首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of echinomycin with a kinetoplast DNA fragment which contains phased runs of adenine residues has been examined by various footprinting techniques. DNAase I footprinting confirms that all drug-binding sites contain the dinucleotide CpG. However, not all such sequences are protected. Three sites, each of which is located between two adenine tracks in the sequence GCGA, are not protected from DNAase I attack. Enhanced cleavage by DNAase I, DNAase II and micrococcal nuclease is observed in regions surrounding drug-binding sites. The results suggest that echinomycin alters the conformation of the AT tracks, making them more like an average DNA structure. Echinomycin renders adenine residues in the sequence CGA hyper-reactive to diethyl pyrocarbonate.  相似文献   

2.
Sequence-specific binding of luzopeptin to DNA.   总被引:3,自引:2,他引:1       下载免费PDF全文
We have examined the binding of luzopeptin, an antitumor antibiotic, to five DNA fragments of varying base composition. The drug forms a tight, possibly covalent, complex with the DNA causing a reduction in mobility on nondenaturing polyacrylamide gels and some smearing of the bands consistent with intramolecular cross-linking of DNA duplexes. DNAase I and micrococcal nuclease footprinting experiments suggest that the drug binds best to regions containing alternating A and T residues, although no consensus di- or trinucleotide sequence emerges. Binding to other sites is not excluded and at moderate ligand concentrations the DNA is almost totally protected from enzyme attack. Ligand-induced enhancement of DNAase I cleavage is observed at both AT and GC-rich regions. The sequence selectivity and characteristics of luzopeptin binding are quite different from those of echinomycin, a bifunctional intercalator of related structure.  相似文献   

3.
The technique of DNAase I footprinting has been used to investigate preferred binding sites for actinomycin D and distamycin on a 160-base-pair DNA fragment from E. coli containing the tyr T promoter sequence. Only sites containing the dinucleotide step GpC are protected by binding of actinomycin, and all such sites are protected. Distamycin recognizes four major regions rich in A + T residues. Both antibiotics induce enhanced rates of cleavage at certain regions flanking their binding sites. These effects are not restricted to any particular base sequence since they are produced in runs of A and T by actinomycin and in GC-rich sequences by distamycin. The observed increases in susceptibility to nuclease attack are attributed to DNA structural variations induced in the vicinity of the ligand binding site, most probably involving changes in the width of the helical minor groove.  相似文献   

4.
The use of micrococcal nuclease as a probe for drug-binding sites on DNA   总被引:8,自引:0,他引:8  
The cutting pattern produced by micrococcal nuclease on three DNA fragments has been determined in the absence and presence of various DNA-binding drugs. The enzyme itself cuts almost exclusively at pA and pT bonds, showing a greater activity at (A-T)n than in homopolymeric runs of A and T. Each drug produces distinct changes in the cleavage pattern. The protected regions can not be pinpointed with sufficient precision to assess the exact drug-binding sites on account of the sequence selectivity of the enzyme, although where a direct comparison is possible these include most of those seen as DNAase I footprints. The enzyme is most useful for assessing the selectivity of drugs which bind to AT-rich regions. Several drugs protect the DNA from micrococcal nuclease attack in regions which do not contain their acknowledged best binding sites. It appears that micrococcal nuclease is sensitive to the existence of secondary drug-binding sites which are not evident with other footprinting techniques.  相似文献   

5.
DNA fragments containing the sequence CG(AT)nCG have been used in footprinting experiments to assess the effect of echinomycin, which binds to CG steps, on the structure of the central AT region. DNAase I normally cuts ApT much better than TpA; in the presence of the drug this preference is retained but cleavage at TpA is enhanced. Changes in cleavage by micrococcal nuclease have also been observed. Echinomycin renders alternate adenines hyperreactive to diethylpyrocarbonate. The results suggest that echinomycin induces structural changes in regions surrounding its binding site and that these can be cooperatively propagated over several turns of the DNA helix.  相似文献   

6.
The structures of two remote glucocorticoid responsive units (GRUs) that cooperatively interact to promote cell-type specific glucocorticoid induction of rat tyrosine aminotransferase gene expression have been analyzed. DNAase I footprinting and gel mobility shift analyses reveal a complex array of contiguous and overlapping sites for cell type-specific DNA binding proteins. Apart from the glucocorticoid receptor, two liver-specific nuclear factors possess multiple binding sites in each of these GRUs: C/EBP and a newly identified liver-specific factor: HNF5. C/EBP possesses four binding sites in each GRU; a DNA-binding protein with similar binding specificity has been identified in fibroblasts; this protein could be related to AP-3. HNF5 possesses two binding sites in one GRU and four in the other. There are also HNF5 binding sites in numerous regulatory regions of other liver-specific genes. The interaction of HNF5 with DNA gives a characteristic DNAase I footprint with hypersensitive sites in the middle of the recognition sequence. Some of the C/EBP and HNF5 binding sites overlap in a conserved arrangement.  相似文献   

7.
Low salt extracts of chicken oviduct nuclei contain a DNA binding protein with high affinity for specific DNA sequences in the flanking regions of the chicken lysozyme gene. Two of the three binding sites found within a total of 11 kb upstream from the promoter are located only 92 bp apart from each other. Upon comparison of the DNA binding sites, the symmetrical consensus sequence 5'- TGGCANNNTGCCA -3' can be deduced as the protein recognition site. This sequence is the central part of 23 to 25 base pairs protected by the DNA binding protein from DNAase I digestion. A homologous binding activity can be detected in nuclei from several chicken tissues and from mouse liver.  相似文献   

8.
The preferred binding sites for mithramycin on four different DNA fragments have been investigated by DNAase I footprinting. Sites containing at least two contiguous GC base pairs are protected by the antibiotic, the preferred binding site consisting of the dinucleotide step GpG (or CpC). Related antibiotics chromomycin and olivomycin produce similar, but not identical footprinting patterns suggesting that they can recognize other sequences as well. All three antibiotics induce enhanced rates of enzyme cleavage at regions flanking some of their binding sites. These effects are generally observed in runs of A and T and are attributed to DNA structural variations induced in the vicinity of the ligand binding site. The reaction of dimethylsulphate with N7 of guanine was modified by the presence of mithramycin so that we cannot exclude the possibility that these antibiotics bind to DNA via the major groove.  相似文献   

9.
The hypothesis that sequence-selective DNA-binding antibiotics locate their preferred binding sites by a process involving migration from nonspecific sites has been tested by footprinting with DNAase I. Footprinting patterns on the tyrT DNA fragment produced by nogalamycin and actinomycin change with time after mixing the antibiotic with the DNA. Sites of protection as well as enhanced cleavage are seen to develop in a fashion which is both temperature and concentration-dependent. At certain sites cutting is transiently enhanced, then blocked. Limited evidence for slow reaction with echinomycin and mithramycin is presented, but the kinetics of footprinting with daunomycin and distamycin appear instantaneous. The feasibility of adducing direct evidence for shuffling by footprinting seems to be governed by slow dissociation of the antibiotic-DNA complex. It may also be dependent upon the mode of binding, be it intercalative or non-intercalative in character.  相似文献   

10.
Echinomycin and distamycin induce rotation of nucleosome core DNA.   总被引:8,自引:7,他引:1       下载免费PDF全文
C M Low  H R Drew    M J Waring 《Nucleic acids research》1986,14(17):6785-6801
When nucleosome cores reconstituted from chicken erythrocyte histones and a 160 bp DNA molecule are exposed to echinomycin, a bis-intercalating antitumour antibiotic, the DNA appears to rotate with respect to the histone octamer by about half a turn. New bands appear in patterns of DNAase I digestion at positions approximately mid-way between those characteristic of control core samples, while the control pattern is largely suppressed. Similar (but not identical) changes are produced when nucleosome cores are exposed to distamycin, a non-intercalating DNA-binding antibiotic. The effects of both ligands can be explained in terms of a change in rotational orientation of the core DNA, so as to place antibiotic binding sites on the inward-facing (concave) surface of the DNA supercoil. Presumably this serves to optimise non-bonded contacts with the polynucleotide backbone. These results establish that the positioning of DNA about the histone octamer is not absolutely determined by its nucleotide sequence, but may be modified by the binding of such relatively small molecules as antibiotics.  相似文献   

11.
D E Gilbert  J Feigon 《Biochemistry》1991,30(9):2483-2494
The complexes formed between the cyclic octadepsipeptide antibiotic echinomycin and the two DNA octamers [d(ACGTACGT)]2 and [d(TCGATCGA)]2 have been investigated by using one- and two-dimensional proton NMR spectroscopy techniques. The results obtained for the two complexes are compared to each other, to the crystal structures of related DNA-echinomycin complexes, and to enzymatic and chemical footprinting results. In the saturated complexes, two echinomycin molecules bind to each octamer by bisintercalation of the quinoxaline moieties on either side of each CpG step. Binding of echinomycin to the octamer [d(ACGTACGT)]2 is cooperative so that only the two-drug complex is observed at lower drug-DNA ratios, but binding to [d(TCGATCGA)]2 is not cooperative. At low temperatures, both the internal and terminal A.T base pairs adjacent to the binding site in the [d(ACGTACGT)]2-2 echinomycin complex are Hoogsteen base paired (Gilbert et al., 1989) as observed in related crystal structures. However, as the temperature is raised, the internal A.T Hoogsteen base pairs are destabilized and are observed to be exchanging between the Hoogsteen base-paired and an open (or Watson-Crick base-paired) state. In contrast, in the [d(TCGATCGA)]2-2 echinomycin complex, no A.T Hoogsteen base pairs are observed, the internal A.T base pairs appear to be stabilized by drug binding, and the structure of the complex does not change significantly from 0 to 45 degrees C. Thus, the structure and stability of the DNA in echinomycin-DNA complexes depends on the sequence at and adjacent to the binding site. While we conclude that no single structural change in the DNA can explain all of the footprinting results, unwinding of the DNA helix in the drug-DNA complexes appears to be an important factor while Hoogsteen base pair formation does not.  相似文献   

12.
Four different footprinting techniques have been used to probe the DNA sequence selectivity of Thia-Net, a bis-cationic analogue of the minor groove binder netropsin in which the N-methylpyrrole moieties are replaced by thiazole groups. In Thia-Net the ring nitrogen atoms are directed into the minor groove where they could accept hydrogen bonds from the exocyclic 2-amino group of guanine. Three nucleases (DNAase I, DNAase II, and micrococcal nuclease) were employed to detect binding sites on the 160bp tyr T fragment obtained from plasmid pKM delta-98, and further experiments were performed with 117mer and 253mer fragments cut out of the plasmid pBS. MPE.Fe(II) was used to footprint binding sites on an EcoRI/HindIII fragment from pBR322. Thia-Net binds to sites in the minor groove containing 4 or 5 base pairs which are predominantly composed of alternating A and T residues, but with significant acceptance of intrusive GC base pairs. Unlike the parent antibiotic netropsin, Thia-Net discriminates against homooligomeric runs of A and T. The evident preference of Thia-Net for AT-rich sites, despite its containing thiazole nitrogens capable of accepting GC sites by hydrogen bonding, supports the view that the biscationic nature of the ligand imposes a bias due to the electrostatic potential differences in the receptor which favour the ligand reading alternating AT sequences.  相似文献   

13.
In mouse myeloma T the productive kappa light chain gene differs from its aberrantly rearranged allele in the patterns of DNAase I hypersensitive sites. In the region of the alleles where they are identical in sequence they have one site in common which lies 0.8 kb downstream of the coding region; but two sites upstream of and within the C gene segment (2) are found only on the non-productive allele. Within the region of different sequences both alleles have analogously located DNAase I hypersensitive sites; they lie 0.15 kb upstream of the respective leader segments and cover putative promoter sequences. Only one of the six DNAase I hypersensitive sites is also very sensitive towards micrococcal nuclease due to its particular DNA sequence. The non-rearranged gene studied in liver nuclei has no DNAase I hypersensitive sites but is preferentially cleaved in A/T rich regions.  相似文献   

14.
Methyl green has long been used as a DNA stain in histochemistry. The sequence selective binding of the cationic triphenylmethane dyes methyl green, crystal violet and Malachite green to DNA was investigated by DNAase 1 and micrococcal nuclease footprinting. At low concentrations the ligands showed similar footprinting patterns which centred around AT-rich regions with a mild preference for hompolymeric A and T. At higher concentrations the dyes bound to almost all available DNA sites. Models, with and without intercalation are discussed to account for the specific binding.  相似文献   

15.
Two fragments of Xenopus borealis DNA 135 and 189 base-pairs long were separately incorporated into nucleosome core particles by reconstitution with chicken erythrocyte histones, and incubated with echinomycin (a bis-intercalating antitumor antibiotic) or distamycin (a minor groove-binding, non-intercalating antibiotic). Controlled digestion of these defined sequence core particles using DNAase I revealed new cleavage products, indicative of a change in orientation of the DNA molecule on the surface of the nucleosome. This new rotational setting of DNA within the core particle induced by antibiotic binding appears to be practically independent of DNA sequence, although some differences were noted between the patterns of fragments observed in the various experiments, most likely reflecting the exact number and disposition of the antibiotic binding sites.  相似文献   

16.
The reactivity of the 160 bp tyrT DNA fragment towards diethyl pyrocarbonate (DEPC) has been investigated in the presence of bis-intercalating quinoxaline antibiotics and the synthetic depsipeptide TANDEM. At moderate concentrations of each ligand, specific purine residues (mainly adenosines) exhibit enhanced reactivity towards the probe, and several sites of enhancement appear to be related to the sequence selectivity of drug binding. Further experiments were performed with echinomycin at pH 5.5 and 4.6 to facilitate the protonation of cytosine required for formation of Hoogsteen GC base pairs. No significant increase in reactivity was observed under these conditions. Additionally, no protection of deoxyguanosine residues from methylation by dimethyl sulphate was observed in the presence of echinomycin. We conclude that the structural anomaly giving rise to drug-dependent enhanced DEPC reaction is not simply the formation of Hoogsteen base pairs adjacent to antibiotic binding sites. Nor is it due to a general unwinding of the double helix, since we show that conditions which are supposed to unwind the helix lead to a uniform increase in purine reactivity, regardless of the surrounding nucleotide sequence.  相似文献   

17.
C M Low  R K Olsen  M J Waring 《FEBS letters》1984,176(2):414-420
Six or seven triostin-binding sites have been identified in a 160-base-pair DNA restriction fragment containing the tyr T promoter sequence. Each is centred round a CpG step, and the minimum binding site-size appears to be six base pairs. The sites are practically the same as those reported for echinomycin by DNase I digestion. Only two sites are protected by binding of TANDEM, the des-N-tetramethyl analogue of triostin A; they are centred around the sequences ATA or TAT.  相似文献   

18.
19.
20.
Atomic force microscopy (AFM) has been used to examine the conformational effects of echinomycin, a DNA bis-intercalating antibiotic, on linear and circular DNA. Four different 398 bp DNA fragments were synthesized, comprising a combination of normal and/or modified bases including 2,6-diaminopurine and inosine (which are the corresponding analogues of adenine and guanosine in which the 2-amino group that is crucial for echinomycin binding has been added or removed, respectively). Analysis of AFM images provided contour lengths, which were used as a direct measure of bis-intercalation. About 66 echinomycin molecules are able to bind to each fragment, corresponding to a site size of six base-pairs. The presence of base-modified nucleotides affects DNA conformation, as determined by the helical rise per base-pair. At the same time, the values obtained for the dissociation constant correlate with the types of preferred binding site available among the different DNA fragments; echinomycin binds to TpD sites much more tightly than to CpG sites. The structural perturbations induced when echinomycin binds to closed circular duplex pBR322 DNA were also investigated and a method for quantification of the structural changes is presented. In the presence of increasing echinomycin concentration, the plasmid can be seen to proceed through a series of transitions in which its supercoiling decreases, relaxes, and then increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号