capability. S. trochoidea cysts eaten by C. typicus and T. stylifera showed a high germination rate, while cysts of the same species were not viable after the passage through the gut of A. clausi and C. lividus. In contrast, S. ramonii cysts were never able to germinate after being ingested by copepods. The observed variation in viability among the two cyst types and the different survival rates observed for S. trochoidea cysts might be related to differences in cyst morphology and to differences in the digestive process among the tested copepod species.  相似文献   

4.
Nine species, drawn from two sections of the genus Sideritis (Labiatae) from the Canary Islands were examined. Terpenoids, sterols, flavonoids, coumarins and lignans were isolated. From the chemosystematic point of view the Sideritis species were divided into three groups. The first was formed by S. argosphacelus and S. macrostachya, the second by S. bolleana, S. canariensis, S. candicans, S. candicans var. TFC 3890, S. dasygnaphala and S. dendrochahorra, while the third contained S. gomerae and S. cabrerae.  相似文献   

5.
The promoter of the araC gene was fused to the structural genes of the lac operon using the techniques described in the preceding paper. The resulting fusion strains were used to study the regulation of the araC gene by assaying the fused lac gene products. It was found that the expression of the fused lac genes was repressed by the product of the araC gene and was regulated by the cyclic AMP catabolite control system. This implies that the araC gene itself is repressed by its own product and is catabolite regulated. These findings introduce a new level of complexity in the regulation of the arabinose pathway of Escherichia coli.  相似文献   

6.
The mechanisms and rates of mercury methylation in the Florida Everglades are of great concern because of potential adverse impacts on human and wildlife health through mercury accumulation in aquatic food webs. We developed a new PCR primer set targeting hgcA, a gene encoding a corrinoid protein essential for Hg methylation across broad phylogenetic boundaries, and used this primer set to study the distribution of hgcA sequences in soils collected from three sites along a gradient in sulfate and nutrient concentrations in the northern Everglades. The sequences obtained were distributed in diverse phyla, including Proteobacteria, Chloroflexi, Firmicutes, and Methanomicrobia; however, hgcA clone libraries from all sites were dominated by sequences clustering within the order Syntrophobacterales of the Deltaproteobacteria (49 to 65% of total sequences). dsrB mRNA sequences, representing active sulfate-reducing prokaryotes at the time of sampling, obtained from these sites were also dominated by Syntrophobacterales (75 to 89%). Laboratory incubations with soils taken from the site low in sulfate concentrations also suggested that Hg methylation activities were primarily mediated by members of the order Syntrophobacterales, with some contribution by methanogens, Chloroflexi, iron-reducing Geobacter, and non-sulfate-reducing Firmicutes inhabiting the sites. This suggests that prokaryotes distributed within clades defined by syntrophs are the predominant group controlling methylation of Hg in low-sulfate areas of the Everglades. Any strategy for managing mercury methylation in the Everglades should consider that net mercury methylation is not limited to the action of sulfate reduction.  相似文献   

7.
The feasibility of performing routine transformation-mediated mutagenesis in Glomerella cingulata was analysed by adopting three one-step gene disruption strategies targeted at the pectin lyase gene pnIA. The efficiencies of disruption following transformation with gene replacement- or gene truncation-disruption vectors were compared. To effect replacement-disruption, G. cingulata was transformed with a vector carrying DNA from the pnlA locus in which the majority of the coding sequence had been replaced by the gene for hygromycin B resistance. Two of the five transformants investigated contained an inactivated pnlA gene (pnlA ? );both also contained ectopically integrated vector sequences. The efficacy of gene disruption by transformation with two gene truncation-disruption vectors was also assessed. Both vectors carried a 5′and 3′truncated copy of the pnlA coding sequence, adjacent to the gene for hygromycin B resistance. The promoter sequences controlling the selectable marker differed in the two vectors. In one vector the homologous G. cingulata gpdA promoter controlled hygromycin B phosphotransferase expression (homologous truncation vector), whereas in the second vector promoter elements were from the Aspergillus nidulans gpdA gene (heterologous truncation vector). Following transformation with the homologous truncation vector, nine transformants were analysed by Southern hybridisation; no transformants contained a disrupted pnlA gene. Of nineteen heterologous truncation vector transformants, three contained a disrupted pnlA gene; Southern analysis revealed single integrations of vector sequence at pnlA in two of these transformants. pnlA mRNA was not detected by Northern hybridisation in pnlA-transformants. pnlA-transformants failed to produce a PNLA protein with a pI identical to one normally detected in wild-type isolates by silver and activity staining of isoelectric focussing gels. Pathogenesis on Capsicum and apple was unaffected by disruption of the pnlA gene, indicating that the corresponding gene product, PNLA, is not essential for pathogenicity. Gene disruption is a feasible method for selectively mutating defined loci in G. cingulata for functional analysis of the corresponding gene products.  相似文献   

8.
9.
Deciphering the Diploid Ancestral Genome of the Mesohexaploid Brassica rapa   总被引:1,自引:0,他引:1  
The genus Brassica includes several important agricultural and horticultural crops. Their current genome structures were shaped by whole-genome triplication followed by extensive diploidization. The availability of several crucifer genome sequences, especially that of Chinese cabbage (Brassica rapa), enables study of the evolution of the mesohexaploid Brassica genomes from their diploid progenitors. We reconstructed three ancestral subgenomes of B. rapa (n = 10) by comparing its whole-genome sequence to ancestral and extant Brassicaceae genomes. All three B. rapa paleogenomes apparently consisted of seven chromosomes, similar to the ancestral translocation Proto-Calepineae Karyotype (tPCK; n = 7), which is the evolutionarily younger variant of the Proto-Calepineae Karyotype (n = 7). Based on comparative analysis of genome sequences or linkage maps of Brassica oleracea, Brassica nigra, radish (Raphanus sativus), and other closely related species, we propose a two-step merging of three tPCK-like genomes to form the hexaploid ancestor of the tribe Brassiceae with 42 chromosomes. Subsequent diversification of the Brassiceae was marked by extensive genome reshuffling and chromosome number reduction mediated by translocation events and followed by loss and/or inactivation of centromeres. Furthermore, via interspecies genome comparison, we refined intervals for seven of the genomic blocks of the Ancestral Crucifer Karyotype (n = 8), thus revising the key reference genome for evolutionary genomics of crucifers.  相似文献   

10.
11.
It has not yet been reported how the secondary CESA (cellulose synthase) proteins are organized in the rosette structure. A membrane-based yeast two-hybrid (MbYTH) approach was used to analyze the interactions between the CESA proteins involved in secondary cell wall synthesis of Arabidopsis and the findings were confirmed in planta by bimolecular fluorescence complementation (BiFC) assay. Results indicated that although all CESA proteins can interact with each other, only CESA4 is able to form homodimers. A model is proposed for the secondary rosette structure. The RING-motif proved not to be essential for the interaction between the CESA proteins.

Structured summary

MINT-6951243: PIP2-1 (uniprotkb:P43286) physically interacts (MI:0218) with PIP2-1 (uniprotkb:P43286) by bimolecular fluorescence complementation (MI:0809)MINT-6950816: CESA4 (uniprotkb:Q84JA6) physically interacts (MI:0218) withCESA4 (uniprotkb:Q84JA6) by membrane bound complementation assay (MI:0230)MINT-6951056, MINT-6951071, MINT-6951088, MINT-6951103: CESA7 (uniprotkb:Q9SWW6) physically interacts (MI:0218) with CESA4 (uniprotkb:Q84JA6) by bimolecular fluorescence complementation (MI:0809)MINT-6950949, MINT-6950990: CESA4 (uniprotkb:Q84JA6) physically interacts (MI:0218) with CESA8 (uniprotkb:Q8LPK5) by membrane bound complementation assay (MI:0230)MINT-6950909, MINT-6951030: CESA4 (uniprotkb:Q8LPK5) physically interacts (MI:0218) with CESA7 (uniprotkb:Q9SWW6) by membrane bound complementation assay (MI:0230)MINT-6951042: CESA4 (uniprotkb:Q84JA6) physically interacts (MI:0218) with CESA4 (uniprotkb:Q84JA6) by bimolecular fluorescence complementation (MI:0809)MINT-6951004, MINT-6951016: CESA8 (uniprotkb:Q8LPK5) physically interacts (MI:0218) with CESA7 (uniprotkb:Q9SWW6) by membrane bound complementation assay (MI:0230)MINT-6951217, MINT-6951230: CESA4 (uniprotkb:Q84JA6) physically interacts (MI:0218) with CESA8 (uniprotkb:Q8LPK5) by bimolecular fluorescence complementation (MI:0809)MINT-6951120, MINT-6951140, MINT-6951156, MINT-6951170, MINT-6951185: CESA8 (uniprotkb:Q8LPK5) physically interacts (MI:0218) withCESA7 (uniprotkb:Q9SWW6) by bimolecular fluorescence complementation (MI:0809)MINT-6951199: CESA8 (uniprotkb:Q8LPK5) physically interacts (MI:0218) withCESA8 (uniprotkb:Q8LPK5) by bimolecular fluorescence complementation (MI:0809)  相似文献   

12.
A gene regulatory network subcircuit comprising the otx, wnt8, and blimp1 genes accounts for a moving torus of gene expression that sweeps concentrically across the vegetal domain of the sea urchin embryo. Here we confirm by mutation the inputs into the blimp1cis-regulatory module predicted by network analysis. Its essential design feature is that it includes both activation and autorepression sites. The wnt8 gene is functionally linked into the subcircuit in that cells receiving this ligand generate a β-catenin/Tcf input required for blimp1 expression, while the wnt8 gene in turn requires a Blimp1 input. Their torus-like spatial expression patterns and gene regulatory analysis indicate that the genes even-skipped and hox11/13b are also entrained by this subcircuit. We verify the cis-regulatory inputs of even-skipped predicted by network analysis. These include activation by β-catenin/Tcf and Blimp1, repression within the torus by Hox11/13b, and repression outside the torus by Tcf in the absence of Wnt8 signal input. Thus even-skipped and hox11/13b, along with blimp1 and wnt8, are members of a cohort of torus genes with similar regulatory inputs and similar, though slightly out-of-phase, expression patterns, which reflect differences in cis-regulatory design.  相似文献   

13.
《Journal of plant physiology》2014,171(3-4):205-212
Poor nutrition and low temperature stress treatments induced flowering in the Japanese morning glory Pharbitis nil (synonym Ipomoea nil) cv. Violet. The expression of PnFT2, one of two homologs of the floral pathway integrator gene FLOWERING LOCUS T (FT), was induced by stress, whereas the expression of both PnFT1 and PnFT2 was induced by a short-day treatment. There was no positive correlation between the flowering response and the homolog expression of another floral pathway integrator gene SUPPRESSOR OF OVEREXPRESSION OF CO1 and genes upstream of PnFT, such as CONSTANS. In another cultivar, Tendan, flowering and PnFT2 expression were not induced by poor nutrition stress. Aminooxyacetic acid (AOA), a phenylalanine ammonia-lyase inhibitor, inhibited the flowering and PnFT2 expression induced by poor nutrition stress in Violet. Salicylic acid (SA) eliminated the inhibitory effects of AOA. SA enhanced PnFT2 expression under the poor nutrition stress but not under non-stress conditions. These results suggest that SA induces PnFT2 expression, which in turn induces flowering; SA on its own, however, may not be sufficient for induction.  相似文献   

14.
Thomas Bals  Silke Funke 《FEBS letters》2010,584(19):4138-4144
The chloroplast signal recognition particle (cpSRP) and its receptor, cpFtsY, posttranslationally target the nuclear-encoded light-harvesting chlorophyll-binding proteins (LHCPs) to the translocase Alb3 in the thylakoid membrane. In this study, we analyzed the interplay between the cpSRP pathway components, the substrate protein LHCP and the translocase Alb3 by using in vivo and in vitro techniques. We propose that cpSRP43 is crucial for the binding of LHCP-loaded cpSRP and cpFtsY to Alb3. In addition, our data suggest that a direct interaction between Alb3 and LHCP contributes to the formation of this complex.

Structured summary

MINT-7992851: Alb3 (uniprotkb:Q8LBP4) physically interacts (MI:0915) with cpSRP43 (uniprotkb:O22265) by two hybrid (MI:0018)MINT-7992897: cpSRP43 (uniprotkb:O22265) and Alb3 (uniprotkb:Q8LBP4) physically interact (MI:0915) by bimolecular fluorescence complementation (MI:0809)MINT-7993251: SRP43 (uniprotkb:O22265) binds (MI:0407) to LHCP (uniprotkb:P27490) by pull down (MI:0096)MINT-7993207: cpSRP43 (uniprotkb:O22265) physically interacts (MI:0915) with ftsY (uniprotkb:O80842), LHCP (uniprotkb:P27490), SRP-54 (uniprotkb:P37106) and Alb3 (uniprotkb:Q8LBP4) by pull down (MI:0096)MINT-7993272: Alb3 (uniprotkb:Q8LBP4) and LHCB (uniprotkb:P27490) physically interact (MI:0915) by bimolecular fluorescence complementation (MI:0809)MINT-7992960: cpSRP43 (uniprotkb:O22265) binds (MI:0407) to Alb3 (uniprotkb:Q8LBP4) by pull down (MI:0096)MINT-7993236: Alb3 (uniprotkb:Q8LBP4) binds (MI:0407) to LHCP (uniprotkb:P27490) by pull down (MI:0096)MINT-7993166: cpSRP43 (uniprotkb:O22265) physically interacts (MI:0915) with LHCP (uniprotkb:P27490) and Alb3 (uniprotkb:Q8LBP4) by pull down (MI:0096)MINT-7993118: cpSRP43 (uniprotkb:O22265) physically interacts (MI:0915) with Alb3 (uniprotkb:Q8LBP4), SRP-54 (uniprotkb:P37106) and LHCP (uniprotkb:P27490) by pull down (MI:0096)MINT-7993046: cpSRP43 (uniprotkb:O22265) physically interacts (MI:0915) with ftsY (uniprotkb:O80842), SRP-54 (uniprotkb:P37106) and Alb3 (uniprotkb:Q8LBP4) by pull down (MI:0096)MINT-7993004: cpSRP43 (uniprotkb:O22265) physically interacts (MI:0915) with SRP54 (uniprotkb:P37106) and Alb3 (uniprotkb:Q8LBP4) by pull down (MI:0096)  相似文献   

15.
A water sample from a noncontaminated site at the source of the Woluwe River (Belgium) was analyzed by culture-dependent and -independent methods. Pseudomonas isolates were identified by sequencing and analysis of the rpoD gene. Culture-independent methods consisted of cloning and pyrosequencing of a Pseudomonas rpoD amplicon from total DNA extracted from the same sample and amplified with selective rpoD gene primers. Among a total of 14,540 reads, 6,228 corresponded to Pseudomonas rpoD gene sequences by a BLAST analysis in the NCBI database. The selection criteria for the reads were sequences longer than 400 bp, an average Q40 value greater than 25, and >85% identity with a Pseudomonas species. Of the 6,228 Pseudomonas rpoD sequences, 5,345 sequences met the established criteria for selection. Sequences were clustered by phylogenetic analysis and by use of the QIIME software package. Representative sequences of each cluster were assigned by BLAST analysis to a known Pseudomonas species when the identity with the type strain was greater than or equal to 96%. Twenty-six species distributed among 12 phylogenetic groups or subgroups within the genus were detected by pyrosequencing. Pseudomonas stutzeri, P. moraviensis, and P. simiae were the only cultured species not detected by pyrosequencing. The predominant phylogenetic group within the Pseudomonas genus was the P. fluorescens group, as determined by culture-dependent and -independent analyses. In all analyses, a high number of putative novel phylospecies was found: 10 were identified in the cultured strains and 246 were detected by pyrosequencing, indicating that the diversity of Pseudomonas species has not been fully described.  相似文献   

16.
The solutions, n(t), of the differential equation dn/dt = α (1 - n) n (4 - 6n + 4n2 - n3) - βn2 (4 - 6n + 4n2 - n3) in which α and β are instantaneous functions of membrane potential, are shown to fit with good accuracy the time courses of the rise of potassium conductance during depolarizing steps in clamp potential, found experimentally by Hodgkin and Huxley and by Cole and Moore. The equation is derived by analysing the dynamic behaviour of a system consisting of a square array of interacting pores. The possible role of Ca++ ions in this system is discussed.  相似文献   

17.
Regeneration is a vital process to maintain and repair tissues. Despite the importance of regeneration, the genes responsible for regenerative growth remain largely unknown. In Drosophila, imaginal disc regeneration can be induced either by fragmentation and in vivo culture or in situ by ubiquitous expression of wingless (wg/wnt1). Imaginal discs, like appendages in lower vertebrates, initiate regeneration by wound healing and proliferation at the wound site, forming a regeneration blastema. Most blastema cells maintain their disc-specific identity during regeneration; a few cells however, exhibit stem-cell like properties and switch to a different fate, in a phenomenon known as transdetermination. We identified three genes, regeneration (rgn), augmenter of liver regeneration (alr) and Matrix metalloproteinase-1 (Mmp1) expressed specifically in blastema cells during disc regeneration. Mutations in these genes affect both fragmentation- and wg-induced regeneration by either delaying, reducing or positioning the regeneration blastema. In addition to the modifications of blastema homeostasis, mutations in the three genes alter the rate of regeneration-induced transdetermination. We propose that these genes function in regenerative proliferation, growth and regulate cellular plasticity.  相似文献   

18.
Importance of the galE gene on the virulence of Pasteurella multocida   总被引:1,自引:0,他引:1  
The galE gene of Pasteurella multocida has been isolated by complementing galE-defective mutants of Salmonella typhimurium with a plasmid library of this organism. The complete nucleotide sequence of the P. multocida galE gene consists of 1017 nucleotides, encoding a predicted polypeptide of 339 amino acids. The deduced amino acid sequence displayed the highest identity (85%) to the GalE protein of Haemophilus influenzae. However, the gene organization surrounding the galE locus was different from that of H. influenzae. A galE-defective mutant of P. multocida was obtained by replacement of the active galE gene by a copy inactivated in vitro. The resulting galE mutant was highly attenuated as seen in a biological test carried out in a mouse model.  相似文献   

19.
The trehalose operon of Bacillus subtilis is subject to regulation by induction, mediated by the repressor TreR, and by carbon catabolite repression (CCR). For in vitro investigations, TreR from B. subtilis was overproduced and purified. Its molecular mass, as estimated by SDS-PAGE, is 27?kDa. Size fractionation under native conditions yielded a size estimate of 56?kDa, indicating that TreR exists as a dimer in its native state. Analysis of its interaction with various DNA fragments shows that TreR is able to recognize two tre operators with different efficiencies, and indicates cooperative binding. Previous results have suggested that CCR of the tre operon occurs by a mechanism in which the specific regulator, TreR, may be involved independently of the central component, CcpA. The data presented here indicate that the TreR-tre operator interaction is influenced by several effectors. Thus, the presence of trehalose-6-phosphate, as well as glucose-1-phosphate and sodium chloride, inhibits tre operator binding. Glucose-6-phosphate can act as an anti-inducer, which might reflect its additional role in CCR exerted by glucose.  相似文献   

20.
Various animals derive nutrients from symbiotic microorganisms with much-reduced genomes, but it is unknown whether, and how, the supply of these nutrients is regulated. Here, we demonstrate that the production of essential amino acids (EAAs) by the bacterium Buchnera aphidicola in the pea aphid Acyrthosiphon pisum is elevated when aphids are reared on diets from which that EAA are omitted, demonstrating that Buchnera scale EAA production to host demand. Quantitative proteomics of bacteriocytes (host cells bearing Buchnera) revealed that these metabolic changes are not accompanied by significant change in Buchnera or host proteins, suggesting that EAA production is regulated post-translationally. Bacteriocytes in aphids reared on diet lacking the EAA methionine had elevated concentrations of both methionine and the precursor cystathionine, indicating that methionine production is promoted by precursor supply and is not subject to feedback inhibition by methionine. Furthermore, methionine production by isolated Buchnera increased with increasing cystathionine concentration. We propose that Buchnera metabolism is poised for EAA production at certain maximal rates, and the realized release rate is determined by precursor supply from the host. The incidence of host regulation of symbiont nutritional function via supply of key nutritional inputs in other symbioses remains to be investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号