首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of organic compounds with elemental sulfur or thiosulfate as electron acceptor was studied in the anaerobic hyperthermophilic archaea Thermoproteus tenax and Pyrobaculum islandicum. T. tenax was grown on either glucose or casamino acids and sulfur; P. islandicum on peptone and either elemental sulfur or thiosulfate as electron acceptor. During exponential growth only CO2 and H2S rather than acetate, alanine, lactate, and succinate were detected as fermentation products of both organisms; the ratio of CO2/H2S formed was 1:2 with elemental sulfur and 1:1 with thiosulfate as electron acceptor. Cell extracts of T. tenax and P. islandicum contained all enzymes of the citric acid cycle in catabolic activities: citrate synthase, aconitase, isocitrate dehydrogenase (NADP+-reducing), oxoglutarate: benzylviologen oxidoreductase, succinyl-CoA synthetase, succinate dehydrogenase, fumarase and malate dehydrogenase (NAD+-reducing). Carbon monoxide dehydrogenase activity was not detected. We conclude that in T. tenax and P. islandicum organic compounds are completely oxidized to CO2 with sulfur or thiosulfate as electron acceptor and that acetyl-CoA oxidation to CO2 proceeds via the citric acid cycle.  相似文献   

2.
3.
Ethanol grown Acetobacter aceti differed from acetate grown. In ethanol grown cells, acetate uptake, caused by the oxidation of acetate, was completely inhibited by ethanol, in acetate grown cells only to 20%. This was correlated with a 65-fold higher specific activity of the membrane bound NAD(P)-independent alcohol dehydrogenase in ethanol grown than in acetate grown cells. In comparison with ethanol grown cells, acetate grown cells showed a 3-fold higher acetate respiration rate and 3-fold higher specific activities of some tricarboxylic acid cycle enzymes tested. Both adaptations were due to induction by the homologous and not to repression by the heterologous growth substrate. A. aceti showed a membrane bound NAD(P)-independent malate dehydrogenase and no activity of a soluble NAD(P)-dependent one, as was known before from A. xylinum. A hypothesis was proposed explaining the observed inhibition of malate dehydrogenase and of functioning of the tricarboxylic acid cycle in the presence of ethanol or butanol or glucose by a competition of two electron currents for a common link in the convergent electron transport chains. The electrons coming from the quinoproteins, alcohol dehydrogenase and glucose dehydrogenase on the one side and those coming from the flavoproteins, malate dehydrogenase and succinate dehydrogenase via ubiquinonecytochrome c reductase on the other side are meeting at cytochrome c. Here the quinoproteins may be favoured by higher affinity and so inhibit the flavoproteins. Inhibition could be alleviated in the cell free system by increasing the oxygen supply.Dedicated to Professor Carl Martius on the occasion of his 80th birthday, March 1st 1986  相似文献   

4.
Glucose may be converted to 6-phosphogluconate by alternate pathways in Pseudomonas aeruginosa. Glucose is phosphorylated to glucose-6-phosphate, which is oxidized to 6-phosphogluconate during anaerobic growth when nitrate is used as respiratory electron acceptor. Mutant cells lacking glucose-6-phosphate dehydrogenase are unable to catabolize glucose under these conditions. The mutant cells utilize glucose as effectively as do wild-type cells in the presence of oxygen; under these conditions, glucose is utilized via direct oxidation to gluconate, which is converted to 6-phosphogluconate. The membrane-associated glucose dehydrogenase activity was not formed during anaerobic growth with glucose. Gluconate, the product of the enzyme, appeared to be the inducer of the gluconate transport system, gluconokinase, and membrane-associated gluconate dehydrogenase. 6-Phosphogluconate is probably the physiological inducer of glucokinase, glucose-6-phosphate dehydrogenase, and the dehydratase and aldolase of the Entner-Doudoroff pathway. Nitrate-linked respiration is required for the anaerobic uptake of glucose and gluconate by independently regulated transport systems in cells grown under denitrifying conditions.  相似文献   

5.
In several sulfate-reducing bacteria capable of complete oxidation of acetate (or acetyl CoA), the citric acid cycle is not operative. No 2-oxoglutarate dehydrogenase activity was found in these organisms, and the labelling pattern of oxaloacetate excludes its synthesis via 2-oxo-glutarate. These sulfate-reducers contained, however, high activities of the enzymes carbon monoxide dehydrogenase and formate dehydrogenase and catalyzed an isotope exchange between CO2 and the carboxyl group of acetate (or acetyl CoA), showing a direct C-C-cleavage of activated acetic acid. These findings suggest that in the investigated sulfate-reducers acetate is oxidized to CO2 via C1 intermediates. The proposed pathway provides a possible explanation for the reported different fluoroacetate sensitivity of acetate oxidation by anaerobic bacteria, for mini-methane formation, as well as for the postulated anaerobic methane oxidation by special sulfate-reducers.  相似文献   

6.
Propionibacterium freudenreichii strain DSM 20271 was grown in a mineral medium containing 0.1% (w/v) yeast extract. Acetate was oxidized by growing cells with potassium hexacyanoferrate as electron acceptor, which was oxidized by a three-electrode poised-potential system at a redox potential of +510 mV. Growth with acetate under these conditions followed linear rather than expenential kinetics, whereas growth with other substrates such as lactate under the same conditions was exponential. Cell-free extracts of P. freudenreichii cells grown with acetate contained all enzymes of the classical citric acid cycle except 2-oxoglutarate-oxidizing activity. No activity of anaplerotic reactions such as isocitrate lyase or malate synthase was found. Instead, moderate activities of glutamate decarboxylase, 4-aminobutyrate:2-oxoglutarate aminotransferase, and succinate semialdehyde dehydrogenase were detected. In short-term radiolabeling experiments with U-14C-acetate, 4-aminobutyrate was identified as a major early intermediate in acetate oxidation by these cells. These findings allow the construction of a modified citric acid cycle that compensates the lack of 2-oxoglutarate dehydrogenase by a subcycle through glutamate, 4-aminobutyrate, and succinate semialdehyde. Lack of anaplerotic reactions explains subexponential growth kinetics during growth with acetate.  相似文献   

7.
The growth of Yarrowia lipolytica yeast as well the biosynthesis of citric acid on rapeseed oil were studied. It was indicated that the initial step of assimilation of rapeseed oil in the yeast Y. lipolytica is their hydrolysis by extracellular lipases with the formation of glycerol and fatty acids, which appear in the medium in the phase of active growth. The concentrations of these metabolites change insignificantly upon further cultivation. Lipase and the key enzymes of glycerol metabolism (glycerol kinase) and the glyoxylate cycle responsible for the metabolism of fatty acids (isocitrate lyase and malate synthase) are induced just at the beginning of the growth phase and remain active in the course of further cultivation. These results, taken together, suggest that glycerol and fatty acids according in the medium do not suppress the metabolism of each other. The fact that glycerol and fatty acids can be consumed simultaneously is of special importance for the development of the efficient regime of oil feeding, Y. lipolytica produced citric acid (175?g/L) with a yield of 150%. It should be noted that the simultaneous utilization of two different substrates is not typical of micro-organisms, which first assimilate one of the two available substrates (commonly, a carbohydrate), whereas the assimilation of the other substrate starts only after the first substrate is fully consumed from the medium. Indeed, upon the cultivation of Y. lipolytica on the mixture of glucose and oleic acid, the latter substrate began to be utilized only when the concentration of glucose decreased. The glycolytic enzyme pyruvate dehydrogenase was induced from the first hours of cultivation and remained at high levels until the exhaustion of glucose in the medium. At the same time, the activities of isocitrate lyase and malate synthase were very low during the metabolism of glucose, but were rapidly induced (approximately in 10 times) after the exhaustion of glucose in the medium. When Y. lipolytica was grown on the mixture of glucose and hexadecane, the dynamics of growth and substrate consumption was typical of the diauxie phenomenon: the utilization of hexadecane began only in several hours after the time when glucose was completely exhausted in the cultivation medium. In this case, the exhaustion of glucose arrested growth and the culture resumed growth only after a lag period. The assay of enzymes showed that the glycolytic enzyme pyruvate dehydrogenase was active during the phase of growth on glucose, whereas the enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase were active during the phase of growth on hexadecane. In recent years in the literature, there are data that the different sugars produce signals which modify the conformation of certain proteins that, in turn, directly or through a regulatory cascade affect the expression of the genes subject to catabolite repression. These genes are not all controlled by a single set of regulatory proteins (Cho et al. 2009), but there are different circuits of repression for different groups of genes (Gancedo 1990). We will discuss the possible metabolic regulation in the case of Y. lipolytica.  相似文献   

8.
Syntheses of the key enzymes of the glyoxylate cycle, in Candida lipolytica, were highly repressed by glucose. Syntheses of the key enzymes of the methylcitric acid cycle were also slightly repressed by glucose but the degrees of repression in the syntheses of these enzymes were nearly equal to those of repression in the syntheses of several enzymes of the citric acid cycle. All enzyme syntheses repressed by glucose were derepressed during incubation with succinate as well as with n-alkanes: enzyme syntheses of the methylcitric acid cycle did not necessitate the addition of propionate or odd-carbon n-alkanes. The enzymes of the methylcitric acid cycle seem to be constitutive, similarly as those of the citric acid cycle.

In the parent strain, the respective enzyme levels of the cells grown on an odd-numbered n-alkane were similar to those of the cells grown on an even-numbered n-alkane. But in the mutant strain lacking 2-methylisocitrate lyase, the cells grown on the odd-numbered alkane contained aconitate hydratase, NADP-Iinked isocitrate dehydrogenase, isocitrate lyase, 2- methylcitrate synthase and 2-methylaconitate hydratase all at higher levels than the cells grown on the even-numbered alkane. Both the parent cells and the mutant cells grown on the same carbon source contained at individually similar levels of the following six enzymes; citrate synthase, NAD-linked isocitrate dehydrogenase, succinate dehydrogenase, fumarate hydratase, malate dehydrogenase, and malate synthase. The pleiotropic changes of enzyme activities in the mutant cells grown on the odd-numbered alkane seem to be ascribable to direct or indirect stimulation caused by threo-ds-2-methylisocitric acid accumulation.  相似文献   

9.
Geobacter sulfurreducens strain PCA oxidized acetate to CO2 via citric acid cycle reactions during growth with acetate plus fumarate in pure culture, and with acetate plus nitrate in coculture with Wolinella succinogenes. Acetate was activated by succinyl-CoA:acetate CoA-transferase and also via acetate kinase plus phosphotransacetylase. Citrate was formed by citrate synthase. Soluble isocitrate and malate dehydrogenases NADP+ and NAD+, respectively. Oxidation of 2-oxoglutarate was measured as benzyl viologen reduction and strictly CoA-dependent; a low activity was also observed with NADP+. Succinate dehydrogenase and fumarate ductase both were membrane-bound. Succinate oxidation was coupled to NADP+ reduction whereas fumarate reduction was coupled to NADPH and NADH Coupling of succinate oxidation to NADP+ or cytochrome(s) reduction required an ATP-dependent reversed electron transport. Net ATP synthesis proceeded exclusively through electron transport phosphorylation. During fumarate reduction, both NADPH and NADH delivered reducing equivalents into the electron transport chain, which contained a menaquinone. Overall, acetate oxidation with fumarate proceeded through an open loop of citric acid cycle reactions, excluding succinate dehydrogenase, with fumarate reductase as the key reaction for electron delivery, whereas acetate oxidation in the syntrophic coculture required the complete citric acid cycle.  相似文献   

10.
2,3-Dinitrilo-1,4-dithia-9,10-anthraquinone (DDA) is an effective inhibitor of respiration of intact cells ofMycobacterium smegmatis in the presence of glucose, glycerol, pyruvate, acetate and other citric acid cycle intermediates or substrates associate d with this cycle (glutamate, asparagine). DDA inhibits the incorporation of both14C-leucine and14C-adenine into appropriate macromolecules ofM. smegmatis (TCA-precipitable fractions), and causes a drop in the incorporated activity ofU-14C-glycine or its degradation products in all the cell fractions studied (lipids, RNA, DNA, proteins). DDA suppresses the growth ofM. smegmatis probably through an interference with the cell energy-carbon metabolism.  相似文献   

11.
Spangler, W. J. (Oregon State University, Corvallis), and C. M. Gilmour. Biochemistry of nitrate respiration in Pseudomonas stutzeri. I. Aerobic and nitrate respiration routes of carbohydrate catabolism. J. Bacteriol. 91:245-250. 1966.-The metabolic pathways of glucose catabolism were studied in Pseudomonas stutzeri under aerobic conditions and under conditions of nitrate respiration. Studies on both glucose and gluconate catabolism, by the radiorespirometric method, indicated that these substrates are degraded in the same manner, i.e., the Entner-Doudoroff and pentose phosphate pathways. There appeared to be no major shift in primary metabolic pathways when nitrate was used as the terminal hydrogen acceptor in nitrate respiration as opposed to aerobic respiration with free molecular oxygen. It was shown that glucose is not degraded to any appreciable extent under anaerobic conditions in the absence of nitrate. Tentative evidence suggests that the tricarboxylic acid cycle functions under both conditions of oxygen relationships and that the rate of carbon oxidation via the tricarboxylic acid cycle is slower with nitrate respiration than under aerobic conditions.  相似文献   

12.
In contrast to the absolute Na(+) requirement for anaerobic growth of Aerobacter aerogenes on citrate as sole carbon source, aerobic growth of this microorganism did not require the presence of Na(+). However, Na(+) (optimal concentration, 10 mm) did increase the maximal amount of aerobic growth by 60%, even though it did not change the rate of growth. This increase in growth was specifically affected by Na(+), which could not be replaced by K(+), NH(4) (+), Li(+), Rb(+), or Cs(+). Enzyme profiles were determined in A. aerogenes cells grown aerobically on citrate in media of varying cationic composition. Cells grown in Na(+)-free medium possessed all the enzymes of the citric acid cycle including alpha-ketoglutarate dehydrogenase, which is repressed by anaerobic conditions of growth. The enzymes of the anaerobic citrate fermentation pathway, citritase and oxalacetate decarboxylase, were also present in these cells, but this pathway of citrate catabolism was effectively blocked by the absence of Na(+), which is essential for the activation of the oxalacetate decarboxylase step. Thus, in Na(+)-free medium, aerobic citrate catabolism proceeded solely via the citric acid cycle. Addition of 10 mm Na(+) to the aerobic citrate medium resulted in the activation of oxalacetate decarboxylase and the repression of alpha-ketoglutarate dehydrogenase, thereby diverting citrate catabolism from the (aerobic) citric acid cycle mechanism to the fermentation mechanism characteristic of anaerobic growth. The further addition of 2% potassium acetate to the medium caused repression of citritase and derepression of alpha-ketoglutarate dehydrogenase, switching citrate catabolism back into the citric acid cycle.  相似文献   

13.
The metabolism of glucose during enterotoxin B synthesis in Staphylococcus aureus S-6 was examined under anaerobic conditions in the presence and absence of nitrate. The repression of enterotoxin synthesis which occurs during the oxidative metabolism of glucose was relieved after a shift to anaerobic conditions; glucose was then converted primarily to lactic acid and was metabolized more rapidly, presumably to obtain the equivalent amount of energy available aerobically. A greater proportion of oxidized end products and evidently more energy per glucose molecule was produced in the presence of oxygen. Thus, available energy as judged by a change in the type and proportion of end products appears to be related to the degree of toxin repression. As expected, the addition of nitrate during anaerobic glucose metabolism prevented derepression of toxin synthesis.  相似文献   

14.
Strain L21-Ace-BEST, isolated from a lithifying cyanobacterial mat, could be assigned to a novel species and genus within the class Deferribacteres. It is an important model organism for the study of anaerobic acetate degradation under hypersaline conditions. The metabolism of strain L21-Ace-BEST was characterized by biochemical studies, comparative genome analyses, and the evaluation of gene expression patterns. The central metabolic pathway is the citric acid cycle, which is mainly controlled by the enzyme succinyl-CoA:acetate-CoA transferase. The potential use of a reversed oxidative citric acid cycle to fix CO2 has been revealed through genome analysis. However, no autotrophic growth was detected in this strain, whereas sulfide and H2 can be used mixotrophically. Preferred electron acceptors for the anaerobic oxidation of acetate are nitrate, fumarate and dimethyl sulfoxide, while oxygen can be utilized only under microoxic conditions. Aerotolerant growth by fermentation was observed at higher oxygen concentrations. The redox cycling of sulfur/sulfide enables the generation of reducing power for the assimilation of acetate during growth and could prevent the over-reduction of cells in stationary phase. Extracellular electron transfer appears to be an essential component of the respiratory metabolism in this clade of Deferribacteres and may be involved in the reduction of nitrite to ammonium.  相似文献   

15.
Deletion of both iclR and arcA in E. coli profoundly alters the central metabolic fluxes and decreases acetate excretion by 70%. In this study we investigate the metabolic consequences of both deletions in E. coli BL21 (DE3). No significant differences in biomass yields, acetate yields, CO2 yields and metabolic fluxes could be observed between the wild type strain E. coli BL21 (DE3) and the double-knockout strain E. coli BL21 (DE3) ΔarcAΔiclR. This proves that arcA and iclR are poorly active in the BL21 wild type strain. Noteworthy, both strains co-assimilate glucose and acetate at high glucose concentrations (10–15 g l−1), while this was never observed in K12 strains. This implies that catabolite repression is less intense in BL21 strains compared to in E. coli K12.  相似文献   

16.
Whole‐cell biocatalysis for C–H oxyfunctionalization depends on and is often limited by O2 mass transfer. In contrast to oxygenases, molybdenum hydroxylases use water instead of O2 as an oxygen donor and thus have the potential to relieve O2 mass transfer limitations. Molybdenum hydroxylases may even allow anaerobic oxyfunctionalization when coupled to anaerobic respiration. To evaluate this option, the coupling of quinoline hydroxylation to denitrification is tested under anaerobic conditions employing Pseudomonas putida (P. putida) 86, capable of aerobic growth on quinoline. P. putida 86 reduces both nitrate and nitrite, but at low rates, which does not enable significant growth and quinoline hydroxylation. Introduction of the nitrate reductase from Pseudomonas aeruginosa enables considerable specific quinoline hydroxylation activity (6.9 U gCDW?1) under anaerobic conditions with nitrate as an electron acceptor and 2‐hydroxyquinoline as the sole product (further metabolization depends on O2). Hydroxylation‐derived electrons are efficiently directed to nitrate, accounting for 38% of the respiratory activity. This study shows that molybdenum hydroxylase‐based whole‐cell biocatalysts enable completely anaerobic carbon oxyfunctionalization when coupled to alternative respiration schemes such as nitrate respiration.  相似文献   

17.
Aeromonas hydrophila ATCC 7966 grew anaerobically on glycerol with nitrate, fumarate, Fe(III), Co(III), or Se(VI) as the sole terminal electron acceptor, but did not ferment glycerol. Final cell yields were directly proportional to the amount of terminal electron acceptor provided. Twenty-four estuarine mesophilic aeromonads were isolated; all reduced nitrate, Fe(III), or Co(III), and five strains reduced Se(VI). Dissimilatory Fe(III) reduction by A. hydrophila may involve cytochromes. Difference spectra obtained with whole cells showed absorption maxima at wavelengths characteristic of c-type cytochromes (419, 522, and 553 nm). Hydrogen-reduced cytochromes within intact cells were oxidized by the addition of Fe(III) or nitrate. Studies with respiratory inhibitors yielded results consistent with a respiratory chain involving succinate (flavin-containing) dehydrogenase, quinones and cytochromes, and a single Fe(III) reductase. Neither anaerobic respiration nor dissimilatory metal reduction by members of the genus Aeromonas have been reported previously. Received: 24 June 1997 / Accepted: 20 October 1997  相似文献   

18.
19.
The respiratory metabolism of Schizosaccharomyces pombe 972h(-), a fission, haplontic, "petite negative" yeast, was studied. Glucose and glycerol are good growth substrates and are oxidized under appropriate conditions. l-Lactate, ethanol, malate, and succinate are oxidized but are poor substrates for growth. d-Lactate and pyruvate are neither oxidized nor used for growth. Limited growth was observed under anaerobic conditions. The addition of 0.3% KNO(3) to a rich medium relieves the oxygen requirement. A continuous increase of cell respiration during growth on repressive concentration of glucose was observed, suggesting the presence of glucose repression of respiration. Reduced nicotinamide adenine dinucleotide (NADH), succinate, alpha-glycerophosphate, and ascorbate plus tetramethyl-p-phenylenediamine are oxidized by a mitochondrial fraction. NADH and succinate oxidations are inhibited by antimycin A and NaCN but not by rotenone, suggesting the absence of the phosphorylation site I and the presence of sites II and III. The effects of several mitochondrial inhibitors on growth and respiration indicate that the requirement of an oxidant for growth is related neither to the functioning of the respiratory electron transport chain nor to the formation of respiratory energy. The previously suggested correlations between the nonviability of vegetative "petites" mutants, the absence of repression of respiration by glucose, and the incapacity to grow under anaerobic conditions are thus not strictly valid for S. pombe.  相似文献   

20.
The ratio between two substrates is an important parameter in microbial co-fermentation, such as 1,3-propanediol production from glycerol by Klebsiella pneumoniae using glucose as the cosubstrate. In this study, the glycerol–glucose cometabolism by K. pneumoniae is stoichiometrically analyzed according to energy (ATP), reducing equivalent (NADH2) and product balances. The theoretical analysis reveals that the yield of 1,3-propanediol to glycerol under microaerobic conditions depends not only on the ratio of glucose to glycerol initially added, but also on the molar fraction of reducing equivalent oxidized completely by molecular oxygen in tricarboxylic acid (TCA) cycle (δ) and the molar fraction of TCA cycle in acetyl-CoA metabolism (γ). The maximum ratio of 0.32 mol glucose per mol glycerol is needed to convert glycerol completely to 1,3-propanediol under anaerobic conditions if glycerol neither enters oxidation pathways nor forms biomass. The ratio can be reduced under microaerobic conditions. The experimental results of batch cultures demonstrate that the biomass concentration and yield of 1,3-propanediol on glycerol could be enhanced by using glucose as a co-substrate. The theoretical analysis reveals the relationship between yield of 1,3-propanediol to glycerol, ratio of glucose to glycerol and respiratory quotient (RQ). These results are helpful for the experimental design and control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号