首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microencapsulation of insulin-secreting cells is a potential therapy for Type I diabetes. Critical requirements for therapeutic use are the high number of beta-cells to be implanted and a fast insulin diffusion through the encapsulating membrane. The use of thin, conformal coating for beta-cell encapsulation may be a way to reach these goals by decreasing the capsule void volume. This study focuses on the production of very thin membranes by interfacial photopolymerization of beta-cell clusters. Two types of photosensitizing dyes were used: Eosin Y, which stains the cell surface as well as the cytoplasm, and a lipophilic-derivatized eosin that specifically stains the cell membrane. The fraction of encapsulated clusters and membrane thickness were studied as a function of irradiation parameters. In the case of Eosin Y, the fraction of encapsulated clusters is found to depend mainly on an optimal light dose for and above which complete encapsulation is obtained. We found that the membrane thickness decreased with decreasing irradiation time, but does not depend on irradiation intensity. Using Eosin Y, 16 microm thick coatings were obtained, together with a high fraction of encapsulated clusters. The coating thickness was further reduced to 10 microm by using the lipophilic-derivatized eosin photoinitiator. Cell viability and functionality were studied following the encapsulation process using vital staining and measurement of insulin secretion. Cell viability and functionality were preserved following the encapsulation process with Eosin Y and for sufficiently low lipophilic dye concentration. Although it still requires further improvement, the method proposed here provides a promising route to obtain thinner coatings, down to a few microns.  相似文献   

2.
The minimum concentration of polyethyleneglycol (PEG) with molecular weights 4000, 6000, and 15000 necessary for precipitation of S, M, X and Y potato viruses was determined. An excessive amount of PEG causes the precipitation of other protein compounds from potato leaf cell sap. In order to obtain highly purified samples, it is necessary to use just the minimum sufficient amount of PEG. Using the minimum quantity of PEG is, also, advisable from an economical point of view. The minimum concentration of PEG of given molecular weight differs for different potato disease viruses. The concentration of PEG necessary for precipitation of a given potato virus depends on the molecular weight of PEG used—4000, 6000 and 15000. As the molecular weight increases, the concentration of PEG necessary for precipitation decreases.  相似文献   

3.
The encapsulation and release kinetics of guanosine from liposomes and polyethylene glycol (PEG)-modified liposomes are reported. Specifically, the influence of PEG chain length, PEGylation level, lipid type, drug-loading level, temperature, and solution conditions (i.e., salt and pH effects) on the rate and mechanism for release have been determined. Increasing PEGylation significantly reduced the guanosine release kinetics; this is more significant for greater molecular weight PEG and is correlated with the PEG layer thickness. Further, the mechanism for guanosine release changed from diffusion to interfacial control as the PEG level increased. The interfacial structure introduced by PEG also increased the activation energy required for guanosine transport across the lipid bilayer from 14 to 22 kJmol?1. Findings from this study provide further insight into optimizing the formulation of Stealth liposomes.  相似文献   

4.
Surface modification of amine-terminated polyamidoamine (PAMAM) dendrimers by poly(ethylene glycol) (PEG) groups generally enhances water-solubility and biocompatibility for drug delivery applications. In order to provide guidelines for designing appropriate dendritic scaffolds, a series of G3 PAMAM-PEG dendrimer conjugates was synthesized by varying the number of PEG attachments and chain length (shorter PEG 550 and PEG 750 and longer PEG 2000). Each conjugate was purified by size exclusion chromatography (SEC) and the molecular weight (MW) was determined by (1)H NMR integration and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). NOESY experiments performed in D 2O on selected structures suggested no penetration of PEG chains to the central PAMAM domain, regardless of chain length and degree of substitution. CHO cell cultures exposed to PAMAM-PEG derivatives (< or =1 microM) showed a relatively high cell viability. Generally, increasing the degree of PEG substitution reduced cytotoxicity. Moreover, compared to G3 PAMAM dendrimers that were N-acetylated to varying degrees, a lower degree of surface substitution with PEG was needed for a similar cell viability. Interestingly, when longer PEG 2000 was fully incorporated on the surface, cell viability was reduced at higher concentrations (32 muM), suggesting increased toxicity potentially by forming intermolecular aggregates. A similar observation was made for anionic carboxylate G5.5 PAMAM dendrimer at the same dendrimer concentration. Our findings suggest that a lower degree of peripheral substitution with shorter PEG chains may suffice for these PAMAM-PEG conjugates to serve as efficient universal scaffolds for drug delivery, particularly valuable in relation to targeting or other ligand-receptor interactions.  相似文献   

5.
Summary Microencapsulation of insect cells, hosts for baculovirus expression systems, requires that the encapsulation reagents and membrane-forming materials be non-toxic to the cells. Various encapsulation polymers (poly-l-lysine, chitosan and alginate) and solutions (KCl, CaCl2, CHES and sodium citrate) were tested for their toxicity toSpodoptera frugiperda cells. The effects of varying polymer molecular weight and concentration on cell viability were also investigated.  相似文献   

6.
Local and controlled DNA release is a critical issue in current gene therapy. As viral gene delivery systems are associated with severe security problems, nonviral gene delivery vehicles were developed. Here, DNA-nanoparticles using grafted copolymers of PLL and PEG to increase their biocompatibility and stealth properties were systematically studied. Ten different PLL-based polymers with no, low, and high PEG grafting and PEG molecular weights as well as different PLL backbone lengths were complexed with plasmids containing 3200 to 10,100 base pairs. Stable complexes were formed and selected for cytotoxicity and transfection efficiency. Predominantly, PLL-g-PEG-DNA nanoparticles grafted with 4 or 5% PEG moieties of 5 kDa transfected 40% COS-7 cells without reduction of cell viability when formed at N/P ratios between 0.1 and 12.5. The molecular weight of PLL did not significantly affect transfection efficiency or cytotoxicity indicating that a specific cationic charge-density-to-PEG-ratio is important for efficient transfection and low cytotoxicity. The PLL-g-PEG-DNA nanoparticles were spherical with a diameter of approximately 100 nm and did not aggregate over 2 weeks. Moreover, they protected included plasmid DNA against serum components and DNase I digestion. Therefore, such storage stable and versatile PLL-g-PEG-DNA nanoparticles might be useful to deliver differently sized therapeutic DNA for in vivo applications.  相似文献   

7.
The exceptional tunability of poly(ethylene glycol) (PEG) hydrogel chemical, mechanical, and biological properties enables their successful use in a wide range of biomedical applications. Although PEG diacrylate (PEGDA) hydrogels are often used as nondegradable controls in short-term in vitro studies, it is widely acknowledged that the hydrolytically labile esters formed upon acrylation of the PEG diol make them susceptible to slow degradation in vivo. A PEG hydrogel system that maintains the desirable properties of PEGDA while improving biostability would be valuable in preventing degradation-related failure of gel-based devices in long-term in vivo applications. To this end, PEG diacrylamide (PEGDAA) hydrogels were synthesized and characterized in quantitative comparison to traditional PEGDA hydrogels. It was found that PEGDAA hydrogel modulus and swelling can be tuned over a similar range and to comparable degrees as PEGDA hydrogels with changes in macromer molecular weight and concentration. Additionally, PEGDAA cytocompatibility, low cell adhesion, and capacity for incorporation of bioactivity were analogous to that of PEGDA. In vitro hydrolytic degradation studies showed that the amide-based PEGDAA had significantly increased biostability relative to PEGDA. Overall, these findings indicate that PEGDAA hydrogels are a suitable replacement for PEGDA hydrogels with enhanced hydrolytic resistance. In addition, these studies provide a quantitative measure of the hydrolytic degradation rate of PEGDA hydrogels which was previously lacking in the literature.  相似文献   

8.
Degradable thiol-acrylate materials were synthesized from the mixed-mode polymerization of a diacrylate poly(ethylene glycol) (PEG) monomer with thiol monomers of varying functionalities to control the final network structure, ultimately influencing the material's degradation behavior and properties. The influence of the concentration of thiol groups and monomer functionality on the mass loss profiles were examined experimentally and theoretically. Mass loss behavior was also predicted for networks with varying extents of cyclization, PEG molecular weight, and backbone chain length distributions. Experimental results indicate that increasing the thiol concentration from 10 to 50 mol % shifted the reverse gelation time from 35 to 8 days and the extent of mass loss at reverse gelation from 75 to 40%. Similarly, decreasing the thiol functionality from 4 to 1 shifted the reverse gelation time from 18 to 8 days and the mass loss extent at reverse gelation from 70 to 45%.  相似文献   

9.
Islet transplantation is a promising therapeutic option for type 1 diabetes mellitus, yet the current delivery into the hepatic portal vasculature is limited by poor engraftment. Biomaterials have been used as a means to promote engraftment and function at extrahepatic sites, with strategies being categorized as encapsulation or microporous scaffolds that can either isolate or integrate islets with the host tissue, respectively. Although these approaches are typically studied separately using distinct material platforms, herein, we developed nondegradable polyethylene glycol (PEG)‐based hydrogels for islet encapsulation or as microporous scaffolds for islet seeding to compare the initial engraftment and function of islets in syngeneic diabetic mice. Normoglycemia was restored with transplantation of islets within either encapsulating or microporous hydrogels containing 700 islet equivalents (IEQ), with transplantation on microporous hydrogels producing lower blood glucose levels at earlier times. A glucose challenge test at 1 month after transplant indicated that encapsulated islets had a delay in glucose‐stimulated insulin secretion, whereas microporous hydrogels restored normoglycemia in times consistent with native pancreata. Encapsulated islets remained isolated from the host tissue, whereas the microporous scaffolds allowed for revascularization of the islets after transplant. Finally, we compared the inflammatory response after transplantation for the two systems and noted that microporous hydrogels had a substantially increased presence of neutrophils. Collectively, these findings suggest that both encapsulation and microporous PEG scaffold designs allow for stable engraftment of syngeneic islets and the ability to restore normoglycemia, yet the architecture influences islet function and responsiveness after transplantation.  相似文献   

10.
Various polymers were used as transfection factors for small interfering RNA (siRNA) to effectively suppress human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) gene in transgenic rice cells. Five kinds of polymers (PEI, PVA, PVP, and 8 and 20 kDa PEGs) were applied for delivery of siRNA with lipofectamine used as a control. In the cytotoxicity test, all polymers except 8 kDa PEG showed nontoxicity in relation to cell viability. For transfection efficiency, polyplexes composed of siRNA and PEG (20 kDa) did not significantly reduce production of intracellular hCTLA4Ig. On the other hand, siRNA + PEI polyplexes showed the most effective suppression efficiency with regards to production of intracellular hCTLA4Ig among all other polyplexes (PVA, PVP, and PEG (8 kDa)). Effects of molecular weight ratios of siRNA:PEI were investigated to obtain optimal transfection efficiency and avoid excessive damage to cells. PEI-based polyplexes with a 1:10 ratio of siRNA:PEI reduced production of intracellular hCTLA4Ig up to 70.6% without alteration of cell viability. These results demonstrate that PEI-based polyplexes are easy to prepare, inexpensive, non-toxic, and effective to deliver siRNA to transgenic plant cell cultures.  相似文献   

11.
Viability of isolated islets is one of the main obstacles limiting islet transplantation success. It has been reported that overexpression of Bcl-2/Bcl-XL proteins enhances islet viability. To avoid potential complications associated with long-term expression of anti-apoptotic proteins, we investigated the possibility of delivering Bcl-XL or its anti-apoptotic domain BH4 to islets by protein transduction. Bcl-XL and BH4 molecules were fused to TAT/PTD, the 11-aa cell penetrating peptide from HIV-1 transactivating protein, generating TAT-Bcl-XL and TAT-BH4, respectively. Transduction efficiency was assessed by laser scanning confocal microscopy of live islets. Biological activity was tested as the ability to protect NIT-1 insulinoma cell line from death induced by staurosporine or serum deprivation. Spontaneous caspase activation in human islets and cytotoxicity caused by IL-1beta were significantly reduced in the presence of TAT-Bcl-XL and TAT-BH4. We conclude that both TAT proteins are biologically active after transduction and could be an asset in the improvement of islet viability.  相似文献   

12.

Background

Oxygen consumption reflects multiple processes in pancreatic islets including mechanisms contributing to insulin secretion, oxidative stress and viability, providing an important readout in studies of islet function, islet viability and drug testing. Due to the scarcity, heterogeneity, and intrinsic kinetic properties of individual islets, it would be of great benefit to detect oxygen consumption by single islets. We present a novel method we have developed to image oxygen in single islets.

Methodology/Principal Findings

Using a microfluidics system, individual islets and a fluorescent oxygen-sensitive dye were encased within a thin alginate polymer layer. Insulin secretion by the encapsulated islets was normal. Fluorescent signal from the encased dye, detected using a standard inverted fluorescence microscope and digital camera, was stable and proportional to the amount of oxygen in the media. When integrated into a perifusion system, the sensing system detected changes in response to metabolic substrates, mitochondrial poisons, and induced-oscillations. Glucose responses averaged 30.1±7.1% of the response to a metabolic inhibitor (cyanide), increases were observed in all cases (n = 6), and the system was able to resolve changes in oxygen consumption that had a period greater than 0.5 minutes. The sensing system operated similarly from 2–48 hours following encapsulation, and viability and function of the islets were not significantly affected by the encapsulation process.

Conclusions/Significance

An oxygen-dependent dye situated around and within a pancreatic islet encapsulated by a thin layer of alginate was sensitive to changes in oxygen consumption, and was not harmful to the function or viability of islets over the course of two days. The microcapsule-based sensing method is particularly suited to assessing the effects of compounds (dose responses and time courses) and chronic changes occurring over the course of days. The approach should be applicable to other cell types and dyes sensitive to other biologically important molecules.  相似文献   

13.
Pancreatic rat islets are encapsulated by a siliceous layer deposited on the surface of single islets upon reaction with gaseous siliceous precursors. The process preserves original islet dimensions and does not suppress viability or function. The encapsulated material is homogeneously distributed on the islet surface, and layer thickness can be controlled in the 0.1–2.0 μm interval. Dynamic perfusion experiments with glucose stimulation were carried out in both encapsulated and non-encapsulated islets. Results were treated according to a kinetic model presented here for the analysis of perfusion data; the model tested by literature data, was used to substantiate the diffusion features of the siliceous layer, which does not affect mass transfer of insulin but which modifies the texture of the islet surface tissue. The clinical potential of silica encapsulation was demonstrated by in vivo experiments using encapsulated islets transplanted into diabetic rats. Transplantation was carried out in both inbred and outbred rats and indicated prolonged restoration of normal glycaemia levels and protection from immunological attack.  相似文献   

14.
The effects of polyethylene glycol (PEG) molecular weight and concentration on mammalian cell hybridization were studied. The peak hybridization-inducing activity with all grades of PEG from 400-6000 was found to occur in the concentration range of 50-55%. However, changes in concentration were seen to have different quantitative effects with different grades of PEG. For monolayer fusions, PEG 1000 at 50% seems to be the optimal combination of PEG molecular weight and concentration, in terms of both efficiency of hybridization and relative insensitivity to dilution effects.  相似文献   

15.
The effect of eosin Y (2',4',5',7'-tetrabromofluorescin) on basic kinetic parameters of the reaction of Mg2+ -dependent hydrolysis of ATP catalysed "basal" Mg2+ -ATPase myometrial cells plasma membrane has been studied. The eosin Y (10-100 microM) inhibited initial maximal velocity of the "basal" Mg2+ -ATPase of plasma membrane assayed for Mg2+ and ATP. At the same time the given inhibitor reduces the affinity of Mg2+ -ATPase for ATP. However, the difficult effect of the inhibitor action is observed for Mg ions: eosin Y in concentration of 10-50 microM increases the enzyme affinity for the ion-activator, while in concentration of 100 microM the affinity of Mg2+ -ATPase for Mg2+ is reduced. An analysis of eosin Y effect on catalytic efficiency of "basal" Mg2+ -ATPase of plasma membrane has shown, that at saturating concentrations of ATP (1 mM) the enzyme activity is less sensitive to the action of inhibitor. On this basis the conclusion is made that ATP in high concentrations can compete with eosin Y for active centre of Mg2+ -ATPase of smooth muscle cells plasma membrane.  相似文献   

16.
Novel biodegradable poly(ethylene glycol) (PEG) based hydrogels, namely, PEG sebacate diacrylate (PEGSDA) were synthesized, and their properties were evaluated. Chemical structures of these polymers were confirmed by Fourier transform infrared and proton nuclear magnetic resonance (1H NMR) spectroscopy. After photopolymerization, the dynamic shear modulus of the hydrogels was up to 0.2 MPa for 50% PEGSDA hydrogel, significantly higher than conventional hydrogels such as PEG diacrylate (PEGDA). The swelling ratios of these macromers were significantly lower than PEGDA. The in vitro degradation study demonstrated that these hydrogels were biodegradable with weight losses about 66% and 32% for 25% and 50% PEGSDA after 8 weeks of incubation in phosphate-buffered saline at 37 degrees C. In vitro biocompatibility was assessed using cultured rat bone marrow stromal cells (MSCs) in the presence of unreacted monomers or degradation products. Unlike conventional PEGDA hydrogels, PEGSDA hydrogel without RGD peptide modification induced MSC cell adhesion similar to tissue culture polystyrene. Finally, complex three-dimensional structures of PEGSDA hydrogels using solid free form technique were fabricated and their structure integrity was better maintained than PEGDA hydrogels. These hydrogels may find use as scaffolds for tissue engineering applications.  相似文献   

17.
The effect of chloramphenicol on progression through the cell cycle of L5178Y cells was investigated. Using eosin staining as a viability index, G2 cells were shown to be specifically killed at a concentration of chloramphenicol generally used to study mitochondrial protein synthesis. Pretreating cells with chloramphenicol induced resistance to this G2 lethality.  相似文献   

18.
Water-soluble chitosan (WSC)-poly(l-aspartic acid) (PASP)-polyethylene glycol (PEG) nanoparticles (CPP nanoparticles) were prepared spontaneously under quite mild conditions by polyelectrolyte complexation. These nanoparticles were well dispersed and stable in aqueous solution, and their physicochemical properties were characterized by turbidity, FTIR spectroscopy, dynamic light scattering (DLS), transmission electron microscope (TEM), and zeta potential. PEG was chosen to modify WSC-PASP nanoparticles to make a protein-protective agent. Investigation on the encapsulation efficiency and loading capacity of the bovine serum albumin (BSA)-loaded CPP nanoparticles was also conducted. Encapsulation efficiency was obviously decreased with the increase of initial BSA concentration. Furthermore, its in vitro release characteristics were evaluated at pH 1.2, 2.5, and 7.4. In vitro release showed that these nanoparticles provided an initial burst release, followed by a slowly sustained release for more than 24 h. The BSA released from CPP nanoparticles showed no significant conformational change compared with native BSA, which is superior to the BSA released from nanoparticles without PEG. A cell viability study suggested that the nanoparticles had good biocompatibility. This nanoparticle system was considered promising as an advanced drug delivery system for the peptide and protein drug delivery.  相似文献   

19.
Research of pH-dependence of inhibitory action of eosin Y (2',4',5',7'-tetrabromofluorescin) on ATPase of contractile proteins of smooth muscles of the uterus has shown that the increase of concentration of this inhibitor (from 0.1 to 10 microM) influenced the profile of pH-dependence of ATPase activity of actomyosin: in the presence of 0.1 microM eosin Y the change of optimal value of pH has been observed in more sour side in relation to the control; at the increase of concentration of eosin Y (from 0.5 to 10 microM) the strongly pronounced optimum of pH is absents in general. The ability of eosin Y to inhibit the ATPase activity of contractile complex is dependent on pH of incubation environment. The change of pH from 6.0 to 7.2 results in a 9-fold decrease of magnitude of apparent constant of inhibition Ki (from 6.5 +/- 0.8 microM to 0.74 +/- 0.07 microM). The obtained results indicate that the diminishing of concentration of H+ in an incubation environment favors the increase of affinity ATPase of actomyosin for eosin Y and prove the important role of ionization processes in the system "enzyme-substrate-inhibitor" for realization of inhibitory action of eosin Y.  相似文献   

20.
A Suzuki  M Yamazaki  T Ito 《Biochemistry》1989,28(15):6513-6518
A high molecular weight inert molecule, poly(ethylene glycol) (PEG), or a soluble protein, ovalbumin, causes parallel bundles of actin filaments in a crystalline-like structure under physiological conditions of ionic compositions and pH. The bundle formation depends on the molecular weight of PEG, and a larger molecular weight of PEG can make the bundle at a lower concentration. Actin bundle formation has a discrete dependence on the concentration of PEG. The light scattering following PEG-induced bundle formation increased abruptly at 4.5% (w/w) PEG 6000, while at concentrations less than or equal to 4.0% (w/w) no increase was observed. Labeling actin filaments with heavy meromyosin indicated that the polarity of the filament in the bundle is random. The PEG-induced bundle formation depends on the ionic strength of the solutions and also the concentration of the filament, showing that a higher concentration of PEG was required at lower ionic strength or a lower concentration of the filament. The results described above cannot be explained on the basis of the postulation that the direct binding of PEG molecules to the actin filaments may cause bundle formation. Alternatively, the mechanism can be explained reasonably by the theory of osmoelastic coupling based on preferential exclusion of PEG molecules from the filament surface. High molecular weight molecules such as PEG should be preferentially excluded from the region adjacent to the actin filaments (exclusion layer) by steric hindrance, thereby making imbalance of osmolarity between the bulk and the exclusion layer. This imbalance puts an osmotic stress on the actin filament.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号