首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sirtuins作为Ⅲ型蛋白质去乙酰化酶调控机体多种生理进程,包括DNA修复、基因组稳定性、能量代谢、衰老以及癌症发生.目前已鉴定出7种人类Sirtuins家族的蛋白(SIRT1–SIRT7),其组织分布、亚细胞定位以及酶作用的底物都不尽相同.本文将着重描述Sirtuins家族的一个成员—SIRT5以及其在调控细胞代谢中的多种酶活性.  相似文献   

2.
哺乳动物Sirtuins家族目前共发现7个成员:SIRT1~SIRT7,它们均为NAD+依 赖性且从细菌到人类都保守的一类酶.人们已经对这7种去乙酰化酶进行了亚细胞定位 .目前,对其研究主要集中在对细胞发育相关的重要转录因子如p53、FOXO家族及相关 蛋白的去乙酰化修饰.Sirtuins对许多生理过程有着重要的调节作用,尤其是当发现 它们对寿命延长的调控作用后,Sirtuins引起了人们极大的关注,且都发表在世界顶 级刊物上.聚ADP核糖聚合酶(poly ADP-ribose polymerase, PARP)是一类存在于大多 数真核细胞中的蛋白质翻译后修饰酶,尤其是聚ADP核糖聚合酶1(PARP-1)在细胞内 DNA损伤修复等过程中起着重要作用,该酶同样以NAD+作为催化反应的底物.有研究发 现,Sirtuins家族成员与PARP-1在细胞内某些重要生理过程中存在着相互作用.本文评 述了Sirtuins家族成员、PARP-1的生物学特点,并就其参与哺乳动物细胞凋亡的调控 机制和相关信号通路进行了详细的论述,以期对Sirtuins家族成员、PARP-1生物学功 能及其相互作用的研究提供理论指导.  相似文献   

3.
Sirtuins蛋白家族是一类高度保守的烟酰胺腺嘌呤二核苷酸(NAD+)依赖的组蛋白去乙酰化酶。哺乳动物中的Sirtuins包括七种亚型:SIRT1-SIRT7,作为Sirtuins蛋白家族成员之一,SIRT7定位于核仁,是一种高度特异性的H3K18Ac(组蛋白H3的乙酰化赖氨酸残基18)去乙酰化酶。SIRT7的作用底物包括组蛋白和非组蛋白,底物的多样性决定着它参与体内多种细胞活动,如:细胞增殖、细胞新陈代谢、DNA损伤和应激反应等,并与肿瘤的发生发展密切相关。SIRT7在乳腺癌、甲状腺癌、卵巢癌、宫颈癌、胃癌、结直肠癌和肝细胞癌等多种肿瘤中高表达;而在头颈部鳞癌和胰腺癌中的低表达又提示其可作为抑癌基因发挥作用。本文旨从SIRT7的基因组组成、作用底物及相关肿瘤作用机制等方面阐述SIRT7的研究进展,而其致癌或抑癌作用有可能使其成为肿瘤治疗的新靶点。  相似文献   

4.
组蛋白乙酰化是表观遗传修饰的重要方式,主要受到组蛋白乙酰转移酶(histone acetyltransferases, HATs)和组蛋白去乙酰化酶(histone deacetylase, HDACs)催化. MYST是人类HATs的4大家族之一,包括MOF(males absent on the first),TIP60 (tat interacting protein 60 kD),结合ORC1的组蛋白乙酰转移酶(histone acetyltransferase binding to ORC1, HBO1),单核细胞白血病锌指蛋白(monocytic leukemia zinc finger protein, MOZ)和MOZ相关蛋白(MOZ related factor, MORF)等,均具有典型的MYST结构域.MYST介导的乙酰化是重要的翻译后修饰,其催化底物包括组蛋白和非组蛋白,如组蛋白H3, H4, H2A, H2A突变体,以及许多参与DNA代谢、细胞增殖和发育调控的蛋白因子. MYST蛋白家族参与许多细胞的生理过程,本文主要综述其在调节基因转录、DNA损伤修复和肿瘤发生发展等方面的生物学功能.  相似文献   

5.
SIRT7是哺乳动物组蛋白去乙酰化酶Sirtuins家族成员,是高度保守的NAD+依赖的蛋白质去乙酰化酶,调控细胞中多种蛋白的乙酰化水平,参与许多重要的生命活动,如蛋白质合成、代谢、细胞应激、炎症、衰老和肿瘤.在过去的几年里,人们对它的认识有质的飞跃,本文主要对SIRT7的特点、功能和调节机制进行回顾和总结,以期为进一步研究提供参考.  相似文献   

6.
去乙酰化转移酶SIRT7的作用及机制研究进展   总被引:1,自引:0,他引:1  
SIRT7是哺乳动物Sirtuins家族中的一员,定位于核仁,是一种高度特异性的H3K18Ac(组蛋白H3的乙酰化18位赖氨酸残基)去乙酰化酶。近年来的研究发现SIRT7可通过多种途径参与调控核糖体RNA转录、细胞代谢、细胞应激以及DNA损伤修复等生理过程。此外,SIRT7还与衰老、心脏疾病及脂肪肝等密切相关。特别是SIRT7在多种肿瘤如肝癌、胃癌、乳腺癌、膀胱癌、结直肠癌、胰腺癌和头颈鳞状细胞癌等发生发展中起着重要的调节作用。文中综述了SIRT7的细胞及分子生物学作用,并系统总结了其在人类疾病中的研究现状。  相似文献   

7.
染色质作为真核细胞遗传信息,体内外各种因素的作用致使不断的产生损伤,但是细胞仍能保持正常的生长、分裂和繁殖,这与基因组稳定性和完整性保持,并且通过自身的损伤修复有着密切的联系。ATP依赖的染色质重塑是染色质重塑的最重要的方式之一,主要是利用ATP水解释放的能量,将凝聚的异染色质打开,协调损伤修复蛋白与DNA损伤位点的作用,通过对组蛋白的共价键修饰或ATP依赖的染色质重塑复合物开启了DNA的损伤修复的大门。CHD4/Mi-2β的类SWI2/SNF2 ATP酶/解螺旋酶域结构域保守性最强,这一结构域存在与多种依赖于ATP的核小体重构复合物。Mi-2蛋白复合物称为核小体重塑及去乙酰化酶NuRd(nucleoside remodeling and deacetylase,NuRD),是个多亚基蛋白复合物,Mi2β/CHD4是该复合物的核心成员。近来的研究发现,CHD4具有染色质重塑功能,并且参与DNA损伤修复的调控。CHD4羧基端的PHD通过乙酰化或甲基化识别组蛋白H3氨基端Lys9(H3K9ac和H3K9me),并且通过Lys4甲基化(H3K4me)或Ala1乙酰化(H3A Lac)抑制与H3、H4的结合,为染色质重塑提供了保障。Mi-2β/CHD4参与DNA损伤反应,定位于DNA损伤γ-H2AX的foci。沉默Mi-2β/CHD4基因,细胞自发性DNA损伤增多和辐射敏感性增强。表明CHD4在染色质重塑中具有重要的作用。  相似文献   

8.
Sirtuins是一类进化上高度保守,NAD^+依赖的去乙酰化酶家族。Sirtuins(SIRT1-SIRT7)可通过不同的机制和作用靶点参与衰老、代谢,应激反应、炎症反应、肿瘤形成等生理或病理生理过程,其中SIRT2主要分布于胞质和细胞核中,可以通过对不同的底物去乙酰化,从而调节底物的活性,参与机体一系列生理病理过程。本篇综述主要讨论了SIRT2的表达调控以及在糖脂代谢过程中的作用。  相似文献   

9.
Sirtuins属于Ⅲ类组蛋白去乙酰化酶,可通过去乙酰化作用调控细胞的生存、衰老、凋亡及自噬等生理活动。最新研究发现,细胞自噬对维持细胞内稳态具有重要意义,参与调节肿瘤、心血管等多种疾病的发生和发展。Sirtuins家族中Sirt1作为研究最为广泛的组蛋白去乙酰化酶,可通过调节自噬水平改善心血管疾病。因此本文根据近几年来的研究报道,针对Sirtuins去乙酰化修饰调控的细胞自噬在心血管疾病中的作用作一概述。  相似文献   

10.
DNA损伤的发生与积累是造成细胞功能紊乱的根本原因,也是引起衰老与肿瘤等疾病发生的关键事件。为维持机体自身遗传物质的完整性与稳定性,生物体内拥有多种针对不同类型DNA损伤的修复方式。Sirtuin蛋白是一组NAD+依赖的、高度保守的组蛋白去乙酰化酶,可通过去乙酰化作用调节众多底物蛋白质的表达、活性与稳定性。 近来的研究显示,DNA损伤修复途径的多个关键蛋白质是Sirtuin的下游底物。Sirtuin蛋白通过调节同源重组修复、非同源末端修复、核苷酸切除修复等途径中的核心蛋白质参与修复包括双链断裂(double stranded breakes, DSBs)在内的多种DNA损伤类型,从而在维持基因组稳定性、寿命以及细胞能量代谢调节等一系列生物学作用中发挥至关重要的作用。本综述将介绍近年来Sirtuin与DNA损伤修复的研究进展。  相似文献   

11.
The maintenance of DNA methylation in nascent DNA is a critical event for numerous biological processes. Following DNA replication, DNMT1 is the key enzyme that strictly copies the methylation pattern from the parental strand to the nascent DNA. However, the mechanism underlying this highly specific event is not thoroughly understood. In this study, we identified topoisomerase IIα (TopoIIα) as a novel regulator of the maintenance DNA methylation. UHRF1, a protein important for global DNA methylation, interacts with TopoIIα and regulates its localization to hemimethylated DNA. TopoIIα decatenates the hemimethylated DNA following replication, which might facilitate the methylation of the nascent strand by DNMT1. Inhibiting this activity impairs DNA methylation at multiple genomic loci. We have uncovered a novel mechanism during the maintenance of DNA methylation.  相似文献   

12.
A distinctive feature of closed circular DNA molecules is their particular topological state, which cannot be altered by any conformational rearrangement short of breaking at least one strand. This topological constraint opens unique possibilities for experimental studies of the distributions of topological states created in different ways. Primarily, the equilibrium distributions of topological properties are considered in the review. It is described how such distributions can be obtained and measured experimentally, and how they can be computed. Comparison of the calculated and measured equilibrium distributions over the linking number of complementary strands, equilibrium fractions of knots and links formed by circular molecules has provided much valuable information about the properties of the double helix. Study of the steady-state fraction of knots and links created by type II DNA topoisomerases has revealed a surprising property of the enzymes: their ability to reduce these fractions considerably below the equilibrium level.  相似文献   

13.
Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD51 can polymerize on DNA to form a nucleoprotein filament that facilitates both the search for the homologous DNA sequences and the subsequent DNA strand invasion required to initiate HR. Because of its pivotal role in HR, RAD51 is subject to numerous positive and negative regulatory influences. Using a combination of molecular genetic, biochemical, and single-molecule biophysical techniques, we provide mechanistic insight into the mode of action of the FBH1 helicase as a regulator of RAD51-dependent HR in mammalian cells. We show that FBH1 binds directly to RAD51 and is able to disrupt RAD51 filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under unperturbed growth conditions to prevent unwanted or unscheduled DNA recombination.  相似文献   

14.
HEL308 is a superfamily II DNA helicase, conserved from archaea through to humans. HEL308 family members were originally isolated by their similarity to the Drosophila melanogaster Mus308 protein, which contributes to the repair of replication-blocking lesions such as DNA interstrand cross-links. Biochemical studies have established that human HEL308 is an ATP-dependent enzyme that unwinds DNA with a 3' to 5' polarity, but little else is know about its mechanism. Here, we show that GFP-tagged HEL308 localizes to replication forks following camptothecin treatment. Moreover, HEL308 colocalizes with two factors involved in the repair of damaged forks by homologous recombination, Rad51 and FANCD2. Purified HEL308 requires a 3' single-stranded DNA region to load and unwind duplex DNA structures. When incubated with substrates that model stalled replication forks, HEL308 preferentially unwinds the parental strands of a structure that models a fork with a nascent lagging strand, and the unwinding action of HEL308 is specifically stimulated by human replication protein A. Finally, we show that HEL308 appears to target and unwind from the junction between single-stranded to double-stranded DNA on model fork structures. Together, our results suggest that one role for HEL308 at sites of blocked replication might be to open up the parental strands to facilitate the loading of subsequent factors required for replication restart.  相似文献   

15.
In eukaryotic cells, DNA replication is carried out by the coordinated action of three DNA polymerases (Pols), Pol α, δ, and ε. In this report, we describe the reconstitution of the human four-subunit Pol ε and characterization of its catalytic properties in comparison with Pol α and Pol δ. Human Pol ε holoenzyme is a monomeric complex containing stoichiometric subunit levels of p261/Pol 2, p59, p17, and p12. We show that the Pol ε p261 N-terminal catalytic domain is solely responsible for its ability to catalyze DNA synthesis. Importantly, human Pol (hPol) ε was found more processive than hPol δ in supporting proliferating cell nuclear antigen-dependent elongation of DNA chains, which is in keeping with proposed roles for hPol ε and hPol δ in the replication of leading and lagging strands, respectively. Furthermore, GINS, a component of the replicative helicase complex that is composed of Sld5, Psf1, Psf2, and Psf3, was shown to interact weakly with all three replicative DNA Pols (α, δ, and ε) and to markedly stimulate the activities of Pol α and Pol ε. In vivo studies indicated that siRNA-targeted depletion of hPol δ and/or hPol ε reduced cell cycle progression and the rate of fork progression. Under the conditions used, we noted that depletion of Pol ε had a more pronounced inhibitory effect on cellular DNA replication than depletion of Pol δ. We suggest that reduction in the level of Pol δ may be less deleterious because of its collision-and-release role in lagging strand synthesis.  相似文献   

16.
Metnase (or SETMAR) arose from a chimeric fusion of the Hsmar1 transposase downstream of a protein methylase in anthropoid primates. Although the Metnase transposase domain has been largely conserved, its catalytic motif (DDN) differs from the DDD motif of related transposases, which may be important for its role as a DNA repair factor and its enzymatic activities. Here, we show that substitution of DDN610 with either DDD610 or DDE610 significantly reduced in vivo functions of Metnase in NHEJ repair and accelerated restart of replication forks. We next tested whether the DDD or DDE mutants cleave single-strand extensions and flaps in partial duplex DNA and pseudo-Tyr structures that mimic stalled replication forks. Neither substrate is cleaved by the DDD or DDE mutant, under the conditions where wild-type Metnase effectively cleaves ssDNA overhangs. We then characterized the ssDNA-binding activity of the Metnase transposase domain and found that the catalytic domain binds ssDNA but not dsDNA, whereas dsDNA binding activity resides in the helix-turn-helix DNA binding domain. Substitution of Asn-610 with either Asp or Glu within the transposase domain significantly reduces ssDNA binding activity. Collectively, our results suggest that a single mutation DDN610 → DDD610, which restores the ancestral catalytic site, results in loss of function in Metnase.  相似文献   

17.
The persistence length of DNA, a, depends both on the intrinsic curvature of the double helix and on the thermal fluctuations of the angles between adjacent base-pairs. We have evaluated two contributions to the value of a by comparing measured values of a for DNA containing a generic sequence and for an "intrinsically straight" DNA. In each 10 bp segment of the intrinsically straight DNA an initial sequence of five bases is repeated in the sequence of the second five bases, so any bends in the first half of the segment are compensated by bends in the opposite direction in the second half. The value of a for the latter DNA depends, to a good approximation, on thermal fluctuations only; there is no intrinsic curvature. The values of a were obtained from measurements of the cyclization efficiency for short DNA fragments, about 200 bp in length. This method determines the persistence length of DNA with exceptional accuracy, due to the very strong dependence of the cyclization efficiency of short fragments on the value of a. We find that the values of a for the two types of DNA fragment are very close and conclude that the contribution of the intrinsic curvature to a is at least 20 times smaller than the contribution of thermal fluctuations. The relationship between this result and the angles between adjacent base-pairs, which specify the intrinsic curvature, is analyzed.  相似文献   

18.
A preparative procedure for the large-scale isolation of plasmid DNA without the use of RNAse is described. Crude plasmid DNA is prepared using a standard boiling method. High-molecular-weight RNA is removed by precipitation with LiCl, and low-molecular-weight RNA is removed by sedimentation through high-salt solution. The procedure is inexpensive, rapid, simple, and particularly suitable for processing several large-scale preparations simultaneously. A similar procedure has been developed for preparation of lambda-phage DNA.  相似文献   

19.
In bacteria, RuvABC is required for the resolution of Holliday junctions (HJ) made during homologous recombination. The RuvAB complex catalyzes HJ branch migration and replication fork reversal (RFR). During RFR, a stalled fork is reversed to form a HJ adjacent to a DNA double strand end, a reaction that requires RuvAB in certain Escherichia coli replication mutants. The exact structure of active RuvAB complexes remains elusive as it is still unknown whether one or two tetramers of RuvA support RuvB during branch migration and during RFR. We designed an E. coli RuvA mutant, RuvA2(KaP), specifically impaired for RuvA tetramer-tetramer interactions. As expected, the mutant protein is impaired for complex II (two tetramers) formation on HJs, although the binding efficiency of complex I (a single tetramer) is as wild type. We show that although RuvA complex II formation is required for efficient HJ branch migration in vitro, RuvA2(KaP) is fully active for homologous recombination in vivo. RuvA2(KaP) is also deficient at forming complex II on synthetic replication forks, and the binding affinity of RuvA2(KaP) for forks is decreased compared with wild type. Accordingly, RuvA2(KaP) is inefficient at processing forks in vitro and in vivo. These data indicate that RuvA2(KaP) is a separation-of-function mutant, capable of homologous recombination but impaired for RFR. RuvA2(KaP) is defective for stimulation of RuvB activity and stability of HJ·RuvA·RuvB tripartite complexes. This work demonstrates that the need for RuvA tetramer-tetramer interactions for full RuvAB activity in vitro causes specifically an RFR defect in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号