首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sirenomelia, also known as mermaid syndrome, is a developmental malformation of the caudal body characterized by leg fusion and associated anomalies of pelvic/urogenital organs including bladder, kidney, rectum and external genitalia. Most affected infants are stillborn, and the few born alive rarely survive beyond the neonatal period. Despite the many clinical studies of sirenomelia in humans, little is known about the pathogenic developmental mechanisms that cause the complex array of phenotypes observed. Here, we provide new evidences that reduced BMP (Bone Morphogenetic Protein) signaling disrupts caudal body formation in mice and phenocopies sirenomelia. Bmp4 is strongly expressed in the developing caudal body structures including the peri-cloacal region and hindlimb field. In order to address the function of Bmp4 in caudal body formation, we utilized a conditional Bmp4 mouse allele (Bmp4flox/flox) and the Isl1 (Islet1)-Cre mouse line. Isl1-Cre is expressed in the peri-cloacal region and the developing hindimb field. Isl1Cre;Bmp4flox/flox conditional mutant mice displayed sirenomelia phenotypes including hindlimb fusion and pelvic/urogenital organ dysgenesis. Genetic lineage analyses indicate that Isl1-expressing cells contribute to both the aPCM (anterior Peri-Cloacal Mesenchyme) and the hindlimb bud. We show Bmp4 is essential for the aPCM formation independently with Shh signaling. Furthermore, we show Bmp4 is a major BMP ligand for caudal body formation as shown by compound genetic analyses of Bmp4 and Bmp7. Taken together, this study reveals coordinated development of caudal body structures including pelvic/urogenital organs and hindlimb orchestrated by BMP signaling in Isl1-expressing cells. Our study offers new insights into the pathogenesis of sirenomelia.  相似文献   

2.
The post-cranial axial skeleton consists of a metameric series of vertebral bodies and intervertebral discs, as well as adjoining ribs and sternum. Patterning of individual vertebrae and distinct regions of the vertebral column is accomplished by Polycomb and Hox proteins in the paraxial mesoderm, while their subsequent morphogenesis depends partially on Pax1/Pax9 in the sclerotome. In this study, we uncover that Pbx1/Pbx2 are co-expressed during successive stages of vertebral and rib development. Next, by exploiting a Pbx1/Pbx2 loss-of-function mouse, we show that decreasing Pbx2 dosage in the absence of Pbx1 affects axial development more severely than single loss of Pbx1. Pbx1/Pbx2 mutants exhibit a homogeneous vertebral column, with loss of vertebral identity, rudimentary ribs, and rostral hindlimb shifts. Of note, these axial defects do not arise from perturbed notochord function, as cellular proliferation, apoptosis, and expression of regulators of notochord signaling are normal in Pbx1/Pbx2 mutants. While the observed defects are consistent with loss of Pbx activity as a Hox-cofactor in the mesoderm, we additionally establish that axial skeletal patterning and hindlimb positioning are governed by Pbx1/Pbx2 through their genetic control of Polycomb and Hox expression and spatial distribution in the mesoderm, as well as of Pax1/Pax9 in the sclerotome.  相似文献   

3.
BMPs (Bone morphogenetic proteins) such as BMP2 and BMP7 have been used about one decade as bone anabolic agents in orthopaedics. The BMP receptor ACVR1, which is a key receptor of BMP7, is expressed in bone. The pathological role of ACVR1 in humans has been reported: a point mutation in ACVR1 can cause fibrodysplasia ossificans progressiva (FOP) in which ectopic ossification occurs in skeletal muscles and deep connective tissues. The physiological function of ACVR1 in bone, however, is totally unknown. The purpose of this study is to investigate the endogenous role of ACVR1 in osteoblasts, one of the most dominant cell-types in bone. We generated Acvr1-null mice in an osteoblast-specific manner using an inducible Cre-loxP system. Surprisingly, we found that bone mass was increased in the Acvr1-null mice. Interestingly, canonical Wnt signaling was increased and expression levels of Wnt inhibitors Sost and Dkk1 were both suppressed in the null bones during the developmental stages. In addition, we confirmed that expression levels of both Sost and Dkk1 were upregulated by BMP7 dose-dependently in vitro. These results suggest that the Acvr1-deficiency can increase bone mass by activating Wnt signaling in which both Sost and Dkk1 expression levels are diminished. This study leads to a new concept of the BMP7-ACVR1-SOST/DKK1 axis in osteoblasts, in which BMP7 signaling through ACVR1 can reduce Wnt signaling via SOST/DKK1 and then inhibits osteogenesis. Although this concept is beyond the current known function of BMP7, it can explain the varied outcomes of BMP7 treatment. We believe BMP signaling can exhibit multifaceted effects by context and cell type.  相似文献   

4.
Miocene baleen whales were highly diverse and included tens of genera. However, their taxonomy and phylogeny, as well as relationships with living whales, are still a subject of controversy. Here, “Mesocetus” argillarius, a poorly known specimen from Denmark, is redescribed with a focus on the cranial anatomy. It was found to represent not only a new genus, Tranatocetus gen. nov., but also a new family; Tranatocetidae. The whales of this family have the rostral bones either overriding or dividing the frontals; the rostral bones are contacting the parietals and nasals dividing the maxillae on the vertex; the occipital shield is dorsoventrally bent. The tympanic bulla is particularly characteristic of this family featuring a short, narrow anterior portion with a rounded or squared anterior end and a wider and higher posterior portion that is swollen in the posteroventral area. A phylogenetic analysis including 51 taxa supports a monophyletic group comprising most Neogene and modern whales, with Tranatocetidae being possibly closer related to Balaenopteridae (rorquals) than to Cetotheriidae. Tranatocetidae exhibit a charahteristic bulla shape. In fact, all Neogene and modern mysticete families examined have a unique shape of the tympanic bulla that is diagnostic at family-level. Inclusion of problematic taxa like Tranatocetus argillarius in phylogenies brings new understanding of the distribution and diagnostic value of character traits. This underlines the need for re-examination of earlier described specimens in the light of the wealth of new information published in later years.  相似文献   

5.
Loss and reduction in paired appendages are common in vertebrate evolution. How often does such convergent evolution depend on similar developmental and genetic pathways? For example, many populations of the threespine stickleback and ninespine stickleback (Gasterosteidae) have independently evolved pelvic reduction, usually based on independent mutations that caused reduced Pitx1 expression. Reduced Pitx1 expression has also been implicated in pelvic reduction in manatees. Thus, hindlimb reduction stemming from reduced Pitx1 expression has arisen independently in groups that diverged tens to hundreds of millions of years ago, suggesting a potential for repeated use of Pitx1 across vertebrates. Notably, hindlimb reduction based on the reduction in Pitx1 expression produces left‐larger directional asymmetry in the vestiges. We used this phenotypic signature as a genetic proxy, testing for hindlimb directional asymmetry in six genera of squamate reptiles that independently evolved hindlimb reduction and for which genetic and developmental tools are not yet developed: Agamodon anguliceps, Bachia intermedia, Chalcides sepsoides, Indotyphlops braminus, Ophisaurus attenuatuas and O. ventralis, and Teius teyou. Significant asymmetry occurred in one taxon, Chalcides sepsoides, whose left‐side pelvis and femur vestiges were 18% and 64% larger than right‐side vestiges, respectively, suggesting modification in Pitx1 expression in that species. However, there was either right‐larger asymmetry or no directional asymmetry in the other five taxa, suggesting multiple developmental genetic pathways to hindlimb reduction in squamates and the vertebrates more generally.  相似文献   

6.
7.
Toothed whales and bats have independently evolved specialized ultrasonic hearing for echolocation. Recent findings have suggested that several genes including Prestin, Tmc1, Pjvk and KCNQ4 appear to have undergone molecular adaptations associated with the evolution of this ultrasonic hearing in mammals. Here we studied the hearing gene Cldn14, which encodes the claudin-14 protein and is a member of tight junction proteins that functions in the organ of Corti in the inner ear to maintain a cationic gradient between endolymph and perilymph. Particular mutations in human claudin-14 give rise to non-syndromic deafness, suggesting an essential role in hearing. Our results uncovered two bursts of positive selection, one in the ancestral branch of all toothed whales and a second in the branch leading to the delphinid, phocoenid and ziphiid whales. These two branches are the same as those previously reported to show positive selection in the Prestin gene. Furthermore, as with Prestin, the estimated hearing frequencies of whales significantly correlate with numbers of branch-wise non-synonymous substitutions in Cldn14, but not with synonymous changes. However, in contrast to Prestin, we found no evidence of positive selection in bats. Our findings from Cldn14, and comparisons with Prestin, strongly implicate multiple loci in the acquisition of echolocation in cetaceans, but also highlight possible differences in the evolutionary route to echolocation taken by whales and bats.  相似文献   

8.
9.
We report fossil traces of Osedax, a genus of siboglinid annelids that consume the skeletons of sunken vertebrates on the ocean floor, from early-Late Cretaceous (approx. 100 Myr) plesiosaur and sea turtle bones. Although plesiosaurs went extinct at the end-Cretaceous mass extinction (66 Myr), chelonioids survived the event and diversified, and thus provided sustenance for Osedax in the 20 Myr gap preceding the radiation of cetaceans, their main modern food source. This finding shows that marine reptile carcasses, before whales, played a key role in the evolution and dispersal of Osedax and confirms that its generalist ability of colonizing different vertebrate substrates, like fishes and marine birds, besides whale bones, is an ancestral trait. A Cretaceous age for unequivocal Osedax trace fossils also dates back to the Mesozoic the origin of the entire siboglinid family, which includes chemosynthetic tubeworms living at hydrothermal vents and seeps, contrary to phylogenetic estimations of a Late Mesozoic–Cenozoic origin (approx. 50–100 Myr).  相似文献   

10.
Cell–cell communication is critical for regulating embryonic organ growth and differentiation. The Bone Morphogenetic Protein (BMP) family of transforming growth factor β (TGFβ) molecules represents one class of such cell–cell signaling molecules that regulate the morphogenesis of several organs. Due to high redundancy between the myriad BMP ligands and receptors in certain tissues, it has been challenging to address the role of BMP signaling using targeting of single Bmp genes in mouse models. Here, we present a detailed study of the developmental expression profiles of three BMP ligands (Bmp2, Bmp4, Bmp7) and three BMP receptors (Bmpr1a, Bmpr1b, and BmprII), as well as their molecular antagonist (noggin), in the early embryo during the initial steps of murine organogenesis. In particular, we focus on the expression of Bmp family members in the first organs and tissues that take shape during embryogenesis, such as the heart, vascular system, lungs, liver, stomach, nervous system, somites and limbs. Using in situ hybridization, we identify domains where ligand(s) and receptor(s) are either singly or co-expressed in specific tissues. In addition, we identify a previously unnoticed asymmetric expression of Bmp4 in the gut mesogastrium, which initiates just prior to gut turning and the establishment of organ asymmetry in the gastrointestinal tract. Our studies will aid in the future design and/or interpretation of targeted deletion of individual Bmp or Bmpr genes, since this study identifies organs and tissues where redundant BMP signaling pathways are likely to occur.  相似文献   

11.
Whales are unique among vertebrates because of the enormous oil reserves held in their soft tissue and bone. These ‘biofuel’ stores have been used by humans from prehistoric times to more recent industrial-scale whaling. Deep-sea biologists have now discovered that the oily bones of dead whales on the seabed are also used by specialist and generalist scavenging communities, including many unique organisms recently described as new to science. In the context of both cetacean and deep-sea invertebrate biology, we review scientific knowledge on the oil content of bone from several of the great whale species: Balaenoptera musculus, Balaenoptera physalus, Balaenoptera borealis, Megaptera novaeangliae, Eschrichtius robustus, Physeter macrocephalus and the striped dolphin, Stenella coeruleoalba. We show that data collected by scientists over 50 years ago during the heyday of industrial whaling explain several interesting phenomena with regard to the decay of whale remains. Variations in the lipid content of bones from different parts of a whale correspond closely with recently observed differences in the taphonomy of deep-sea whale carcasses and observed biases in the frequency of whale bones at archaeological sites.  相似文献   

12.
13.
14.
Giant suspension feeders such as mysticete whales, basking and whale sharks, and the extinct (indicated by ‘†’) †pachycormiform teleosts are conspicuous members of modern and fossil marine vertebrate faunas. Whether convergent anatomical features common to these clades arose along similar evolutionary pathways has remained unclear because of a lack of information surrounding the origins of all groups of large-bodied suspension feeders apart from baleen whales. New investigation reveals that the enigmatic ray-finned fish †Ohmdenia, from the Lower Jurassic (Toarcian, 183.0–175.6 Ma) Posidonia Shale Lagerstätte, represents the immediate sister group of edentulous †pachycormiforms, the longest lived radiation of large vertebrate suspension feeders. †Ohmdenia bisects the long morphological branch leading to suspension-feeding †pachycormiforms, providing information on the sequence of anatomical transformations preceding this major ecological shift that can be compared to changes associated with the origin of modern mysticetes. Similarities include initial modifications to jaw geometry associated with the reduction of dentition, followed by the loss of teeth. The evolution of largest body sizes within both radiations occurs only after the apparent onset of microphagy. Comparing the fit of contrasting evolutionary models to functionally relevant morphological measurements for whales and †pachycormiform fishes reveals strong support for a common adaptive peak shared by suspension-feeding members of both clades.  相似文献   

15.
Beaked whales (Ziphiidae) often show highly specialized features, involving bone morphology or structure, in the rostral region of their skulls. Previous studies revealed an extremely derived and peculiar histological structure in the rostrum of the extant Mesoplodon densirostris. In order to assess if this structure is a general feature of ziphiids, the swollen premaxillae of Aporotus recurvirostris, a Miocene species from the North Sea, were studied histologically. These bones are pachyostotic and strongly osteosclerotic. However, their structural organization is entirely different from that of M. densirostris rostrum: they are basically made of a non-remodeled, laminar tissue that was cyclically deposited by the periosteum. As compared to the generalized structure of the premaxillae of toothed whales exemplified by the bottlenose dolphin, Tursiops truncatus, the pachyostotic condition of Aporotus premaxillae was obviously due to a particularly high and sustained growth-rate, occurring in a dorso-lateral direction. The osteosclerotic structure of these bones resulted from a complete lack of inner resorption activity. The histological features of Aporotus premaxillae indicate that these bones are not likely to have been hypermineralized, and thus, their physical properties must have differed from those of the M. densirostris rostrum. The possible functional involvements of rostral peculiarities in beaked whales are discussed with reference to the whole set of available comparative data.  相似文献   

16.
Members of the transforming growth factor-β (TGF-β) superfamily participate in numerous biological phenomena in multiple tissues, including in cell proliferation, differentiation, and migration. TGF-β superfamily proteins therefore have prominent roles in wound healing, fibrosis, bone formation, and carcinogenesis. However, the molecular mechanisms regulating these signaling pathways are not fully understood. Here, we describe the regulation of bone morphogenic protein (BMP) signaling by Bat3 (also known as Scythe or BAG6). Bat3 overexpression in murine cell lines suppresses the activity of the Id1 promoter normally induced by BMP signaling. Conversely, Bat3 inactivation enhances the induction of direct BMP target genes, such as Id1, Smad6, and Smad7. Consequently, Bat3 deficiency accelerates the differentiation of primary osteoblasts into bone, with a concomitant increase in the bone differentiation markers Runx2, Osterix, and alkaline phosphatase. Using biochemical and cell biological analyses, we show that Bat3 inactivation sustains the C-terminal phosphorylation and nuclear localization of Smad1, 5, and 8 (Smad1/5/8), thereby enhancing biological responses to BMP treatment. At the mechanistic level, we show that Bat3 interacts with the nuclear phosphatase small C-terminal domain phosphatase (SCP) 2, which terminates BMP signaling by dephosphorylating Smad1/5/8. Notably, Bat3 enhances SCP2–Smad1 interaction only when the BMP signaling pathway is activated. Our results demonstrate that Bat3 is an important regulator of BMP signaling that functions by modulating SCP2–Smad interaction.  相似文献   

17.
The 3-O-sulfotransferase (3-OST) family catalyzes rare modifications of glycosaminoglycan chains on heparan sulfate proteoglycans, yet their biological functions are largely unknown. Knockdown of 3-OST-7 in zebrafish uncouples cardiac ventricular contraction from normal calcium cycling and electrophysiology by reducing tropomyosin4 (tpm4) expression. Normal 3-OST-7 activity prevents the expansion of BMP signaling into ventricular myocytes, and ectopic activation of BMP mimics the ventricular noncontraction phenotype seen in 3-OST-7 depleted embryos. In 3-OST-7 morphants, ventricular contraction can be rescued by overexpression of tropomyosin tpm4 but not by troponin tnnt2, indicating that tpm4 serves as a lynchpin for ventricular sarcomere organization downstream of 3-OST-7. Contraction can be rescued by expression of 3-OST-7 in endocardium, or by genetic loss of bmp4. Strikingly, BMP misregulation seen in 3-OST-7 morphants also occurs in multiple cardiac noncontraction models, including potassium voltage-gated channel gene, kcnh2, affected in Romano-Ward syndrome and long-QT syndrome, and cardiac troponin T gene, tnnt2, affected in human cardiomyopathies. Together these results reveal 3-OST-7 as a key component of a novel pathway that constrains BMP signaling from ventricular myocytes, coordinates sarcomere assembly, and promotes cardiac contractile function.  相似文献   

18.
Systemic mycoses in killer whales (Orcinus orca) are rare diseases, but have been reported. Two killer whales died by fungal infections at the Port of Nagoya Public Aquarium in Japan. In this study, the fungal flora of the pool environment at the aquarium was characterized. Alternaria spp., Aspergillus spp. (A. fumigatus, A. niger, A. versicolor), Fusarium spp. and Penicillium spp. were isolated from the air and the pool surroundings. The other isolates were identified as fungal species non-pathogenic for mammals. However, the species of fungi isolated from the environmental samples in this study were not the same as those isolated from the cases of disease in killer whales previously reported.  相似文献   

19.
We previously reported that the membrane-bound SCUBE1 (signal peptide-CUB-epithelial growth factor domain-containing protein 1) forms a complex with bone morphogenetic protein 2 (BMP2) ligand and its receptors, thus acting as a BMP co-receptor to augment BMP signal activity. However, whether SCUBE1 can bind to and facilitate signaling activity of BMP7, a renal protective molecule for ischemia-reperfusion (I/R) insult, and contribute to the proliferation and repair of renal tubular cells after I/R remains largely unknown. In this study, we first showed that I/R-induced SCUBE1 was expressed in proximal tubular cells, which coincided with the expression of renoprotective BMP7. Molecular and biochemical analyses revealed that SCUBE1 directly binds to BMP7 and its receptors, functioning as a BMP co-receptor to promote BMP7 signaling. Furthermore, we used a new Scube1 deletion (Δ2) mouse strain to further elucidate the renal pathophysiological function of SCUBE1 after I/R injury. As compared with wild-type littermates, Δ2 mice showed severe renal histopathologic features (extensive loss of brush border, tubular necrosis, and tubular dilation) and increased inflammation (neutrophil infiltrate and induction of monocyte chemoattractant protein-1, tumor necrosis factor-α and interleukin-6) during the resolution of I/R damage. They also showed reduced BMP signaling (phosphorylated Smad1/5/8) along with decreased proliferation and increased apoptosis of renal tubular cells. Importantly, lentivirus-mediated overexpression of SCUBE1 enhanced BMP signaling and conferred a concomitant survival outcome for Δ2 proximal tubular epithelial cells after hypoxia–reoxygenation treatment. The protective BMP7 signaling may be facilitated by stress-inducible SCUBE1 after renal I/R, which suggests potential targeted approaches for acute kidney injury.  相似文献   

20.
The modern pattern of distribution and feeding habits of the bowhead whale, Balaena mysticetus, in the Sea of Okhotsk are studied. The existence of a feeding aggregation of this whale species in the southwesternmost portion (apex) of Ulban Bay has been confirmed. There, the animals feed in shallow waters with depths of 3–5 m, which are only slightly larger than their body height. The quantitative composition and species structure of zooplankton at the stations that were set near feeding whales have been analyzed. In the samples taken in the immediate proximity to the feeding whales, the abundance of zooplankton reached 31409 ind./m3, with the average value of 17565 ind./m3. The lowest abundance, from 56 to 1879 ind./m3 (mean 927 ind./m3), was in the samples from western Konstantin Bay, where bowhead whales were not observed. In 16 samples collected in the immediate proximity to the feeding whales in the shallow waters of Ulban Bay, the average zooplankton biomass was 547.9 mg/m3, which is 3.9 times higher than that in the samples from waters where the whales were absent. Copepods dominated quantitatively at all the stations in Akademiya Bay. The proportion of euphausiids in the zooplankton biomass was lower than 1%, both near the feeding whales and in the absence of whales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号