首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>RNA是生命起源的最初分子形式.原始的RNA分子既可自我复制又可催化化学反应.随着漫长的进化过程, RNA的催化功能逐步转移到蛋白质,而作为遗传信息承载者的功能则转移到DNA,并逐步形成了现代生物学的中心法则,即遗传信息先由DNA转录成RNA,再由RNA翻译成蛋白质.细胞中除了编码蛋白质的信使RNA(mRNA)外,还存在着大量种类不一、功能各异且不翻译成蛋白质的非编码RNA.  相似文献   

2.
正20世纪50年代可谓是"基因元年",发现了DNA双螺旋结构并提出遗传学中心法则。传统意义上的中心法则指的是遗传信息从DNA经由RNA流向蛋白质。该法则在一个时代里成为了细胞生物学最重要的基本法则,然而,过去10年对长短链非编码RNA(non-coding RNA,nc RNA)的广泛研究极大地补充和改变了该法则,提出RNA可以直接作为功能分子参与调控生命活动。基因组中非编码  相似文献   

3.
宋迟  杜茁 《生命世界》2009,(11):44-45
分子生物学的中心法则认为:DNA是生命信息的代码,通过合成RNA进而制造蛋白质来行使生物学功能。通俗地讲,DNA是胶片,RNA是放映机,而蛋白质就是放映到荧幕上的电影。DNA和蛋白质对生命的重要性毋庸置疑,而RNA分子长期以来被认为仅是联系DNA与蛋白质的纽带,简单地起着“放映”的作用。  相似文献   

4.
现代遗传学已经证明,I)NA是生物遗传的主要物质基础。生物体的遗传特征是以遗传密码的形式编码在**A分子上,表现为特定的核音酸排列顺序,并且通过DNA的复制,把遗传信息由亲代传递给予代。在后代的个体发育中,遗传信息由DNA转录给RNA,然后通过mRNA翻译合成特异的蛋白质以执行各种生命功能,从而使后代表现出与亲代相似的遗传性状。这就是本世纪SO年代末所确定的蛋白质合成的“中心法则”。“中心法则”确定后,人们发现并不是所有RNA都是在DNA模板上复制的。许多病毒并没有DNA,只有单链的RNA作为遗传物质。当这些病毒…  相似文献   

5.
宋迟  杜茁 《植物杂志》2009,(11):44-45
分子生物学的中心法则认为:DNA是生命信息的代码,通过合成RNA进而制造蛋白质来行使生物学功能。通俗地讲,DNA是胶片,RNA是放映机,而蛋白质就是放映到荧幕上的电影。DNA和蛋白质对生命的重要性毋庸置疑,而RNA分子长期以来被认为仅是联系DNA与蛋白质的纽带,简单地起着“放映”的作用。  相似文献   

6.
新生肽链的折叠   总被引:1,自引:0,他引:1  
1 意义核酸是遗传信息的承担者,遗传信息存储于以双股螺旋结构形式存在的DNA分子的核苷酸序列之中,通过DNA的复制而世代相传。而丰富多采的生命活动则主要通过多种蛋白质的功能活动所体现。遗传信息由核酸分子中特定的核苷酸序列向蛋白质的单向传递,表现为蛋白质分子特定的氨基酸序列和空间结构。通常称为分子生物学的中心法则。不仅生命的正  相似文献   

7.
任本命 《遗传》2006,28(11):1343-1344
在遗传科学发展史上, 沃森和克里克在发现DNA双螺旋结构之后, 很快涉及到遗传信息传递问题, 紧接着提出了遗传的中心法则, 即DNA?RNA?蛋白质.中心法则的含义是: 这一发现就像中心教义那样神圣.按照中心法则, 遗传信息的流动是单方向的.  相似文献   

8.
线粒体是真核细胞内参与能量生成和物质代谢的重要细胞器,拥有自身的基因组DNA.线粒体基因的表达调控对线粒体功能的维持至关重要.根据分子生物学中心法则,遗传信息是从DNA传递给RNA,再从RNA传递给蛋白质.线粒体DNA(mtDNA)编码13个信使RNA(mRNA)、2个核糖体RNA(rRNA)和22个转运RNA(tRN...  相似文献   

9.
FrancisCrick 1 95 7年在实验动物学会年会上作了题为“关于蛋白质合成”的报告 ,该文发表于 1 95 8年。在这篇论文中 ,Crick首次列出了 2 0个氨基酸残基的标准位点 ,并提出了核酸碱基序列可以独特的表达一段核酸的特异性 ,该序列编码某一特定蛋白质的氨基酸序列 ;还提出了蛋白质三维空间的形成是由它的氨基酸序列所决定的论据 ;并指出蛋白质合成一定是连续的 ,阐明了在核糖体上合成蛋白质由“中间体 (adaptor)”分子介导的假说。最重要的是Crick提出了“中心法则”。中心法则在过去和现在一直在影响着分子生…  相似文献   

10.
1953年华生和克里格(J.D.Watson和F.H.Crick)提出了DNA的双螺旋结构模型,1958年后提出并建立了中心法则:DNA复制产生DNA,DNA转录产生RNA,RNA转译产生蛋白质。遗传信息不能从蛋白质传到蛋白质,也不能从蛋白质传到DNA和RNA(图1)。  相似文献   

11.
植物基因分离一直是当今生物技术研究的热点。分离作物重要农艺性状的功能基因利于对基因的结构和表达进行研究,并可以经转基因技术进行分子育种。根据中心法则,介绍了从DNA、RNA到蛋白质的三个层次进行植物基因分离的方法。  相似文献   

12.
<正>中心法则指出基因组上编码的基因信息通过转录和翻译形成蛋白质而行使各样的生理功能,形成生物界的万千风光.由于蛋白质是几乎所有生理过程的实际执行者,新蛋白的发现往往是人们认识生命现象本质的突破口.人类基因组计划(Human Genome Project,HGP)及其随后进行的许多转录组研究大约鉴定了20300个可以被转录成为mRNA的基  相似文献   

13.
线粒体含有约1000种蛋白质,其中99%由细胞核DNA编码,在细胞质核糖体上合成后被分别转运至线粒体的内膜或外膜上、基质或膜间隙中。由众多分子机器组成的线粒体蛋白质转运系统参与了该生物学过程的执行。线粒体DNA编码的13种蛋白质也由该系统转运至线粒体内膜。本文就线粒体蛋白质转运系统中线粒体前体蛋白质的定位分选信号、转运复合物和转运途径作简要介绍。  相似文献   

14.
关于核酸分子中碱基含量的计算,在遗传学和高中生物教学中相当重要,但在教科书中通常没有专门讲述。我们根据碱基互补配对规律及中心法则进行归纳总结,从DNA结构、DNA复制、转录、翻译等方面探讨了DNA、RNA、蛋白质3者之间的关系,分析了核酸分子中碱基的含量。互核酸分子中碱基含量的计算1.且已知双链DNA分子中一种碱基的含量,推断其他碱基的含量:例1:一双链‘DNA分子中,(A-C)占碱基总量的Zo%。求A、T、G、C各占多少?解:在双链DNA分子中,据规律知,1.2由碱基含量推断核酸分子的结构——单链或双链、DNA或RNA…  相似文献   

15.
生命现象是一个十分复杂的过程。它需要许多生物大分子(如核酸、蛋白质、脂类和多糖)、小分子有机化合物以及无机盐类等的协同作用。Crick用他修改过的中心法则高度概括了生命现象的根本规律。中心法则不仅指出了遗传信息的流向并且认为DNA、RNA和蛋白质是生命规律的核心。DNA储存遗传信息并决定物种的遗传和变异。RNA不仅可以储存遗传信息并在遗传信息的表达过程中表现功能。蛋白质表现遗传性状。由此可见DNA、RNA和蛋白质都是非常重要。要深入了解生命规律必须全面研究三者的结构与功能以及它们之间的相互关系。任何偏废都是有害的。近年来发现RNA还具有酶的催化功能。这就从根本上改变了所有的酶都是蛋白质的传  相似文献   

16.
正非编码RNA(即非蛋白质编码RNA)与基因表达调控是当前生命科学最活跃的前沿之一。20年来,一大批非编码RNA的发现及其功能的阐明,揭示了非编码RNA基因(简称非编码基因)在遗传信息表达和调控中的重要作用。非编码基因所具有的从调控到生物催化活力的结构与功能多样性,不仅大大开阔和革新了人们对许多生物学基本概念和基本问题(如生命起源方式和分子生物学中心法则)的  相似文献   

17.
一、引言1958年,Francis Crick在《论蛋白质合成》一文中,以其远见卓识提出了中心法则(Cen-tral Dogma;DNA——RNA——PROTIEN),在此基础上,他预见性地论述了mRNA(templateRNA),tRNA(adopter),三联体密码(triplets),甚至细胞质中核糖体(microsomal particle)等的存在,这些具有丰富想象力的科学预见,在十年左右时间里都被一一证实;导致了分子生物学的崛起!成为二十世纪自然科学界令人瞩目与惊叹的事件之一!于是,DNA双螺旋模型成了近代生物学的标志;遗传学已成为一部DNA纵横离合的故事;而分子生物学则是一部从DNA到蛋白质的中心法则的宏伟演绎。  相似文献   

18.
真核细胞的显著特点之一是具有膜包裹着的细胞核,其主要功能是将基因的转录和信使核糖核酸指导合成蛋白质这2个过程在空间上分隔开。最初为蛋白质编码的RNA序列可能是被不为蛋白质编码的RNA序列所隔断的,这些非编码区后来成为DNA分子中基因里的内含子。原核细胞为了节省资源,已基本清除了基因中的内含子。而真核细胞则利用内含子,用同一个基因合成多种蛋白质,这就需要细胞核阻止含有内含子的m RNA与合成蛋白质的核糖体接触。  相似文献   

19.
噬菌体基因组编码产生某些特殊的蛋白质分子,可与宿主菌生长、代谢的重要调控性蛋白质结合,并使其钝化,从而阻断宿主的生长与繁殖,将宿主菌大分子合成机制和能量装置转向噬菌体自身的复制与增殖。目前研究所获得的有关噬菌体“关闭宿主”功能的证据,主要涉及噬菌体编码的某些蛋白质分子与宿主菌的DNA复制及转录相关因子的相互作用,而这些蛋白质-蛋白质分子间的相互作用将为我们提供新的抗菌药物或抗菌药物作用的靶点,也有助于生物系统进化关系及蛋白质-蛋白质相互作用关系的研究。  相似文献   

20.
吴鹤龄 《遗传》1981,3(1):43-46
分子遗传学是一门折兴的学科。它是1953年Watson和Crick提出了DNA双螺旋结构模型,并用它阐明 遗传物质的复制后建立起来的学科。经六十年代,人们揭示了三体密码和蛋白质合成过程,建立了中心法则,与 此同时也揭示了基因调控原理以及突变的分子篆础等知识。这样就大大地乍富了分子遗传学内容。由于它的发 展,不仅使遗传学的发展走在生物学各门学科的前面,同时也推动了其它‘fit-科如医学、农学及工程学的发展。因 此,向读者介绍一点分子遗传学知识,对当前实现四个现代化是有用的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号